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Abstract

We investigate strategyproof mechanisms in the
Group Activity Selection Problem with the addi-
tively separable property. Namely, agents have
distinct preferences for each activity and individ-
ual weights for the other agents. We evaluate our
mechanisms in terms of their approximation ra-
tio with respect to the maximum utilitarian social
welfare. We first show that, for arbitrary non-
negative preferences, no deterministic mechanism
can achieve a bounded approximation ratio. Thus,
we provide a randomized k-approximate mecha-
nism, where k is the number of activities, and a cor-
responding 2− 2

k+1 lower bound. Furthermore, we
propose a tight (2 − 1

k )-approximate randomized
mechanism when activities are copyable. We then
turn our attention to instances where preferences
can only be unitary, that is 0 or 1. In this case, we
provide a k-approximate deterministic mechanism,
which we show to be the best possible one within
the class of strategyproof and anonymous mech-
anisms. We also provide a general lower bound
of Ω

(√
k
)

when anonymity is no longer a con-
straint. Finally, we focus on unitary preferences
and weights, and prove that, while any mechanism
returning the optimum is not strategyproof, there
exists a 2-approximate deterministic mechanism.

1 Introduction
In the Generalized Group Activity Selection Problem
(GGASP) [Darmann et al., 2018] a set of agents and a set of
activities are given, and each agent must be assigned to one
of the activities according to her preferences. This model can
represent several realistic scenarios: workers that split into
teams to perform specific tasks, employers to be located in
different sites, students assigned to classrooms, and so forth.

Depending on the setting, activities are either copyable or
non-copyable. If we consider the problem of splitting tasks
among workers, the same task may be performed by different
team groups independently; hence, the activities may be as-
sumed to be copyable. On the other hand, students assigned

to the same classroom will necessarily stay together, mean-
ing, in this case, that activities are non-copyable.

An interesting subclass of the GGASP is the one with
the additively-separable property (AS-GGASP) [Bilò et al.,
2019], in which each agent has preference values and individ-
ual weights representing her appreciation for each single ac-
tivity and for each other agent, respectively. The utility of an
agent is given by the sum of her preference for the activity she
is assigned to and of her weights for all the other participants.
The AS-GGASP has the nice property of being succinctly
representable, that is, the input representation is polynomial
in the number of the agents. Moreover, it generalizes another
widely investigated class of games, the additively-separable
Hedonic Games (ASHGs). Such a correspondence actually
holds for all classes of GGASP and Hedonic Games (HGs),
being HGs the special case in which agents do not care about
activities, but only about the agents they are grouped with.

While most of the previous work on GGASP and HGs
mostly investigates suitable stability criteria, like Nash and
core stability, assuming that agents’ preferences are known,
in this paper, we focus on the imperfect information setting
in which preferences and weights are private information of
the agents. A central authority, upon the declaration of such
values, must assign agents to activities so as to maximize the
social welfare or overall happiness of the agents, while in-
ducing a strategyproof behavior. Namely, given the mecha-
nism proposed by the authority, it must not be possible for the
agents to strategically misreport their values to increase their
utilities. In other words, truthfully reporting their real prefer-
ences and weights is a dominant strategy for all the agents. In
addition to strategyproofness and social welfare approxima-
tion, anonymity, i.e. the mechanism does not rely on agents’
identities, is a remarkable property of a mechanism.

1.1 Our Contribution
In this work, we investigate strategyproof mechanisms for the
AS-GGASP with good welfare guarantee. In particular, we
evaluate the performance of our mechanisms in terms of their
approximation with respect to the maximum utilitarian social
welfare. We develop our analysis by taking into account the
possible values of the preferences among the activities and
of the individual weights between agents. Namely, they can
be either non-negative reals or unitary, that is 0 or 1. We
highlight that all the presented mechanisms are anonymous.
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Lower Bound Upper Bound
Non- D ∗∞ (Th. 1)
negative R 2− 2

k+1 (Th. 3) ∗2− 1
k (Mech.M4)

weights k (Mech.M1)

Unitary D ∞ (Th. 4)
weights R 4/3 (Th. 5) ∗2− 1

k (Mech.M4)
k (Mech.M1)

Table 1: Our contribution. Non-negative preferences.

Lower Bound Upper Bound
Non- D †k (Th. 10) k (Mech.M2)
negative
weights Ω

(√
k
)

(Th. 7)

Unitary
weights D > 1 (Prop. 1) 2 (Mech.M3)

Table 2: Our contribution. Unitary preferences.

D = deterministic, R = randomized, ∗ = copyable activities, † =
anonymous mechanisms.

As a first result, we show that returning the optimum is
not strategyproof, even if both preferences and weights are
unitary. Thus, we focus on approximate mechanisms for non-
negative preferences. In this case, we show that no determin-
istic mechanism has a bounded approximation ratio for both
non-negative (here, even for copyable activities) and unitary
weights. Hence, we consider randomized mechanisms and
design a simple k-approximate mechanism, where k is the
number of activities. We also provide a 2− 2

k+1 and a 4
3 lower

bound for non-negative and unitary weighs, respectively.
We then turn our attention to unitary preferences. We pro-

vide a k-approximate deterministic mechanism and a lower
bound of Ω(

√
k ), holding for any strategyproof mechanism.

When also weights are unitary, we show that a better deter-
ministic mechanism exists whose approximation is 2.

Finally, we show refined almost tight bonds under reason-
able assumptions. More precisely, when activities are copy-
able, we present a (2 − 1

k )-approximate randomized mecha-
nism. Furthermore, under unitary preferences, we show that
no anonymous and deterministic mechanism has approxima-
tion < k, thus matching the above mentioned upper bound.

A summary of our results is given in Tables 1 and 2.

1.2 Related Work
In the past decade, considerable attention has been devoted
to the GGASP [Darmann et al., 2018], as an interesting
generalization of the well-known HGs [Dreze and Green-
berg, 1980]. Most of the literature has focused on the
subclasses of GGASP with anonymous preferences that al-
low a succinct representation. In particular, [Darmann et
al., 2018] introduced the GASP and the approval-based ver-
sion aGASP, while [Darmann, 2015] proposed the ordinal
preferences oGASP. Other investigated classes of GASP are

sGASP [Darmann et al., 2017], where there are a lower and
an upper bound on the number of participants per activity,
and gGASP [Igarashi et al., 2017b], where feasible coali-
tions must be connected components of a given interaction
graph. In the above papers, individual and group deviations
have been considered, providing several hardness results con-
cerning the existence of stable solutions, plus positive results
for particular cases. Some parameterized complexity studies
in these subclasses have been developed in [Igarashi et al.,
2017a; Ganian et al., 2018; Lee and Williams, 2017].

In the same spirit of ASHGs [Aziz et al., 2011], in [Bilò et
al., 2019] the AS-GGASP has been investigated, and results
on the complexity of determining Nash stable outcomes and
on the price of anarchy and stability have been given. More-
over, the NP-hardness of maximizing the utilitarian welfare
has been proven, together with a (2− 1/k)-approximation.

A nice introduction to GGASP and to the various sub-
classes can be found in [Andreas Darmann, 2016].

Some research in HGs and GGASP focused on the realis-
tic setting in which agents’ preferences are not known and the
assignment of agents should be done so as to encourage their
truthful reporting, as typically done in mechanism design.
In particular, in [Wright and Vorobeychik, 2015] the authors
provided a simple strategyproof mechanism for ASHGs with
positive preferences that simply consist in grouping all agents
together. A study of the properties of strategyproof core sta-
ble solutions for HGs has been provided also in [Rodrı́guez-
Álvarez, 2009]. A further step in this direction was made
in [Flammini et al., 2021], where several strategyproof mech-
anisms for ASHG and other related classes of games have
been presented under different assumptions on the agents’ in-
dividual weights. The authors showed that no bounded strate-
gyproof mechanism exists when weights can be arbitrary real
numbers. This is the reason why, in this paper, we will restrict
our attention to non-negative weights. Strategyproof mecha-
nisms for Friends and Enemies games, a subclass of ASHGs,
have also been considered. In this respect, while in [Dimitrov
and Sung, 2004] the provided mechanisms return core stable
outcomes, in [Flammini et al., 2022] the authors proposed
solutions with a bounded approximation ratio with respect to
the utilitarian social welfare. In [Darmann, 2019] the manip-
ulability (not strategyproofness) of several reasonable rules
(mechanisms), with the requirement of individual rational-
ity, has been shown for three possible extensions of oGASP.
Finally, in [Long, 2019] the authors provided strategyproof
mechanisms for GASP with single-peaked preferences.

Strategyproof mechanisms have also been considered in
several related settings, e.g. the house allocation problem
[Bogomolnaia and Moulin, 2001; Adamczyk et al., 2014;
Filos-Ratsikas et al., 2014], and the allocation of indivisible
goods [Svensson, 1999]. Worth of mentioning is the machine
scheduling setting. Here, some tasks must be split among
machines and machines can declare their completion time for
each task; the goal is to minimize the make-span. In [Nisan
and Ronen, 2001] the authors provide an m-approximate
mechanism, where m is the number of machines, together
with a lower bound of 2. In [Ashlagi et al., 2012] this gap has
only been closed for anonymous mechanisms: no anonymous
mechanism can have an approximation better than m.
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2 Model and Preliminaries
An AS-GGASP instance I = (G,A, p) is given by a di-
rected weighted graph G = (V,E,w), where V is a set of
n agents, A is a set of k activities, and p is a collection of
agents’ preferences. Namely, for each i ∈ V , pi : A → R
expresses the value that agent i gives to each activity in A.
Moreover, for each arc (i, j) ∈ E, the weight wi,j repre-
sents the appreciation that agent i has for agent j. We im-
plicitly assume wi,j = 0 if (i, j) 6∈ E. We denote by
Wi(G) =

∑
(i,j)∈E wi,j the overall evaluation that i ∈ V

has for all the other agents and by W (G) =
∑
i∈V Wi(G)

the sum of all the arc weights of G.
Given an assignment or outcome z, zi is the activity of i in

z, and δi(z) =
∑
j∈V : zj=zi

wi,j is the overall evaluation of i
for the agents participating to zi. The utility of agent i in the
assignment z is given by ui(z) = δi(z) + pi(zi).

In this work, we always assume both the preferences and
weights to be non-negative. In particular, we consider pref-
erences (resp. weights) which either take values in R≥0 or
are unitary (i.e. in {0, 1}). To evaluate the performance of
an assignment, we use the classical definition of utilitarian
social welfare, given by SW(z) =

∑
i∈V ui(z). Further-

more, we often express SW(z) as the sum xz + yz, where
xz =

∑
i∈V δi(z) and yz =

∑
i∈V pi(zi). Given an instance

I, the social optimum, denoted by opt(I), is the maximum
utilitarian social welfare achievable by any assignment, and
we denote by o(I) an assignment maximizing the utilitarian
social welfare. When the instance is clear from the context,
we refer to the social optimum and an optimal outcome sim-
ply as opt and o, respectively.

In our setting, for each agent i ∈ V , the preference func-
tion pi and the vectorwi of all the weightswi,j are assumed to
be private information of i, and must be declared by i before
the assignment computation. In particular, each i communi-
cates a pair di = (wdi , p

d
i ), wherewdi and pdi are the individual

weights vector and the preferences function, possibly differ-
ent from her real pair of values vi = (wi, pi), and we let
d = (d1, . . . , dn) be the collection of all such declarations.

A deterministic mechanismM is an algorithm that, for any
declaration d, outputs an assignment zM(d) = M(d). Let
d−i be the declarations of all the agents except i; a determin-
istic mechanism is said to be strategyproof (SP) if for any
i ∈ V , d−i, di, and true vi, it satisfies ui(M(d−i, vi)) ≥
ui(M(d−i, di)). A randomized mechanism M maps ev-
ery declaration d to a distribution ∆ over all the possi-
ble assignments. Thus, the expected utility of agent i is
given by E [ui(M(d))] = Ez∼∆[ui(z)]. A randomized
mechanism is said to be strategyproof (SP) if for any i ∈
V , d−i, di, and true vi, it satisfies E [ui(M(d−i, vi))] ≥
E [ui(M(d−i, di))].

A deterministic (resp. randomized) mechanism is said to
be manipulable if it is not strategyproof. Further, a mecha-
nism M is said to be anonymous if it does not rely on the
agents identities. More formally,M is anonymous iff given
any permutation π on the set of agents,M(i) =M(π(i)) for
each i ∈ V , whereM(i) is the activity i is assigned to byM.

We evaluate the performance of M through the corre-
sponding approximation ratio (AR) rM = supd

opt(d)

SW(M(d))

a1

21

3

4 5

a2

6 7

(a) Instance I1

a1

21

3

4 5

a2

6 7

(b) Instance I2

Figure 1: Optimum is not strategyproof. A directed edge from an
agent i to an agent j (resp. activity a) stands for wij = 1 (resp.
pi(a) = 1). All the other values in the instance are set to 0.

if M is deterministic, and rM = supd
opt(d)

E[SW(M(d))]
if M

is randomized. A mechanism is said to be bounded if there
exists a bounded function f such that rM ≤ f(n, k). In what
follows, we often identify agents’ declaration d with the in-
stance I(d) built according to d. For the sake of simplicity,
we usually refer to I(d) as I.

So far, we assumed the activities to be non-copyable, i.e.,
for any assignment z and for each couple i, j ∈ V such that
zi = zj , i 6= j, we have that i and j participate together
to the same activity, and thus contribute to each other’s util-
ity. If activities are copyable, instead, they may be performed
by different subgroups of agents simultaneously; thus, each
agent utility will count only for her own group members and
not for all the other participants to the same activity. We ob-
serve that, in terms of social welfare, the copyability assump-
tion does not lead to better solutions, since preferences and
weights are assumed to be non-negative. However, it will be
a useful feature to design efficient strategyproof mechanisms.

Social Optimum and Strategyproofness. We first observe
that, since preferences and weights are non-negative, for
k = 1 a trivial optimal strategyproof mechanism consists in
assigning all agents to the single available activity. One might
wonder whether a mechanism returning the optimum is also
strategyproof when k ≥ 2. In [Bilò et al., 2019], it is shown
that for k ≥ 3 it is NP-hard to find the optimal allocation even
if preferences and weights are unitary. We next show that, be-
sides the fact that finding the optimum is not computationally
tractable, a mechanism which returns an optimal solution is
anyway not strategyproof for every k ≥ 2.

Proposition 1. A mechanism which returns the optimal al-
location is not strategyproof even if preferences and weights
are unitary and k = 2.

Proof. Let us consider instance I1 shown in Figure 1a,
with unitary preferences and weights. In I1 we have the
set of agents V = {1, 2, 3, 4, 5, 6, 7}, the set of activities
A = {a1, a2}, preferences p1(a1) = p2(a1) = p4(a2) =
p5(a2) = p6(a2) = p7(a2) = 1 and weights w1,3 = w2,3 =
w3,4 = w4,5 = 1; any other value is 0. In I1 the optimum is
achieved only by assigning 1, 2, 3 to a1 and 4, 5, 6, 7 to a2.

Let us now consider the I2 shown in Figure 1b, differing
from I1 only for the declaration of agent 3, that is w3,5 =
w3,6 = w3,7 = 1. In this case, in any optimal allocation,
agent 3 is always assigned to activity a2 together with agent
4. For agent 3 in I1 it is preferable to get any optimal assign-
ment for I2, rather than the one for I1. Hence, a mechanism
returning the optimal assignment is manipulable.
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Motivated by Proposition 1, we will focus on mechanisms
returning good approximate solutions.

3 Non-Negative Preferences
In this section, we consider instances in which agents’ pref-
erences can be non-negative reals. We study arbitrary non-
negative and unitary weights in two separate subsections.

3.1 Non-Negative Weights
In what follows, we show that every deterministic strate-
gyproof mechanism has unbounded approximation ratio for
any k ≥ 2. Thus, we turn our attention to randomized mech-
anisms whose approximation ratio is instead bounded. To this
aim, we first provide the following necessary condition.
Lemma 1. Given a deterministic strategyproof mechanism
M, for any instance I = (G,A, p) with non-negative pref-
erences and non-negative weights, if rM is bounded then
ui(z

M(I)) ≥ 1
n · (Wi(G) + maxa∈A pi(a)) holds ∀i ∈ V .

Proof. By contradiction, let us assume that there exists an
instance I and an agent i ∈ V such that, in the returned as-
signment zM, ui(zM(I)) < 1

n · (Wi(G) + maxa∈A pi(a)).
Then, there must exist an activity a ∈ A such that a 6= zMi
and ui(z

M) < pi(a) (case 1), or an agent j ∈ V \ {i}
such that zMi 6= zMj and ui(z)M < wi,j (case 2). Let us
now consider a new instance I(M) where in case 1 (resp.
case 2) agent i changes only the value she gives to the ac-
tivity a (resp. to the agent j) and sets it to a suitably large
positive number M . Since M is strategyproof, agent i will
never be assigned to activity a (resp. to the same activity
of j), otherwise agent i will achieve a better outcome in I
by modifying it into I(M). Thus, as M increases, the ratio
rM(I(M)) = opt(I(M))

SW(M(I(M)))
≥ M

SW(M(I(M)))
increases as

well, contradicting the assumption that rM is bounded. In-
deed, given any function f(n, k) for upper bounding rM, for
suitably large M it is rM(I(M)) > f(n, k).

Exploiting the above property, we now show that no deter-
ministic mechanism has bounded approximation ratio.
Theorem 1. No bounded deterministic strategyproof mecha-
nism exists when preferences and weights are non-negative,
even if k = 2 and activities are copyable.

Proof. Given any mechanism M with bounded approxima-
tion ratio and a suitably large real number M � 1, let us
consider the instance I1 depicted in Fig. 2a. Since M is
bounded, according to Lemma 1, it assigns (together) agent 1
and 2 to the same activity, let’s say, activity a2.

Let us now consider instance I2 depicted in Fig. 2b, where
α > 2. Due to Lemma 1, agent 2 must still be assigned byM
to the same activity of 1. However, 1 and 2 cannot be assigned
together to activity a1. In fact, if not, agent 1 in instance I1

can achieve a better outcome changing her preference for ac-
tivity a1 and thus contradicting the strategyproofness ofM.
Therefore, in order to be strategyproof,M in I2 must assign
both the agents to activity a2, violating Lemma 1 for agent 1.

In conclusion, a deterministic strategyproof mechanism
achieving a bounded approximation ratio cannot exist.

a1

1 2

a2

1 1
M

M

(a) Instance I1

a1

1 2

a2

α ·M 1
M

M

(b) Instance I2

Figure 2: LB for both deterministic and randomized mechanisms.

Since no bounded deterministic mechanism exists, we now
present a simple randomized and anonymous mechanism.

MechanismM1. It selects uniformly at random one activity
and then assigns all the agents to it.

Theorem 2. M1 is strategyproof and rM1 = k .

Proof. (SP) Since the assignment does not depend on the
agents’ declarations, the strategyproofness ofM1 follows.

(AR) Given an instance I, let z and o be the output ofM1

and an optimal assignment for I, respectively.
Thus, E [xz] = W (G) ≥ xo and E [yz] is equal to
1
k

∑
i∈V

∑
a∈A pi(a) ≥ 1

k

∑
i∈V pi(oi) = 1

k · yo . Since
xo ≤ E [xz] ≤ k · E [xz] and yo ≤ k · E [yz], we get
rM = xo+yo

E[xz+yz] ≤ k.

To show that this upper bound is tight, let us consider Î =
(G,A, p) with A = {a1, . . . , ak}, V = {1, . . . , k}, W (G) =
0, pi(aj) = 1 if and only if i = j, and pi(aj) = 0 otherwise.

In this instance opt = k, while E
[
SW (M1(Î))

]
= 1.

We next show a lower bound for any randomized strate-
gyproof mechanism holding also in the copyable case.

Theorem 3. Given any randomized strategyproof mechanism
M, under non-neg. preferences and weights, rM > 2− 2

k+1 .

Proof. Given V = {1, . . . , k, x} and A = {a1, . . . , ak}, let
us consider the family of instances {Iα}α∈R+ , where for any
i, j ∈ {1, . . . , k}, pi(aj) = 1 iff i = j and wx,i = α for
every i ∈ {1, . . . , k}. All the other values are set to 0.

Let ε be any strictly positive real number such that ε� 1
k ,

and let us consider the corresponding instance Iε. We observe
that the optimal solution for Iε achieves a social welfare of
opt(Iε) = k + ε, and it is obtained by assigning agent i to
activity ai and agent x to any activity.

Given any randomized strategyproof mechanism M, we
denote by c(k) = rM its approximation ratio. Let pm be
the probability that agent x is assigned to an activity together
with m ∈ {0, 1, . . . , k} other agents. Then, the expected util-
ity of x in instance Iε is E [ux(M(Iε))] = ε ·

∑k
m=0m ·pm .

Moreover, it is possible to give a trivial upper bound to the
expected social welfare assuming that: (a) if an agent i is
not with x, then it is assigned to the activity she evaluates 1,
and (b) one agent assigned together with x evaluates 1 the
activity they belong to. Thus, we get E [SW(M(Iε))] ≤∑k
m=0 (ε ·m+ 1 + (k −m)) · pm = k + 1 − (1 − ε) ·∑k
m=0m · pm . We now use the strategyproofness assump-

tion to give a lower bound on the expected number of agents
assigned to the same activity of x. To this aim, we consider
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instance IM and define p′m as the probability that x is as-
signed to an activity together with other m ∈ {0, 1, . . . , k}
agents. In this case we can express the expected utility of
agent x as E [ux(M(IM ))] = M ·

∑k
m=0m · p′m . Since

M is strategyproof,
∑k
m=0m · pm =

∑k
m=0m · p′m must

hold. Indeed, if
∑k
m=0m · pm <

∑k
m=0m · p′m, for agent

x in instance Iε it would be possible to increase her expected
utility by modifying Iε into IM , thus contradicting the strat-
egyproofness ofM. Similar arguments can be applied if we
assume

∑k
m=0m · pm >

∑k
m=0m · p′m.

Let us assume M � 1. In this case, opt(IM ) = M ·
k + 1, as it can be checked by assigning all the agents to the
same activity. Moreover, E [SW(M(IM ))] ≤M ·

∑k
m=0m ·

p′m + k. Since for any large enough M � 1 it holds c(k) =

rM ≥ kM+1
M ·

∑k
m=0m·p′m+k

M→∞−→ k∑k
m=0m·p′m

, we have that∑k
m=0m · p′m ≥

k
c(k) . Applying the just provided lower

bound to the expected social welfare for instance Iε, we get
E [SW(M(Iε))] ≤ k + 1 − (1 − ε) ·

∑k
m=0m · pm ≤ k +

1 − (1 − ε) · k
c(k) . Thus, we have k+ε

k+1−(1−ε)· k
c(k)

≤ c(k).

For ε→ 0, we finally obtain c(k) ≥ 2 · k
k+1 = 2− 2

k+1 .

In Sec. 5, we show this LB is tight for copyable activities.

3.2 Unitary Weights
Here we briefly discuss the unitary weights setting, i.e.,
wi,j ∈ {0, 1} for every i, j ∈ V . We refer to the full ver-
sion of the paper for the technical details.

Unfortunately, a negative result holds also in this case.

Theorem 4. No deterministic strategyproof bounded mecha-
nism exists for non-negative preferences, unitary weights, and
non-copyable activities, even if k = 2.

Worth of mentioning is the main difference between The-
orem 1 and 4. On the one hand, the lower bound showed for
unitary weights seems to generalize the one for non-negative
weights, on the other hand, the proof of Theorem 4 does not
hold for the copyable case. Thus, finding a bounded deter-
ministic mechanism for unitary weights and copyable activ-
ities remains an open question. Furthermore, Theorem 3 no
longer hods, hence, we give a specific lower bound.

Theorem 5. For any randomized strategyproof mechanism
M for non-neg. preferences and unitary weights, rM ≥ 4

3 .

4 Unitary Preferences
Given the previous negative results for arbitrary non-negative
preferences, we now focus on unitary ones. Again, we distin-
guish between the cases of non-negative and unitary weights,
and we show that in both cases it is possible to provide strat-
egyproof mechanisms with bounded approximation ratio.

4.1 Non-Negative Weights
Let us define by a∗ ∈ A the most preferred activity, i.e., a∗ =
arg maxa∈A

∑
i∈V pi(a), ties are broken lexicographically.

MechanismM2. It assigns all the agents to activity a∗.

M2 is not strategyproof for non-negative preferences; this
is not the case for unitary ones. Further,M2 is anonymous.
Theorem 6. M2 is strategyproof under unitary preferences
and non-negative weights. Moreover, rM2 = k .

Proof. (SP) An agent is interested in manipulating only if
she evaluates 0 the activity she is assigned to. However, not
declaring her true preferences cannot improve the number of
agents evaluating 1 the activities she likes.
(AR) Let y be maxa∈A

∑
i∈V pi(a). Since xo ≤ W (G) and

yo ≤ k · y, rM2 ≤ k directly follows.
Moreover, the bound is tight, it can be checked by consid-

ering the instance Î described in the proof of Theorem 2.

We now provide a lower bound for any deterministic strat-
egyproof mechanism. In Sec. 5 we will show a refined lower
bound of k when mechanisms are anonymous.
Theorem 7. Given any deterministic and strategyproof
mechanism M under unitary preferences and non-negative
weights, rM ∈ Ω

(√
k
)

.

Proof. Given any ε ≤ 1
k·2k , let us consider consider the in-

stance following Iε = (G,A, p). The set of the activities is
A = {a1, . . . , ak}, and ∀S ⊆ {1, . . . , k} = [k], S 6= ∅,
there is a corresponding agent `S . The set of the agents is
V = [k] ∪ {`S |S ⊆ [k], S 6= ∅}. Moreover, pi(ai) = 1
∀ i ∈ [k], and w`S ,i = ε for each S ⊆ [k] and i ∈ S; all the
other preferences and weights are set to 0.

LetM(Iε) be the assignment returned by mechanismM
for instance Iε, and let {i1, . . . , im} with m ∈ [k] be the
set of the agents assigned to the activity they evaluate 1 in
M(Iε). Then, SW(M(Iε)) ≤ m + c · ε for some c ≥ 0,
while opt(Iε) ≥ k, thus implying rM ≥ k

m+c·ε
ε→0−→ k

m .
Let us now consider S = {i1, . . . , im} and the correspond-

ing agent `S , that must be assigned to only one activity and
thus with only one of the agents in S. Such an agent may try
to manipulate the outcome by changing the instance Iε into
IS(M), wherew`S ,i = M for each i ∈ S and all other prefer-
ences and weights are the same of Iε, with M suitably large.
However, sinceM is strategyproof, this cannot lead to a bet-
ter outcome for `S . Therefore, also in this instance `S cannot
be assigned to an activity together with more than one agent
in S. This means that SW(M(IS(M))) ≤M + k+ 1, while
opt(IS(M)) ≥ m ·M . Therefore, r ≥ m·M

M+k+1

M→∞−→ m.
To conclude, both r ≥ k

m and r ≥ m must hold. Minimiz-
ing the max of the two with respect tom, we get r ≥

√
k.

4.2 Unitary Weights
We now consider unitary preferences and weights. In what
follows, we show that a mechanism better than M2 exists.
Observe, in this case, G can be seen as a directed unweighted
graph; this allows us to define CG as the set of maximal
weakly connected components of G.
MechanismM3. It fixes a distinguished activity a ∈ A; for
each C ∈ CG, if there exists â ∈ A such that pi(â) = 1
∀i ∈ C, it assigns all the agents in C to â, while it assigns
them to a, otherwise.
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Theorem 8. M3 is strategyproof under unitary preferences
and weights, and rM3 = 2.

Proof. (SP) An agent i that truthfully reports her values is
assigned with all the agents for which she has weight 1, thus,
is not convenient for her misreporting her preferences among
the other agents. If she lies to get an activity she values 1, she
necessarily loses at least one of her neighbors, thus falling
into an assignment not providing her a better utility.

(AR) We consider the SW of each component C ∈ CG
separately. If there exists â ∈ A such that pi(â) = 1 ∀i ∈ C,
then the SW ofC is the maximum possible one. If agents inC
do not have a common preferred activity, their SW is at least
W (C), while the SW that C can achieve in any allocation is
at most W (C) + |C| − 1 ≤ 2W (C). In fact, either they are
assigned to a same activity, for which at least one of them
has preference 0, or they are split among different activities,
loosing at least 1 in terms of global weight.

Also in this case, M3 is anonymous. We also recall, any
strategyproof mechanismM has rM > 1 by Proposition 1.

5 Improved Bounds
So far, we provided upper and lower bounds for strategyproof
mechanisms under specific preferences and weights assump-
tions. In this section, we discuss meaningful cases in which
such bounds become tight.

5.1 Copyable Activities
In this setting, we show that a mechanism better than M1

exists if activities are copyable.

MechanismM4. It selects z1 with probability k
2k−1 and z2

otherwise, where z1 is the outcome where all the agents are
assigned to the same activity selected uniformly at random,
and z2 is the outcome where each agent is assigned alone to
one of the activities she prefers most.

Theorem 9. M4 is strategyproof, if activities are copyable,
and preferences and weights are non-negative. Moreover,
rM4 = 2− 1

k .

Proof. (SP) Observe, M4 outputs either z1 or z2 indepen-
dently from the agents’ declarations. Moreover, both z1 and
z2 are strategyproof, hence,M4 is strategyproof as well.

(AR) Given an instance I, let z be the outcome returned
by M4 and o be the optimal solution. Then, E [SW(z)] =
k

2k−1 · E [SW(z1)] + k−1
2k−1 · SW(z2). Moreover, xo + 1

k ·
yo ≤ E [SW(z1)] and yo ≤ SW(z2). In conclusion, opt ≤
E [SW(z1)] + k−1

k · SW(z2) =
(
2− 1

k

)
· E [SW(z)] . Such

a bound is also tight, as it can be easily checked considering
the instance Î in the proof of Theorem 2.

By Theorem 3 we have thatM4 is asymptotically optimal.

5.2 Anonymous Mechanisms
The main result of this subsection is given by the following:

Theorem 10. Under unitary preferences and non-negative
weights, no anonymous strategyproof mechanism M can
achieve an approximation ratio rM < k.

Observe that Mechanism M2 makes this bound tight.
To prove Theorem 10, we need the instance I∗ described in

the following. Let A = {a1, . . . , ak} be the set of activities,
V = {1, . . . , k + 1} be the set of agents, and ε be a small
enough positive number. The agents preferences and weights
are defined as follows: 1) pi(ai) = 1 for i = 1, . . . , k,
2) wi(j) = ε for i, j ∈ {1, . . . , k} and i 6= j, and
3) wk+1(i) = ε for each i ∈ {1, . . . , k}.

All the other preferences and weights are set to 0.
Let M be any anonymous and strategyproof mechanism

and z = M(I∗) be the outcome for instance I∗. We define
the mapping f : A → A, such that, for each i ∈ {1, . . . , k},
f(ai) = aj if and only if zi = aj . Notice that f depends
on the considered mechanism M, for simplicity we omit it
in the notation. Let us consider Im(f) = {f(a)|a ∈ A} and
Fix(f) = {a ∈ A|f(a) = a}.

We now present two useful lemmas, whose proofs can be
found in the full version of the paper.

Lemma 2. Given any anonymous and strategyproof mecha-
nismM, Im(f) = Fix(f) holds.

Lemma 3. Given any anonymous and strategyproof mecha-
nismM , if k is prime number, either Fix(f) = A or there
exists an activity a ∈ A such that Fix(f) = {a}.

Proof of Theorem 10. Let us assume k to be a prime number.
If Fix(f) = {a}, the claim follows as the opt in I∗ is> k.
If Fix(f) = A, every agent in {1, . . . , k} is assigned to

her preferred activity, and thus agent k+ 1 can be assigned to
an activity with only one other agent. In this case, let us con-
sider the instance I∗M where agent k+ 1 changes her weights
from ε to M . Because of strategyproofness, no matter of how
large M is, the mechanism will assign k+ 1 to an activity to-
gether with only one other agent, otherwise she would modify
I∗ into I∗M . In conclusion, for a sufficiently large M the op-
timum in I∗M is obtained by assigning all the agents to the
same activity achieving a social welfare of at least k ·M + 1,
while the best possible social welfare that the mechanism can
achieve is at most k + M . Hence, the approximation ratio is
at least k·M+1

k+M ; for M →∞ the claim holds.

6 Conclusion and Future Work
In this work we investigated approximate strategyproof
mechanisms for the AS-GGASP.

As for HGs and machine scheduling, there are relatively
large gaps between some lower and upper bounds we pro-
vided. We circumvented this problem under some specific as-
sumptions. Nonetheless, reducing gaps in the AS-GGASP, as
well as in other related settings, remains a fundamental open
question. Here, the crucial problem is to understand whether
better, but not anonymous, mechanisms can be attained or if
there are unexploited techniques to achieve improved bounds.

Another problem we left open is the existence of a bounded
deterministic mechanism for copyable activities under non-
negative preferences and unitary weights.

Finally, we believe that our approach could be applied
other relevant classes of the GGASP.
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