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Abstract
Deep generative models of sequence-structure data
have attracted widespread attention in drug dis-
covery. However, such models cannot fully ex-
tract the semantic features of molecules from se-
quential representations. Moreover, mode collapse
reduces the diversity of the generated molecules.
This paper proposes a transformer-based objective-
reinforced generative adversarial network (Tran-
sORGAN) to generate molecules. TransORGAN
leverages a transformer architecture as a generator
and uses a stochastic policy gradient for reinforce-
ment learning to generate plausible molecules with
rich semantic features. The discriminator grants re-
wards that guide the policy update of the genera-
tor, while an objective-reinforced penalty encour-
ages the generation of diverse molecules. Exper-
iments were performed using the ZINC chemical
dataset, and the results demonstrated the usefulness
of TransORGAN in terms of uniqueness, novelty,
and diversity of the generated molecules.

1 Introduction
The goal of drug discovery is to produce new compounds for
treating diseases. However, the path to drug approval has be-
come increasingly complicated and expensive. Over the past
decade, the development cost of a new prescription medicine
that gains market approval has risen by 145% to 2.6 billion
USD, and the average development time is 10 years. To ac-
celerate this process, medical scientists have begun using ar-
tificial intelligence (AI) and deep learning for drug discovery
[Olivecrona et al., 2017]. Some pharmaceutical companies
are now using AI and deep learning to perform tasks that once
depended on human intelligence. By using advanced tech-
niques, medical researchers at the forefront of drug develop-
ment can gain timely and actionable insights from stacks of
unstructured data.

Various deep generative models for de novo molecular
generation have been explored recently, including variational
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auto-encoders (VAEs) [Kusner et al., 2017; Dai et al., 2018;
Jin et al., 2018] and generative adversarial networks (GANs)
[Guimaraes et al., 2017; De Cao and Kipf, 2018]. A GAN
[Goodfellow et al., 2014] is an unsupervised deep learning
approach for generative modeling and has two main compo-
nents: a generator and discriminator. The generator attempts
to generate realistic fake data, and the discriminator aims to
distinguish synthetic data from the original data. For molecu-
lar generation, the simplified molecular-input line-entry sys-
tem (SMILES) is commonly used to represent molecules
as string-based sequences derived from molecular graphs
[Weininger, 1988]. For example, the molecular structure
“Ic1cnccn1” begins with the iodine atom “I” followed by
the ring structure “c1cnccn1.” Therefore, using a GAN with
SMILES to generate new molecules seems to be a reason-
able approach. Unfortunately, there are two problems with
sequence generation by a GAN. First, a GAN reliably gener-
ates real-valued continuous data, but it is unsuitable for indi-
rect sequence generation of discrete tokens such as SMILES
strings. Second, a GAN can only give the score/loss of an en-
tire string. Balancing the current score of a partially generated
subsequence with the future score of the complete sequence
is a nontrivial task.

SeqGAN [Yu et al., 2017] and objective-reinforced GAN
(ORGAN) [Guimaraes et al., 2017] were developed to ad-
dress the above problems. SeqGAN uses a reinforcement
learning (RL) approach [Sutton et al., 2000] to facilitate
the generation of discrete data. ORGAN is a SeqGAN-
based model that accounts for chemical properties such as
the solubility and drug-likeness of generated molecules. Both
SeqGAN and ORGAN employ recurrent neural networks
(RNNs), especially long short-term memory (LSTM), as the
generator. However, RNNs have certain limitations when
generating molecules with SMILES representations. First,
RNNs have difficulty with designing a molecule with com-
plex rings [Arús-Pous et al., 2019]. In general, highly cyclic
molecules have long sequence representations and a stricter
syntax than acyclic molecules. Slight changes in syntax may
result in the generation of invalid molecules or molecules
with very different chemical properties from those intended.
Second, RNNs cannot work on GPU versions because the
current iteration must be computed after the previous time
step, which is not conducive to exploring the near-infinite
chemical spaces of big data.
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A transformer is a self-attention-based neural network ar-
chitecture that provides state-of-the-art performance for neu-
ral machine translation tasks [Vaswani et al., 2017]. A trans-
former can effectively solve the shortcomings of traditional
RNNs in iterative calculations and uses the self-attention
mechanism to capture useful syntax information. However,
transformer-based GANs face several problems with molec-
ular generation. First, because the input and output are the
same, a transformer is likely to remember only that the to-
kens at the corresponding positions are the same, which re-
sults in insufficient training. In addition, simply applying RL
approaches, such as a policy gradient to train the transformer
may lead to instability.

To overcome these drawbacks, we propose a transformer-
based ORGAN (TransORGAN) model. The generator is a
transformer that outputs likely molecules as SMILES strings.
In addition, the same molecule can have various SMILES rep-
resentations, called variant SMILES, which are used by the
model to sufficiently learn the syntactic and semantic rules
of highly cyclic molecules. The discriminator evaluates the
generated data and feedbacks the rewards that guide the gen-
erator according to the RL method. The main contributions
are summarized below:

• A transformer is employed as the generator. A trans-
former architecture can be parallelized, and the self-
attention mechanism can capture the rich semantic in-
formation of molecules represented by SMILES strings.

• Variant SMILES allows the transformer to sufficiently
learn the syntax rules with different strings and increase
the diversity of generated molecules.

• The teacher-forcing improves the stability of the policy
gradient when it is guiding the generation of molecules
with the desired chemical properties during training.

2 Related Works
Deep generative models have attracted widespread attention,
because they can learn coherent latent representations of con-
tinuous data such as image and video data. However, gen-
erating molecular structures and other discrete data remains
a challenging task. Molecules generated from discrete data
are often invalid. Two kinds of VAEs have been proposed
for generating molecules: Character-VAE and Grammar-VAE
[Kusner et al., 2017]. Character-VAE can generate molecules
from characters without constraints, while Grammar-VAE
applies a parse tree to constrain the grammar of SMILES.
Grammar-VAE can generate syntactically valid molecules,
but it cannot generate semantics. A syntax-direct VAE (SD-
VAE) model was proposed to generate syntactic and semantic
valid molecules [Dai et al., 2018]. A junction tree-based VAE
(JT-VAE) can generate molecular graphs by using a graph
message-passing network [Jin et al., 2018]. A VAE and its
variants attempt to extract features of the encoder into a fixed-
size latent space, which limits the ability of decoders to de-
code the latent features. Graph-AF is a flow-based autore-
gressive neural network, that can generate molecules from
molecular graphs [Shi et al., 2019]. Although graphical rep-
resentations of molecules contain rich semantic and syntactic

information, graph-based models are generally more compli-
cated than SMILES strings.

A GAN alternately conducts adversarial training to im-
prove the generator’s ability to generate data and the dis-
criminator’s ability to distinguish between synthetic and real
data. Although GANs are not limited to a fixed-size latent
space, they have difficulties with generating discrete data se-
quences. SeqGAN considers the sequence generation pro-
cedure as a sequential decision-making process [Yu et al.,
2017]. The generator is an agent of RL, the state comprises
the tokens generated thus far, and the action is the next token.
The discriminator evaluates the sequence and provides feed-
back to guide the learning of the generator. However, GANs
cannot back propagate gradients to the generator when the
output is discrete. In SeqGAN, the generator is a stochas-
tic parametrized policy. The policy gradients approximate
state-action values using a Monte Carlo search process. To
consider desired chemical properties, ORGAN extended the
training process of SeqGAN to include not only the discrimi-
nator reward but also domain-specific objectives [Guimaraes
et al., 2017]. Specifically, ORGAN weights the molecular
objectives by a factor λ. When λ = 0, ORGAN becomes a
Naı̈ve RL that aims only to generate valid molecules. Alter-
natively, when λ = 1, ORGAN becomes a simple SeqGAN
that does not consider the molecular properties. MolGAN
is an implicit and likelihood-free graph-structure-based GAN
for generating small molecular structures [De Cao and Kipf,
2018]. However, although MolGAN improved the validity of
the generated molecules, mode collapse reduced the unique-
ness of the generated molecules to less than 3.2%.

In most of the above works, the GAN generator was an
RNN, which cannot sufficiently extract the latent features
from a long sequence with rich semantic information such
as SMILES strings. A transformer [Vaswani et al., 2017]
can capture semantic features in sentences by using a self-
attention mechanism alone without needing an RNN or con-
volution. Molecular generation can be regarded as a spe-
cial type of natural language processing that treats SMILES
strings as sentences. In this case, a transformer can be ap-
plied to generate molecules. A transformer-based neural net-
work has been proposed that uses SMILES data to generate
molecules with a desirable balance of properties [He et al.,
2021]. A novel architecture based on a transformer and spa-
tial graph convolutional networks (GNNs) has also been pro-
posed that enhances the attention mechanism of a transformer
based on the interatomic distances and graph structures of
molecules [Danel et al., 2020]. However, few works have
combined a transformer with a GAN to improve the qual-
ity of generation. In addition, mode collapse during the ad-
versarial training process is a common cause of low unique-
ness [De Cao and Kipf, 2018]. Our proposed TransORGAN,
which enhances the semantic feature extraction for molec-
ular generation and imposes additional objective-reinforced
penalties with RL to alleviate mode collapse.

3 TransORGAN
Figure 1 shows the architecture of TransORGAN, which con-
sists of two main components: a generator and discrimina-
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Figure 1: Architecture of the TransORGAN.

tor. The generator and discriminator act as two players in a
minimax game. The generator tries to generate high-quality
molecules represented as SMILES strings under the guidance
of the discriminator through RL. Meanwhile, the discrimi-
nator tries to distinguish the generated fake data from real
molecules and to avoid being fooled by the generator. Note
that the generator and discriminator are trained in alternation.
Formally, let Gθ and Dφ represent the generator and dis-
criminator, respectively, where θ and φ are parameters. The
minimax game can then be expressed as follows:

min
θ

max
φ

V (Gθ, Dφ) = Ex∼pdata(x)[logDφ(x)]

+Ez∼pz(z)[log(1−Dφ(Gθ(z)))].
(1)

3.1 Variant SMILES
In general, the input of a transformer differs from the out-
put, which facilitates model learning. However, TransOR-
GAN uses only SMILES data, which are not paired. If the
same SMILES string is used as the input and output, the gen-
erator of TransORGAN can only learn a one-to-one corre-
spondence between the input and output, so the training is
insufficient. Insufficient learning by the generator may lead
to mode collapse. We considered assigning different atomic
orders as training labels to each SMILES string. Fortu-
nately, a molecule can be represented by various strings [Bjer-
rum, 2017]. For example, “CC(=O)Oc1ccccc1C(=O)O” and
“c1cc(c(cc1)C(O)=O)OC(C)=O” are different strings repre-
senting the same molecule. Figure A.1 and Algorithm A.1 in
the Appendix describe how to produce variants for SMILES.

3.2 Generator Training Process
A transformer can be represented by an encoder-decoder
paradigm and trained in an end-to-end fashion. An encoder
uses self-attention to extract features of the input sequence in
parallel. These features are used as the input of the decoder.
In the decoder, sequence masking is used in the masked multi-
head attention layer to avoidexposure to future information.

For each token within a SMILES string, the transformer com-
putes the attention weight as follows:

Attention(Q,K)V = softmax(
QKT

√
dk

)V, (2)

where Q, K, and V are the queries, keys, and values, and
have the corresponding dimensions dk, dk, and dv . As the
multi-head attention projects the queries, keys, and values h
times, the transformer jointly attends to features from differ-
ent strings:

MultiHead(Q,K, V ) = [Head1, ...,Headh]W, (3)

Headi = Attention(QWQ,KWK , V WV ), (4)
where W , WQ, WK , and WV are the weight matrices.

3.3 Discriminator Training Process
Let {x1,x2, ...,xT } and {y1,y2, ...,yT } represent a real
molecule and generated sequence, respectively, of the fixed
length T , where xt,yt ∈ Rk are k-dimensional token em-
bedding vectors. The source matrix X1:T and target matrix
Y1:T are then expressed as

X1:T = x1 ⊕ ...⊕ xT , Y1:T = y1 ⊕ ...⊕ yT , (5)
where ⊕ is the concatenation operator and X1:T , Y1:T ∈
RT×k. By applying a convolutional operation with a window
size of t tokens, we then obtain a new feature map:

cij = ReLu(ωj �Xi:i+t−1 + b), (6)

where ωj is the j-th kernel and ωj ∈ Rt×k, the � operator
represents element-wise summation of the production, and b
is the bias of the convolutional layer. Note that kernels with
various window sizes extract various latent features. Finally,
the features are selected by the max-pooling technique:

c̃j = max{cj1,...,cjT−t+1
}. (7)

After the max-pooling operation, the performance is en-
hanced by highway neural networks. Finally, the fully con-
nected layer outputs the probability that the input matrix of
the CNNs is real.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3886



3.4 Policy Gradient Training Process
The sampling process of molecules represented by SMILES
strings is not differentiable. To solve this problem, we
adopted an RL approach. Specifically, we can define
Gθ(Y1:T |X1:T ) as the stochastic policy of the agent and let
s0 and a represent the initial state and action, respectively.
Under the guidance of the policy gradient, the generator gen-
erates sequences by maximizing the expected reward score:

J(θ) =
∑
Y1:T

Gθ(Y1:T |X1:T ) ·R((X1:T , Y1:T−1), yT ), (8)

where the action-value function R(s0, a) denotes the ex-
pected reward of starting from state (X1:T , Y1:T−1) and tak-
ing the action yT . The action-value function is calculated
in three main parts: the discriminator probability of the cur-
rent input sequence, which is determined from the original
SMILES dataset; the value of the desired chemical property
of the current input sequence O(Y1:T ); and the penalty func-
tion for a generated sequence Y1:T with low diversity. Note
that both O(Y1:T ) and P (Y1:T ) are valued between 0 and 1
inclusive. O(Y1:T ) refers to objective scores of the generated
SMILES strings, such as the quantitative estimate of drug-
likeness (QED) scores. P (Y1:T ) refers to the penalty for gen-
erating non-unique SMILES strings and is calculated by

P (Y1:T ) =
# of unique SMILES

# of SMILES×# of repeated Y1:T
. (9)

When the score is zero, the generated sequence represents
an invalid molecule or already exists. Otherwise, the se-
quence describes a valid molecule with the desired chemical
property. The reward function is then given by

R((X1:T , Y1:T−1), yT ) = λ ·Dφ(Y1:T )

+(1− λ) ·O(Y1:T ) · P (Y1:T ),
(10)

where λ is a hyperparameter that adjusts the learning ratio
of Naı̈ve RL and SeqGAN. However, the above function can
only provide a reward score of the entire string. When the
generated string Y1:T is incomplete, the values of Dφ(Y1:T ),
O(Y1:T ), and P (Y1:T ) are nonsensical. The action-value
function of the subsequence generated at each intermediate
time step is calculated by using a Monte Carlo (MC) search
under the policy Gθ. The search is continued until the se-
quence length reaches T . To generalize the MC search, we
can repeat the MC search N times for each partial sequence:

MCGθ ((X1:T , Y1:t), N) = {Y 1
1:T , Y

2
1:T , ..., Y

N
1:T , }, (11)

where Y n1:t represents the current partial sequence and Y n1:t =
Y1:t. Y nt+1:T is sampled via the policy Gθ . For an N -times
MC search, we obtain N samples from the discriminator. Fi-
nally, the N rewards for the partial sequence are averaged as

Rn((X1:T , Y1:t−1), yt) =
1

N

N∑
n=1

R((X1:T , Y
n
1:T−1), yT )

Y n1:T ∈MCGθ (Y1:t;N) if t < T,

(12)

and

Rn((X1:T , Y1:t−1), yt) = R((X1:T , Y1:T−1), yT ) if t = T. (13)

Algorithm 1: MC search under policy Gθ
Input: Rollout times: N , an generated sample:

Y1:T , Generator: Gθ, Discriminator: Dφ

1 for n = 1 to N do
2 reward = [];
3 for t = 1 to T do

// Sample the subsequence
4 Y1:T = Gθ.sample(X1:T , Y1:t);
5 p = Dφ(Y1:T );
6 Compute the property score and penalty of

Y1:T : O(Y1:T ), P (Y1:T );
7 Use Eq. (10) to compute

Rn((X1:T , Y1:T−1), yT );
8 if n == 1 then
9 reward.append(Rn((X1:T , Y1:T−1), yT ))

10 else
11 reward += Rn((X1:T , Y1:T−1), yT )

12 Rn((X1:T , Y1:T−1), yT ) = reward / N ;
13 Use Eq.(15) to update the gradient of Gθ

Algorithm 1 shows the MC search process with the stochastic
rollout policy Gθ.

By using the discriminator as a reward function to guide
the update of the generator, we can boost the number of
high-quality sequences. We can then retrain the discriminator
by using realistic generated sequences and the real molecule
dataset. The loss function of the discriminator is given by

min−Ex∼pdata(x)[logDφ(x)]− Ey∼Gθ [log(1−Dφ(y))]. (14)

Following the training of the discriminator, we retrain the
generator. The gradient of J(θ) is derived as

∇θJ(θ) '
1

T

T∑
t=1

∑
yt

[Rn((X1:T , Y1:t−1), yt)

·∇θ logGθ(yt|X1:T , Y1:t−1)].

(15)

Algorithm 2 outlines the proposed TransORGAN model.
First, Gθ is pre-trained on real SMILES strings by using
maximum-likelihood estimation. Next, Dφ is pre-trained by
using binary cross-entropy. Finally, Gθ and Dφ are alter-
nately trained by using the policy gradient method. The train-
ing phase also uses the teacher-forcing technique to ensure
the stability of training.

4 Experiments
We conducted experiments to compare the performance of
our proposed TransORGAN with those of RNN-based molec-
ular generation models. The test data were a subset of the
ZINC chemical dataset [Ramakrishnan et al., 2014], which
contains 134,000 molecules represented by SMILES strings.
Our subset comprised 5,000 randomly selected molecules
with up to nine heavy atoms (e.g., carbon (C), oxygen (O),
nitrogen (N), and fluorine (F)) within the GDB-17 universe
of 166.4 billion molecules [Ruddigkeit et al., 2012]. The
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Algorithm 2: Pre/training for TransORGAN
// Pre-train the Generator

1 for i = 1 to Pre Gen do
2 Update Gθ based on maximum likelihood.

// Pre-train the Discriminator
3 for i = 1 to Pre Dis do
4 Update Dφ based on binary cross entropy.

// Adversarial training
5 for i = 1 to Adversarial epochs do
6 for j = 1 to Generator epochs do

// Generate samples
7 Y1:T = Gθ.sample(X1:T );
8 Calculate the expected reward: R(Y1:T );

// Unsupervised training

9 Update the gradient of Gθ using R(Y1:T );

// Produce variant SMILES.

10 (X, X̃) = Variant(X);
// Teacher-forcing training

11 Update the gradient of Gθ using
(X1:T , X̃1:T );

12 for k = 1 to Discriminator epochs do
13 Update Dφ based on (X̃1:T , Y1:T )

vocabulary size was 45. Note that the maximum length of
molecules in [Guimaraes et al., 2017] was set to 51; in this
paper, this value is set to 75. We compared TransORGAN
against the following models: Random Sampler [Gao and Co-
ley, 2020], SMILES LSTM [Guimaraes et al., 2017], JT-VAE
[Jin et al., 2018], Graph-AF [Shi et al., 2019], Character-VAE
[Kusner et al., 2017], Grammar-VAE [Kusner et al., 2017],
Naı̈ve RL, and ORGAN [Guimaraes et al., 2017].

4.1 Desired Chemical Properties
The chemical properties are scored in a range from zero (un-
favorable) to one (very favorable). Solubility describes the
degree of hydrophilicity of a molecule. The log octanol-water
partition coefficient (logP) is defined as the logarithm of the
ratio of concentrations of a substance in a mixture of two sol-
vents, octanol and water. Drug-likeness uses QED [Bicker-
ton et al., 2012] to describe the likelihood of a compound be-
ing a drug. Synthesizability uses the synthetic accessibility
score [Ertl and Schuffenhauer, 2009] to measure the difficulty
of molecular synthesis.

4.2 Hyperparameter Settings
The generator of TransORGAN is a transformer architecture.
We set the dimension of the word embedding to 16 and the
dropout rate to 0.2. The encoder and decoder each had four
heads and two stacked layers. The generator was pre-trained
over 100 epochs by maximum likelihood estimation (MLE).
The dimension of the word embedding was 32 for the dis-
criminator. We set the number of kernels as 1, 3, 5, 7, and
9; the kernel size as 20, 30, 40, 50, and 60; and the dropout

rate to 0.75. In the pre-training phase, the discriminator was
pre-trained over ten epochs. In addition, we set the tradeoff
between maintaining the likelihood and RL as λ = 0.5. The
MC search time N was set to 16. All experiments were per-
formed by using Pytorch version 1.8.1.

4.3 Evaluation Measures
Validity was defined the ratio of chemically valid molecules
among all generated molecules. Uniqueness was defined as
the number ratio of unique molecules among chemically valid
samples. Novelty was defined as the ratio of valid molecules
that were absent in the training dataset and the set of chem-
ically valid molecules. Diversity was used to quantify the
chemical diversity of the generated molecules. The similarity
of chemical structures between molecules was calculated ac-
cording to the Tanimoto coefficient [Tanimoto, 1968] based
on MorganFingerprint [Cereto-Massagué et al., 2015]. All of
these statistics had a range from zero to one. A larger value
indicated a better performance.

4.4 Performance Evaluation
Objective-reinforced methods aim to create compound struc-
tures with desired chemical properties, which are critical in
drug discovery. Table 1 demonstrates the comparative re-
sults of the objective-reinforced methods. In the case of sol-
ubility, Naı̈ve RL scored the highest validity (84.82%), but
the lowest uniqueness (46.55%) and diversity (0.339) among
the three models. Although TransORGAN had lower validity
(74.03%) than Naı̈ve RL, it scored much higher than the other
two models in terms of uniqueness, novelty, and diversity.
This result is reasonable because Naı̈ve RL seeks only valid
molecules without considering other factors. Similar to Naı̈ve
RL, ORGAN tries to optimize the tradeoff between validity,
uniqueness, and diversity, so it generates valid molecules at
the expense of uniqueness and diversity. Repetitive molecules
are not desired in practice. Moreover, Naı̈ve RL and ORGAN
generated molecules containing many carbon atoms but few
other atoms. This is why Naı̈ve RL and ORGAN achieved
higher validity than TransORGAN but lower scores for the
other three measures. In the case of drug-likeness and synthe-
sizability, ORGAN scored the highest validity (81.59% and
86.60%, respectively) among the three models but the lowest
uniqueness (46.58% and 33.36%, respectively).

In drug discovery, chemists hope to generate molecules
that are not only valid but also novel. If the generated
molecules already exist in the original dataset, the generation
is meaningless. TransORGAN achieved the highest unique-
ness, novelty, and diversity while maintaining relatively high
validity. TransORGAN generated 3,327, 3,326, and 3,367
novel molecules with the desired solubility, drug-likeness,
and synthesizability. Compared with Naı̈ve RL, TransOR-
GAN improved the solubility, drug-likeness, and synthesiz-
ability scores by 69.66%, 10.90%, and 115.70%, respectively.
Compared with ORGAN, it improved the scores by 40.91%,
75.33%, and 133.50%, respectively.

To evaluate the drug-likeness of generated molecules, we
measured the QED scores. Figure 2 shows the QED distri-
butions when the objective was drug-likeness. Naı̈ve RL and
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Objective Method Validity Uniqueness Novelty Diversity

Solubility
Naı̈ve RL 4,234 (84.82%) 1,971 (46.55%) 1,961 (99.49%) 0.339
ORGAN 3,343 (66.97%) 2,381 (71.22%) 2,361 (99.16%) 0.358
TransORGAN 3,654 (74.03%) 3,327 (91.05%) 3,327 (100.0%) 0.650

Drug-likeness
Naı̈ve RL 3,986 (79.85%) 3,005 (75.39%) 2,999 (99.80%) 0.293
ORGAN 4,073 (81.59%) 1,897 (46.58%) 1,897 (100.0%) 0.338
TransORGAN 3,589 (72.71%) 3,326 (92.67%) 3,326 (100.0%) 0.624

Synthesizability
Naı̈ve RL 3,874 (77.60%) 1,561 (40.29%) 1,561 (100.0%) 0.365
ORGAN 4,323 (86.60%) 1,442 (33.36%) 1,442 (100.0%) 0.391
TransORGAN 3,668 (74.31%) 3,367 (91.79%) 3,367 (100.0%) 0.656

Bold values indicate the maximum values in the objective-reinforced methods.

Table 1: Evaluation results of generated molecules with objective reinforcement.

Figure 2: Distributions of the QED scores for generated molecules.

ORGAN had mean QED values µ of the 0.55 and 0.50, re-
spectively. This result is intuitive because Naı̈ve RL focuses
only on maximizing the rewards, whereas ORGAN main-
tains the tradeoff between RL and GAN. Therefore, Naı̈ve
RL should have a larger µ than ORGAN. TransORGAN had
a larger µ (0.62) than the other models, which suggests that it
is likely to generate more drug-like molecules than the other
models. As an illustration, the top-12 novel molecules gen-
erated by TransORGAN, Naı̈ve RL and ORGAN with drug-
likeness as an objective function are shown in Fig. A.2 in
Appendix A. For example, the molecules generated by Tran-
sORGAN include substructures that are often contained in
many approved drugs (e.g., 2-aminopyridine and amide sub-
structures). On the other hand, the molecules generated by
ORGAN and Naı̈ve RL include unnatural and unstable sub-
structures (e.g., an excessive number of halogen atoms on sul-
fur atoms). These results suggest that TransORGAN can gen-
erate more drug-like molecules than the two other models.

Table 2 shows the comparative results of baseline meth-
ods. Random Sampler and JT-VAE had validity scores of
100.0%, but they had the lowest novelty (0.0%) and unique-
ness (13.94%) among the baseline models. SMILES LSTM
had a higher uniqueness (98.41%), but it had the lowest va-
lidity (42.81%) among the baseline methods. TransORGAN
scored better than Graph-AF1 and was comparable to Graph-
AF10, Character-VAE, and Grammar-VAE without objective
reinforcement. However, the diversity scores of Character-
VAE (0.392) and Grammar-VAE (0.451) were much lower

Method Validity Uniqueness Novelty Diversity
Random Sampler 100.0% 61.54% 0.0% 0.638
SMILES LSTM 42.81% 98.41% 98.48% 0.423
JT-VAE 100.0% 13.94% 99.43% 0.607
Graph-AF1∗ 72.26% 84.80% 100.0% 0.786
Graph-AF10∗ 67.27% 99.44% 100.0% 0.691
Character-VAE 73.34% 99.18% 100.0% 0.392
Grammar-VAE 76.36% 99.55% 100.0% 0.451
TransORGAN 75.52% 94.64% 100.0% 0.682

The superscripts 1 and 10 for Graph-AF indicate the mini-
mum length of the SMILES strings.

Table 2: Comparison of TransORGAN with baseline methods.

than TransORGAN. These results suggest that TransORGAN
has high molecular generation abilities even though Tran-
sORGAN is an objective-reinforced method. In summary,
TransORGAN had high uniqueness, novelty, diversity while
maintaining relatively high validity.

5 Conclusions
We proposed TransORGAN with the aim of generating
high-quality molecules represented as SMILES strings in an
objective-reinforced manner. By leveraging the joint train-
ing of a sequence-based GAN model and an RL objective,
the proposed model generates molecules with high degrees
of uniqueness, novelty, and diversity.

One limitation of TransORGAN is the difficulty of opti-
mizing the values for the hyperparameters λ and N . In fu-
ture work, we will investigate the effects of changing λ and
N . Because λ controls the tradeoff between MLE and RL,
it may also affect the performance of the molecular gener-
ation. When λ is small, TransORGAN strongly believes in
the ability of the discriminator. With increasing λ, TransOR-
GAN becomes more focused on generating valid molecules.
The number of sample times N in the MC search may also
influence the performance. Intuitively, a small N may lead to
wrongly generated intermediate tokens, whereas a largeN in-
creases the computational time. We believe that the proposed
models will help chemists produce meaningful new drugs.
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