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Abstract

Learning useful interactions between input features
is crucial for tabular data modeling. Recent efforts
start to explicitly model the feature interactions
with graph, where each feature is treated as an indi-
vidual node. However, the existing graph construc-
tion methods either heuristically formulate a fixed
feature-interaction graph based on specific domain
knowledge, or simply apply attention function to
compute the pairwise feature similarities for each
sample. While the fixed graph may be sub-optimal
to downstream tasks, the sample-wise graph con-
struction is time-consuming during model training
and inference. To tackle these issues, we pro-
pose a framework named Table2Graph to transform
the feature interaction modeling to learning a uni-
fied graph. Represented as a probability adjacency
matrix, the unified graph learns to model the key
feature interactions shared by the diverse samples
in the tabular data. To well optimize the unified
graph, we employ the reinforcement learning pol-
icy to capture the key feature interactions stably.
A sparsity constraint is also proposed to regularize
the learned graph from being overly-sparse/smooth.
The experimental results in a variety of real-world
applications demonstrate the effectiveness and effi-
ciency of our Table2Graph, in terms of the predic-
tion accuracy and feature interaction detection.

1 Introduction
Tabular data is ubiquitous in many real-world applications,
such as recommender systems [Su and Khoshgoftaar, 2009]
and online advertising [Cai et al., 2017]. Typically, each row
of the tabular dataset corresponds to one data sample, which
consists of multiple individual features from different fields
(i.e., columns). Taking online advertising as an example [Li
et al., 2019], where each sample is a log representing whether
a displayed advertisement is clicked by a user or not. The log
contains both user features (e.g., age and region) and the ad-
vertised item features (e.g., language and actors of a movie).

∗Corresponding author.

Modeling the sophisticated interactions between input fea-
tures plays a key role in tabular data learning. Recalling the
above example of online advertising, a user in United States
is more likely to click an advertisement of English movie.
In other word, the interaction modeling of feature pairs (re-
gion, language) is crucial to predict the user clicking behav-
ior. Lots of efforts have been devoted to modeling the feature
interactions, such as logistic regression [Parra et al., ], fac-
torization machine [Rendle, 2010] and deep neural networks
(DNNs) [Guo et al., 2017]. They either explicitly learn the
low-order interactions or implicitly learn the high-order in-
teractions with DNNs, which may be sub-optimal for tabu-
lar data. The low-order algorithms have limited capability to
capture the sophisticated interactions. For DNNs, the interac-
tions entangled at hidden units lead to extremely complex op-
timization hyperplanes [Ke et al., 2018], where the raw task
objective tends to fall into local optimums. Furthermore, the
implicit feature interactions cannot be directly extracted to
explain how DNNs make decisions [Seo et al., 2017].

Graph is a structured data modality where the pairwise
node relationships are expressed explicitly by the correspond-
ing edge weights. To learn the node interactions, graph neu-
ral networks (GNNs) are developed to pass messages along
edges and update the node representations [Kipf and Welling,
2016]. Given the expressive graph structure and powerful
GNNs, several initial efforts propose to construct the feature-
interaction graph for tabular data, where each feature is re-
garded as an individual node. Some of them formulate fixed
graphs heuristically based on their domain knowledge. For
example, the co-purchased items are directly connected in
the recommender systems [Wang et al., 2020]. The fixed
graph may be sub-optimal by missing/introducing the fac-
tual/noisy links, and cannot generalizes to other tabular data.
The other methods apply self-attention mechanisms to quan-
tify the feature similarities and then construct the weighted
graph independently for each sample [Li et al., 2019]. Such
sample-wise attention computation is time-consuming during
the model training and inference, which limits its practical
applications for the time-sensitive scenarios. These problems
motivate us to pose the following question: Is there an end-
to-end framework to model the feature interactions with a
unified graph? This unified graph captures the common and
important feature interactions from the whole tabular dataset,
and could be inferred efficiently for different samples without
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the sample-wise attention computation.
However, effectively learning a unified feature-interaction

graph is a non-trivial task due to the following two chal-
lenges. First, it is hard to extract the key feature interaction
patterns shared by a number of samples in the tabular data.
Reusing the movie advertising as an example, we may have
two clicking logs accompanied with the feature interaction
patterns of [region, language] and [age, actor], respectively.
Such varied patterns will lead to unstable learning of the uni-
fied graph. Second, it is unclear how to regularize the unified
graph. While an overly-sparse graph structure tends to overfit
the specific feature interactions, a smoothly-connected graph
fails to highlight the key patterns.

To bridge the gaps, we propose Table2Graph to transform
the feature interaction modeling in tabular data into a uni-
fied graph learning problem. By solving the above two chal-
lenges, we make three contributions summarized as follows.

• Motivated from neural architecture search (NAS), whose
goal is to optimize the computation graph of neural net-
works, we propose to employ the reinforcement learning
(one of NAS algorithms) to strengthen the key feature
interaction connections stably. The reinforcement loss
is constructed to train the unified graph based on the re-
ward signal of tabular learning objective.

• We propose a differentiable sparsity constraint to regu-
larize the edge connections. By jointly training with the
tabular learning objective, our framework is able to learn
the trade-off between sparseness and smoothness.

• We empirically demonstrate the effectiveness and effi-
ciency of Table2Graph in both the real-world and syn-
thetic datasets. Besides delivering the superiority in tab-
ular data learning tasks, our Table2Graph could detect
the ground-truth feature interactions. The unified graph
modeling is as efficient as the fixed graph construction,
without requiring extra training and testing time cost.

2 Previous Work
Our work is related to the following four research topics:
Tabular data learning. Typically, the goal of tabular data
classification is to predict the label associated with every
data sample, which contains a collection of individual fea-
tures [Cai et al., 2017; Guo et al., 2017]. Although the tradi-
tional tree-based methods are commonly reported to achieve
competitive performances [Ke et al., 2018], they are hard to
be integrated into an end-to-end framework, and cost large
computational memory to store the entire dataset to get global
statistics. Besides the low-order methods of logistic regres-
sion and factorization machine [Rendle, 2010], by embedding
the input features, there have been many DNNs developed to
model the high-order feature interactions in the hidden units
implicitly [He et al., 2017; Wang et al., 2021].
Graph neural networks. Based on the spatial graph con-
volutions, GNNs recursively learn a node embedding repre-
sentation by aggregating its neighbors and combining them
with the node itself [Zhou et al., 2020; Zhou et al., 2021a].
The node interaction order is specified by the model depths
of GNNs. GNN models have been applied for the real-world

applications, such as recommender system [Hamilton et al.,
2017] and biochemical analysis [Zhou et al., 2021b].

Graph structure learning. Recently, there have been sev-
eral initial efforts proposed to construct the hidden graphs of
other data modalities. They often rely on the heuristic knowl-
edge of downstream applications, e.g., the co-purchased
items are connected in recommender systems [Wang et al.,
2020]. Some of them apply the self-attention algorithms to
learn the fully-connected weighted graph for each instance,
such as the feature correlations of a tabular sample [Li et al.,
2019; Song et al., 2019]. The sample-wise graph modeling is
too time-consuming to be applied during model inference.

Neural architecture search. NAS finds the optimal neu-
ron connections within the neural networks to maximize
the model performance for a given task [Elsken et al.,
2019], which is comparable to the feature interaction mod-
eling. Specifically, RL is one of the popular search algo-
rithms [Zoph and Le, 2016]. By sampling the discrete neuron
connections to construct the neural networks each time, RL
strengthens the neuron connections if the constructed neu-
ral networks show superior performance; otherwise it will
weaken them. The RL-based NAS frameworks have discov-
ered the well-performing neural architectures for many down-
stream applications, such as image classification [Jaafra et al.,
2019] and graph analytics [Zhou et al., 2019].

3 Problem Statement
Without loss of generality, we present our framework with
the example of classification task, such as click-through rate
prediction in online advertising [Li et al., 2019]. It could
be easily extended to other tasks (e.g., regression fitting) by
changing the objective function (e.g., mean squared error).

We consider a tabular dataset containing n data samples
(rows) and m feature fields (columns). In particular, the m
columns are represented by x = [x1, · · · , xm], where xj

indexes the j-th column. For example, the four columns in
Figure 1 are indexed by [x1, · · · , x4]. For the i-th sample
in the table, it is associated with m feature values x(i) =

[x
(i)
1 , · · · , x(i)

m ] and a discrete label y(i). For example, x(i) in
Figure 1 is instantiated by [0.1,Male,Green, 0.5]. Given the
training samples, the goal of tabular data learning is to learn
a mapping function ŷ(i) = f(x(i)) to predict labels in testing
set. In this paper, we aim to learn a unified graph to model
the feature interactions shared by all the independent sam-
ples, and apply GNN to learn function f(x(i)). We define the
feature-interaction graph and its probability adjacency matrix
in the context of tabular data as follows.

Definition 1 (Feature-interaction graph). A graph is de-
noted by tuple G = (V , E), where V and E are the sets of
nodes and edges. In tabular data, we represent the j-th col-
umn with node j, and the feature interactions by edges.

Definition 2 (Probability adjacency matrix). Let A ∈
Rm×m denote the probability adjacency matrix of the feature-
interaction graph. Each row of matrix A is normalized with
sum of 1 to provide an intuitive probability explanation. El-
ement Ajk ≥ 0 is the edge weight between nodes j and k,
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Figure 1: Table2Graph overview. The feature column interactions
are represented by the probability adjacency matrix of unified graph.
Given a sample, we initialize its feature embeddings and apply
GNNs to learn their interactions. The concatenated feature embed-
ding learned from GNNs is used to predict the sample, and the hy-
brid loss is used to update graph.

and thus represents the feature interaction strength between
feature columns xj and xk.

4 Our Proposed Framework
Figure 1 illustrates our Table2Graph framework, which mod-
els the unified feature-interaction graph by optimizing the
probability adjacency. Based on it, we employ GNNs to learn
the feature interactions, and generate sample embedding for
the downstream task. The details are introduced below.

4.1 Unified Graph Construction
Probability adjacency matrix computation. Given the m
columns in tabular data, i.e., x = [x1, · · · , xm], we first rep-
resent them with column embeddings E ∈ Rm×d to facilitate
the unified graph modeling. Column xj is denoted by the j-
th row in E. We compute the probability adjacency matrix A
with self attention as follows [Shaw et al., 2018]:

A = Softmax(σ(EWl)σ(EWr)
⊤) ∈ Rm×m. (1)

Wl,Wr ∈ Rd×d′
are trainable matrices; σ is activation func-

tion; function Softmax is applied in row-wise fashion to nor-
malize the link weights of one column to the others.

Feature interaction learning. Considering sample x(i) =

[x
(i)
1 , · · · , x(i)

m ], we transform it into feature embeddings
X

(i)
0 ∈ Rm×d, where each row is the dense representation

of a feature. The series of feature embeddings in X
(i)
0 is used

to initialize nodes in the feature-interaction graph.
We then employ GNNs to learn the sophisticated feature

interactions in tabular data. To be specific, GNNs recursively
update a node embedding by aggregating and fusing its neigh-
bors’ information with the node itself. The graph convolution
at the k-th layer is defined as:

X
(i)
k = X

(i)
0 + σ(AX

(i)
k−1Wk). (2)

X
(i)
k ∈ Rm×d is the intermediate feature embeddings learned

at the k-th layer, and Wk ∈ Rd×d is a trainable matrix. We
exploit the initial connection of X(i)

0 to facilitate the gradient
flow to train the initial feature embeddings well [Chen et al.,
2022].

Suppose the number of graph convolutional layer is K.
Therefore, the feature embedding matrix X

(i)
K learned from

GNNs aggregates the neighborhood information up to K
hops away based on A. Considering the given sample x(i),
we obtain its representation by concatenating each feature
embedding from X

(i)
K , and finally generate its prediction ŷ(i).

The cross-entropy loss in binary classification task is:

Ltask = y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i)). (3)

4.2 Unified Graph Training
The naive optimization strategy is to minimize loss Ltask, and
train adjacency matrix A and GNNs with gradient backprop-
agation. However, such training strategy has two limitations.
First, it will learn a dense adjacency matrix to store all the
possible feature interactions, and fail to highlight the key in-
teraction patterns shared by the majority of samples. The
dense adjacency matrix brings the incorrect prior knowledge
to encode the specific feature interactions of a local sample,
which leads to poor performance. Second, since the feature
interactions vary among the different samples, the training of
dense adjacency matrix may be unstable in the batch training.

To overcome these limitations, we propose to employ rein-
forcement learning (RL) to learn the key feature interactions
stably. To be specific, given matrix A, we sample the impor-
tant links by following the learned probability distribution,
and then apply RL to reinforce them if they are informative to
the whole dataset. The optimization of matrix A focuses on
the key feature interactions to make the training more stable.
Notably, the unified feature-interaction graph optimization is
comparable in spirit to NAS [Elsken et al., 2019], whose goal
is to optimize the connections of neural networks’ computa-
tion graph. It has been shown that RL could converge effi-
ciently [Zhou et al., 2019] to the well-performing neural ar-
chitectures.We introduce RL details in the context of unified
feature-interaction graph learning in the following.
Important link sampling. We sample a number of feature
interactions for each row, which is formally given by:

Ii = RowSample(A[i, :], s) = {(i, j1) · · · , (i, js)}. (4)

s is the sample size; RowSample denotes the random sam-
pling operation based on the multinomial probability distri-
bution; I =

⋃
i Ii denotes the union of sampled interaction

pairs. Based on the above sampling, we attend on the key
feature interactions with high link weights.
Reward shaping. Given the sampled feature interactions,
we exploit REINFORCE rule [Sutton et al., 1999] to shape
reward and construct the reinforcement loss. At each epoch,
we take the inverse of task loss as a non-differentiable reward
signal R, i.e. R = 1

Ltask
. The reinforcement loss is:

Lrl(A) = −λ1 ∗ EI∼A[
∑

(i,j)∈I

(R−Ravg) logAij ]. (5)

λ1 is loss hyperparameter. Ravg denotes the running average
of rewards during the batch training. We compare reward R
achieved in current batch to reward average Ravg to reduce
the learning variance of matrix A. More importantly, the
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sampled feature interaction probabilities Aij are strengthened
only if R > Ravg; otherwise they are weakened. In other
word, we learn the probability adjacency matrix A towards
extracting the key feature interactions, which could improve
the reward or reduce training loss Ltask. These feature inter-
actions are commonly preferred by the batch of samples. Fol-
lowing the previous efforts, to simplify the expectation com-
putation over I ∼ A, we only sample one I to approximate
reinforcement loss Lrl(A).

4.3 Joint Training With Sparsity
Besides updating the feature-interaction graph towards mini-
mizing the task loss, it is also crucial to control the sparsity of
adjacency matrix. On one hand, a smoothly-connected graph
fails to highlight the key feature interactions, since each row
in A is averaged to connect to the remaining features. On the
other hand, an overly-sparse graph may overfit in some fea-
ture interactions, which is not adaptable to the diverse tabular
samples. Therefore, we propose the sparsity loss as follows:

Lsp(A) = −λ2

m
1T log((A⊙A))1+

λ3

m
||A||2F . (6)

1 = [1, · · · , 1]⊤ denotes all-ones vector of length m; ⊙
denotes the element-wise multiplication; || · ||F denotes the
Frobenius norm; λ2 and λ3 are loss hyperparameters. By
minimizing the above sparsity loss, the first item is exploited
to improve the squared norm of each row, i.e.,

∑
j A

2
ij . Since

the probability vector in each row is normalized and has the
sum of one, the improvement of squared norm leads to a
sparse distribution. In contrast, the second item penalizes a
large squared norm to avoid the overly sparsity.

Based on the previous defined losses, we simply and jointly
learn the unified graph and GNN model by minimizing the
hybrid loss as follows:

L = Ltask + Lrl(A) + Lsp(A). (7)

5 Experiments
In the context of feature-interaction graph modeling, we cate-
gorize the tabular data into two cases: one with a small num-
ber of feature columns (e.g., most of the Kaggle competition
data [Dal Pozzolo et al., 2015]) and the other with a large vol-
ume of feature columns (e.g., recommender system accompa-
nied with many items [He et al., 2017]). To validate the gen-
eral effectiveness of Table2Graph on both the small and large
feature-interaction graph modeling from the diverse domains,
we carefully design experiments to answer the following four
research questions. Q1: How does our Table2Graph perform
on small graph modeling to improve the downstream tabular
data learning and detect the underlying feature interactions?
Q2: How effective is Table2Graph to learn the large feature-
interaction graph for table with many columns? Q3: How
does the model hyperparameters affect the performances of
Table2Graph? Q4: How efficient is Table2Graph comparing
with the other graph construction methods?

Data. Considering the small graph modeling for the tabu-
lar data with a few feature fields, we adopt two benchmark

datasets from the financial fraud detection and online adver-
tising: Creditcard [Dal Pozzolo et al., 2015] and Criteo1. The
tabular data of Creditcard has 284, 807 transaction samples
with 28 numeric anonymous features, while Criteo contains
45 million users’ click records with 39 feature fields. The
tabular data learning tasks in these two datasets are to predict
the discrete labels of samples.

Besides the classification tasks, we detect the meaningful
feature interactions upon the small graph modeling. Since
there are no ground-truth labels for the feature interactions in
most of the real-world datasets, we further synthesize a tab-
ular dataset commonly used in previous efforts [Liu et al.,
2020]. To be specific, the synthetic dataset defines the regres-
sion task as follows:

y =
1

1 + x2
0 + x2

1 + x2
2

+
√
ex3+x4+|x5+x6|+x7x8x9. (8)

The ground-truth feature interactions in Equation (8) are
{[x0, x1, x2], [x3, x4], [x5, x6], [x7, x8, x9]}.

For the large graph modeling, we adopt MovieLens dataset
commonly evaluated in the previous collaborative filtering
work [He et al., 2017]. There are total 3, 706 items (columns)
in the tabular data of MovieLens, where the classification task
is to predict user’s personalized preference scores on items
and rank the interested items. In this study, our Table2Graph
needs to learn the massive item-to-item interactions with 9
million edges in the unified graph. More details of Creditcard,
Criteo, synthetic dataset, and MovieLens are in Appendix.
Baselines. We consider the following four baseline cate-
gories. More details are in Appendix.
• First order. It is represented by linear regression model.
• Factorization machine based methods. FM [Rendle,

2010], DeepFM [Guo et al., 2017] and AFM [Xiao et al.,
2017] are included to learn the second-order interactions.

• High order. The high-order baselines contain the tree-
based approaches (including random forest and decision
tree) and the deep neural networks (MLP, DeepCross-
ing [Shan et al., 2016], NFM [He et al., 2017], and
CIN [Lian et al., 2018]).

• Graph learning. Model Fi-GNN [Li et al., 2019] quan-
tifies the feature similarity of each sample by learning a
weighted graph with self-attention, based on which apply-
ing GNNs to learn the feature interactions. We further
implement baseline Fixed-GNN, where we instead use a
fully-connected and fixed graph. Each node is linked to all
the remaining nodes with equal probabilities.

Implementations. A three-layer GNN model is used to
learn the feature interactions based upon the generated graph.
The hyperparameters of λ1, λ2 and λ3 are determined based
on the grid search, and their influences are empirically stud-
ied in the following experiments.
Small graph modeling. To answer research question Q1,
we evaluate our method in Creditcard, Criteo, and the syn-
thetic datasets to see whether it could model the small feature-
interaction graphs accurately and improve the downstream

1https://www.kaggle.com/c/criteo-display-ad-challenge
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Types Creditcard Criteo Synthesis
Methods AUC LogLoss Methods AUC LogLoss Methods AUC

First order LR 0.9104 0.0078 LR 0.7820 0.4695 LR 0.5077
FM based FM 0.7897 0.2198 FM 0.7836 0.4700 FM 0.5119
methods DeepFM 0.7374 0.0134 AFM 0.7938 0.4584 DeepFM 0.4839

High order
MLP 0.9686 0.0033 DeepCrossing 0.8009 0.4513 MLP 0.4839

Random forest 0.9736 0.0029 NFM 0.7957 0.4562 RuleFit 0.7970
Decision tree 0.8719 0.0064 CIN 0.8009 0.4517 AG 0.6700

Graph learning
Fixed-GNN 0.9727 0.0034 Fixed-GNN 0.8029 0.4483 Fixed-GNN 0.5190

Fi-GNN 0.9794 0.0029 Fi-GNN 0.8062 0.4453 Fi-GNN 0.4970
Table2Graph 0.9810 0.0027 Table2Graph 0.8089 0.4429 Table2Graph 0.9714

Table 1: AUC and/or LogLoss in Creditcard, Criteo, and the synthetic datasets. Due to the space limit, we only report the results of well-
performing FM based models and high-order methods for each dataset.

tasks. Following the common evaluation process, we use 10-
fold cross validation and judge models with metrics AUC
(Area Under the ROC curve) and LogLoss for real-world
datasets Creditcard and Criteo. For the feature interaction
detection in the synthetic dataset, we only focus on the detec-
tion AUC. In Criteo accompanied with millions of samples,
we compare with FM, AFM and the high-order methods of
DeepCrossing, NFM, and CIN, since they deliver the supe-
rior performances in large dataset. In Creditcard with a small
quantity of samples, MLP and tree-based methods show the
outperforming results comparing with other high-order meth-
ods. In the synthetic dataset, we additionally compare with
two competitive detection methods, i.e., RuleFit [Friedman et
al., 2008] and AG [Sorokina et al., 2008]. Each experiment
is run with 3 random trials and report the average results.

The test performance comparisons are listed in Table 1.
Specifically, the high-order approaches are potential to
achieve better AUCs (or LogLosses) comparing with the first-
order and FM based methods, since they have the sufficient
capabilities to learn the sophisticated feature interactions pop-
ularly existing in the realistic datasets. Due to the distinct
advantage of picking informative features, the random forest
shows the competitive results and ranks top in the OpenML
LeaderBoard2. However, the tree-based methods cannot be
scaled to the large tabular dataset of Criteo.

Comparing with the above traditional baselines, the graph
learning based models generally achieve better performances.
Instead of implicitly modeling the interactions, the graph
learning based approaches explicitly store the feature inter-
action strengths over links in the constructed graphs. The
powerful GNNs are then applied to pass messages among
the correlated features and learn the feature interactions accu-
rately to achieve the desired performances. Notably, our Ta-
ble2Graph delivers the much superior results comparing with
Fixed-GNN and Fi-GNN. To be specific, Fixed-GNN fully
connects all the feature pairs to formulate the fixed graphs,
which fail to capture the key feature interactions and may
introduce noises during the neighbor aggregation in GNNs.
Fi-GNN learns an independent feature-interaction graph for
each sample with the attention function, which is hard to
be trained due to the noises existing in the diverse samples.
Fi-GNN is even incapable of summarizing the ground-truth
unified graph in the synthetic dataset. Our Table2Graph in-

2https://www.openml.org/t/145685

Frameworks Methods Metrics
HR NDCG

FISM
Plain 0.6730 0.3949

Fixed-GNN 0.6748 0.3963
Fi-GNN 0.6755 0.3963

Table2Graph 0.6811 0.4003

NAIS
Plain 0.7020 0.4304

Fixed-GNN 0.7059 0.4305
Fi-GNN 0.7061 0.4313

Table2Graph 0.7111 0.4341

Table 2: Performances of HR and NDCG in Movielens. Plain de-
notes the original model, i.e, FISM or NAIS.
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Figure 2: From left to right, the impacts of loss hyperparameters
λ1, λ2 and λ3 on Table2Graph trained in MovieLens, respectively.
Y-axis is metric HR@10. X-axis is the log of hypervalues ([0, 0.1]).

stead learns a unified feature-interaction graph shared by all
the samples to save computation cost. To regularize the uni-
fied graph, we propose the reinforcement loss to reduce the
graph variation and weight the common feature interactions.

Large graph modeling. To answer question Q2, we con-
duct the large graph modeling in Movielens. We adopt two
popular item-to-item collaborative filtering methods as the
underlying recommendation frameworks, namely factored
item similarity model (FISM) [Kabbur et al., 2013] and neu-
ral attentive item similarity model (NAIS) [He et al., 2018].
The graph learning based methods are implemented over
these two frameworks to learn the item-to-item interactions.
The traditional feature-interaction modeling methods are re-
moved, since they are not specifically developed to the item
based collaborative filtering. Following the previous practice,
we judge model performances by hit ratio (HR) and normal-
ized discounted cumulative gain (NDCG) at the position 10.
More details about the implementation are in Appendix.

The test results are listed in Table 2. It is observed that our
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Methods Creditcard Criteo
train test train test

Fixed-GNN 79s 2.1s 2076s 45.6s
Fi-GNN 97s 2.3s 2792s 66.7s
Table2Graph 81s 2.1s 2076s 45.2s

Table 3: Training time per epoch and testing time in Creditcard and
Criteo. Time is measured in seconds.

model delivers the highest scores of HR and NDCG. Com-
paring with the plain FISM and NAIS, the graph learning
based approaches learn the high-order item interactions to
boost the recommendation performances. Comparing with
Fixed-GNN and Fi-GNN, our Table2Graph additionally ex-
ploits the reinforcement and sparsity constraints to regularize
the graph structure. In this way, the common item interactions
are weighted to be shared by all the users, while the overly-
sparse unified graph will be penalized to avoid trapping in the
specific item interaction patterns.
Hyperparameter and ablation study. To understand the
hyperparameter impacts and answer research question Q3,
we conduct experiments with different values of loss hypapa-
rameters λ1, λ2 and λ3. Considering the value range [0, 0.1]
and the large graph learning in MovieLens, we present the
hyperparameter study in Figure 2.

It is observed that the appropriate choices of these hyperpa-
rameters are crucial to construct the good item-to-item inter-
action graph. Without the reinforcement loss, i.e., λ1 = 0,
the obtained performance will be much lower than that of
λ1 = 0.01. That justifies the effectiveness of the proposed
reinforcement loss to reduce variation of the learned graph
and to model the key feature interactions stably. In the large
item graph of MovieLens, a proper sparsity constraint with
λ2 → 0 and λ3 → 10−4 could penalize the overly-sparse
graph to avoid the overfitting on specific feature interactions.
Efficiency comparison. To answer research question Q4,
we compare the training time per epoch and the testing time
for the graph learning based approaches. The comparison re-
sults are listed in Table 3, where our Table2Graph is as ef-
ficient as Fixed-GNN. Note that Fixed-GNN uses the fixed
graph to represent the constant feature interactions, which
does not introduce any extra time cost. Since Fi-GNN is re-
quired to compute the feature-interaction graph each time for
a sample, it will be extremely time consuming in both the
training and testing phases. Once our unified graph is pre-
pared in the training phase, it could be inferred as efficiently
as the fixed graph in the testing phase.
Adjacency matrix visualization. To intuitively understand
how Table2Graph learns the ground-truth feature interactions,
we visualize the adjacency matrix for the synthetic dataset
in Figure 3. The synthetic dataset contains 10 features de-
noted by the corresponding rows and columns in Figure 3.
Each elements (i, j) denotes the feature interaction strength.
Note that the ground-truth feature interactions in Equation (8)
are {[x0, x1, x2], [x3, x4], [x5, x6], [x7, x8, x9]}. We observe
that each feature (row) has the strongest interactions with the
ground-truth neighborhood features. Specifically, for feature
pairs {3, 4} and {5, 6}, their interaction strengths are signifi-
cantly larger than the others in the same row.

Figure 3: Adjacency matrix visualization in systhetic dataset.

6 Conclusion
In this paper, we propose the Table2Graph framework to learn
the feature interactions with a unified graph, where a proba-
bility adjacency matrix is modeled to express the key feature
interactions shared by diverse samples in a tabular dataset.
Specifically, the reinforcement loss and sparsity constraint
are proposed to weight the important interaction patterns and
regularize the graph connectivity, respectively. The experi-
mental results suggest the effectiveness and efficiency of uni-
fied graph modeling in various practical applications, where
our Table2Graph consistently delivers the superior prediction
performances. In particular, our model is able to accurately
detect the ground-truth feature interactions and even outper-
forms the competitive methods in the synthetic dataset. Once
the unified graph is prepared, it could be practical for the real-
istic applications to model the feature interactions efficiently.
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