
Connected Multi-Agent Path Finding: Generation and Visualization

Arthur Queffelec1 , Ocan Sankur2 , François Schwarzentruber1
1Univ Rennes, CNRS, IRISA

2Univ Rennes, Inria, CNRS, IRISA
arthur.queffelec@irisa.fr, ocan.sankur@inria.fr, francois.schwarzentruber@irisa.fr

Abstract
We present a generic tool to visualize missions of
the Connected Multi-Agent Path Finding (CMAPF)
problem. This problem is a variant of MAPF which
requires a group of agents to navigate from an
initial configuration to a goal configuration while
maintaining connection. The user can create an in-
stance of CMAPF and can play the generated plan.
Any algorithm for CMAPF can be plugged into the
tool.

1 Introduction
In many applications (automated farming, search and res-
cue, etc.), unmanned autonomous vehicles (UAVs) have to
stay connected at all time to share information. Intro-
duced in [Hollinger and Singh, 2012] and extensively studied
in [Tateo et al., 2018; Charrier et al., 2019; Charrier et al.,
2020], Connected Multi-Agent Path Finding (CMAPF) is the
problem of generating such missions.

MAPF, from which CMAPF originated, asks for collision-
free paths for a group of agents. See [Yu and LaValle, 2016]
for a comprehensive survey. However, from an algorithmic
point of view, CMAPF is intrinsically harder than MAPF. It
can be intuitively explained by the fact that a collision con-
straint is local (only concerns two agents) while the connec-
tivity is global (it concerns the whole group of agents). While
finding an arbitrary execution avoiding collisions is in PTIME
[Yu and Rus, 2014], finding an arbitrary execution main-
taining the connectivity is PSPACE-complete [Tateo et al.,
2018]. Optimisation problems for MAPF and CMAPF are
NP-complete (see [Charrier et al., 2020]). Algorithms have
been developed to solve CMAPF [Hollinger and Singh, 2012;
Tateo et al., 2018; Queffelec et al., 2020].

As CMAPF has applications and is challenging, new algo-
rithms will be developed. Thus, we need to visualize CMAPF
instances and plans. Indeed, Visualization will help to under-
standing the generated plans, and thus to improve algorithms.
It will also help to teach and explain these algorithms. A tool
for the visualization of MAPF plans was developed [Koupý,
2010]. However, to the best of our knowledge, no tool exists
for the visualization of CMAPF missions. The closest tool to
our need was created in 2018 [Bodin et al., 2018], in order to
generate and visualize connected plan of coverage missions,

where all locations of the graph must be visited by the agents.
The latter work converts an instance of connected coverage
planning into a classical planning instance. Coverage plan-
ning is close to CMAPF, as shown in [Queffelec et al., 2020].
The scalability was very limited and the collisions were not
taken into account. Also the edition of maps was not possible.

UAVs
Move adjacency
Communication adjacency
Active communications

Figure 1: Example of a mission execution.

The goal of our tool1 is to provide a platform for current
and future algorithmic approach to visualize connected mis-
sions. It is worth noting that the connectivity constraints
add a new layer of complexity to the missions compared to
MAPF which render mission less comprehensible. The user
can choose a 2D map on which to synthesize a connected co-
operative plan. She can select the starting configuration of
the agents and the goal configuration, the radius of commu-
nication and whether collisions are allowed or not. Then, the
back-end algorithm generates a mission for the cooperation
of agents.

1https://github.com/francoisschwarzentruber/cmapf-gui

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5008

https://github.com/francoisschwarzentruber/cmapf-gui


The tool is provided with a simple algorithm to solve
CMAPF. The structure of the algorithm is based on
CBS [Sharon et al., 2015] with positive constraints to deal
with the particular challenges of CMAPF. Indeed, CBS deals
with collision conflicts between two agents by enforcing one
of the agents to move away from the location of the collision.
In our algorithm, connectivity conflicts correspond to discon-
nected configurations, that is, configurations where the agents
do not form a connected subgraph. Resolving such a conflict
is harder: a connectivity conflict can involve multiple agents
and a single disconnected agent may not be the source of the
conflict.

Figure 1 shows a simple execution of 3-steps plan in a
graph: solid lines represent elementary possible moves be-
tween two vertices; a dashed line between two vertices means
that communication is possible between them. At the first
step, agent are at the starting configuration. At the end, the
agents reached their goal configuration. During the execu-
tion, agents stay connected (dashed lines forming a connected
subgraph). Importantly, agents do not communicate while
moving.

Outline. In Section 2, we explain the demonstration it-
self. Then, in Section 3 we describe the architecture of the
tool. In Section 4, we describe our algorithm. We conclude
in Section 5.

2 Demonstration Outline
2.1 Instance Selection
The software starts by showing a map. The user can select
another map. She can also modify the radius of communi-
cation, that is the maximum distance between two locations
in which two agents could communicate. She can choose to
add new agents. Then, the user selects the starting locations
of all the agents and the goal locations to reach. As seen in
Figure 2a, the user places the circles for the starting positions
of the agents and the flags for the ending positions.

2.2 Visualize Generated Plans
Once the mission is specified, the user can ask for the mission
to be computed. The algorithm computes the solution (or lack
of solution) and informs the user. If a plan exists, the user can
scroll through the plan and see every step. In particular, the
user can go back and forth in the plan.

In Figure 2b, the path of each agent is displayed with a
gray dashed line on the ground and the connectivity between
the agent at each step is shown by a blue link between the
inter-connected agents.

2.3 Map Creation
We wanted users to be able to create easily their own maps.
That is why we decided to represent maps as 2D black and
white bitmaps (see Figure 3). That representation makes the
creation and edition of maps easy by means of any drawing
software. Black pixels are the obstacles while the white one
are the nodes of the graph. The movement is allowed between
two adjacent white pixels. In the current version of the tool,
the user specifies a radius of communication.

(a) Selection of an instance. The user can drag and drop the
starting and target locations of the agents.

(b) Execution of a plan. Paths of agents are shown, as well
as the connectivity between agents.

Figure 2: Screenshots of the tool.

3 Architecture of the Tool
In this section, we describe the architecture of our tool, as
shown in Figure 4. Importantly, the visualizer is independent
from the underlying algorithm that is used. So we can easily
plug any other algorithm.

3.1 Front-End
The front-end of the tool displays the map (in which trees
are obstacles) and allows the user to construct an instance.
When the user decides to compute an execution, it generates
an instance corresponding and send it to the back-end for pro-
cessing. The plan of the mission is then transformed into an
animation that the user can play. The front-end is written in
TypeScript.

3.2 Back-End
The back-end of the tool transforms the map to a pair of two
graphs (movement and communication). The graphs are de-
scribed in the GraphML format (making it easy to load the
graphs e.g. in C++ via the library Boost or rapidxml. Then,
it contains an algorithm that takes the graphs and the start

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5009



Figure 3: A map is represented by a black and white bitmap.

any algorithm
for CMAPF

mapToGraph

Map

Back-end (server-side)

GUI

createInstance

planToAnim

Front-end (client-side)

map

plan

graph

Figure 4: Architecture of the tool

and goal configurations as an input. Finally, the algorithm
generates a plan or inform the lack of feasible plan. The re-
turned plan is a sequence of actions such that the connectivity
is maintained.

4 Algorithm

Our visualization tool is supplied with an algorithm for solv-
ing CMAPF. We provide a lightweight implementation in
C++ (in comparison, the implementation given in [Tateo et
al., 2018] requires Robot Operating System). Our algorithm
is inspired by the concept of the Conflict-Based Search (CBS)
algorithm [Sharon et al., 2015] which solves MAPF by find-
ing an optimal collision-free execution (without any connec-
tivity constraints). CBS searches for an execution using a
decoupled approach, computing the path of each agent in-
dependently and repairing any issue. This approach does not
suffer directly from the state explosion problem. Indeed, CBS
is intuitively exponential in the number of collision and not in
the number of agents.

As in CBS, our algorithm Connected CBS (CCBS) is com-
posed of two levels: the high-level builds a constraint tree to
search for a set of constraints; the low-level computes path
for single agents satisfying a given set of constraints. A con-
straint can either be positive or negative and applies to an
agent, a time-step and a location. Notice that [Sharon et al.,
2015] only uses negative constraints, while we use both neg-
ative and positive ones.

4.1 High-Level
The high-level of CCBS builds a constraint tree in order to
find a set of constraints which allows the low-level to gener-
ate a valid execution. CCBS starts with a tree of a single con-
straint node containing no constraint. The low-level is used
to obtain an execution. If the execution is valid, we return it.
Otherwise, we pick a conflict and split it the following way.

• Collision Conflict: pick a pair of agents in collision, gen-
erate two negative constraints, each enforcing one of the
agent away.

• Disconnection Conflict: pick an agent, for each possi-
ble position, generate a positive constraint enforcing the
agent at this location.

This process repairs all conflicts in a best-first search manner.

4.2 Low-Level
We use the algorithm described in [Li et al., 2019b] to com-
pute the constrained shortest paths for individual agents with
positive and negative constraint.

As CBS, in the case of a not satisfiable instance, our algo-
rithm may not terminate.

5 Conclusion
The tool presented in this paper offers a framework for re-
searchers to connect their algorithms for CMAPF. For the
moment, the communication type is limited to radius; we
aim at adding other communication types (e.g. line-of-
sight). We plan to enrich the graphical user interface so
that the user may directly choose other algorithms (in par-
ticular SB, DFS from [Tateo et al., 2018]). A variant of
CMAPF includes a base, that is, a specific agent that can
not move (see [Bodin et al., 2018; Charrier et al., 2020;
Queffelec et al., 2020]. We also would like to enrich the
graphical user interface for capturing the notion of base, or
more generally of agents that are not allowed to move. In this
line, we may also imagine agents will different abilities and
take the battery energy levels in the planning problem.

As said in the introduction CMAPF is a challenging prob-
lem. We aim at adapting optimization coming from CBS for
MAPF. For instance, for CBS, a popular and efficient opti-
mization considers cardinal conflicts [Boyarski et al., 2015],
which are conflicts that can only be solved by increasing the
lengths of the paths of all involved agents. This concept led
to the integration of powerful heuristics in CBS [Felner et al.,
2018; Li et al., 2019a]. The adaptation of similar concepts
for connectivity is however nontrivial.

The CMAPF problem was extended to partially known en-
vironments in [Queffelec et al., 2021]. In this setting the
agents do not know exactly the environment in which it is
moving and have to discover it during their mission. Thus,
when agents connect together they are allowed to share their
information. We also would like our tool to support partially
known environment. The user would be capable of observing
the point of view of each agent, its current knowledge and the
knowledge gained through other agents.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5010



References
[Bodin et al., 2018] François Bodin, Tristan Charrier, Arthur

Queffelec, and François Schwarzentruber. Generating
plans for cooperative connected uavs. In Proceedings of
the Twenty-Seventh International Joint Conference on Ar-
tificial Intelligence, IJCAI-18, pages 5811–5813. Interna-
tional Joint Conferences on Artificial Intelligence Organi-
zation, 7 2018.

[Boyarski et al., 2015] Eli Boyarski, Ariel Felner, Roni
Stern, Guni Sharon, David Tolpin, Oded Betzalel, and
Solomon Eyal Shimony. ICBS: improved conflict-based
search algorithm for multi-agent pathfinding. In IJCAI
2015, pages 740–746, 2015.

[Charrier et al., 2019] Tristan Charrier, Arthur Queffelec,
Ocan Sankur, and François Schwarzentruber. Reachabil-
ity and coverage planning for connected agents. In IJCAI
2019, pages 144–150, 2019.

[Charrier et al., 2020] Tristan Charrier, Arthur Queffelec,
Ocan Sankur, and François Schwarzentruber. Complex-
ity of planning for connected agents. Auton. Agents Multi
Agent Syst., 34(2):44, 2020.

[Felner et al., 2018] Ariel Felner, Jiaoyang Li, Eli Boyarski,
Hang Ma, Liron Cohen, T. K. Satish Kumar, and Sven
Koenig. Adding heuristics to conflict-based search for
multi-agent path finding. In ICAPS 2018, pages 83–87,
2018.

[Hollinger and Singh, 2012] G. A. Hollinger and S. Singh.
Multirobot coordination with periodic connectivity: The-
ory and experiments. IEEE Transactions on Robotics,,
pages 967–973, Aug 2012.

[Koupý, 2010] Petr Koupý. Visualization of problems of mo-
tion on a graph. http://koupy.net/graphrec.php, 2010. Ac-
cessed: 2021-05-01.

[Li et al., 2019a] Jiaoyang Li, Ariel Felner, Eli Boyarski,
Hang Ma, and Sven Koenig. Improved heuristics for multi-
agent path finding with conflict-based search. pages 442–
449, 08 2019.

[Li et al., 2019b] Jiaoyang Li, Daniel Harabor, Peter J.
Stuckey, Ariel Felner, Hang Ma, and Sven Keonig. Dis-
joint splitting for conflict-based search for multi-agent
path finding. In ICAPS 2019, pages 279–283, 2019.

[Queffelec et al., 2020] Arthur Queffelec, Ocan Sankur, and
François Schwarzentruber. Conflict-based search for con-
nected multi-agent path finding. CoRR, abs/2006.03280,
2020.

[Queffelec et al., 2021] Arthur Queffelec, Ocan Sankur, and
François Schwarzentruber. Planning for connected agents
in a partially known environment. In Advances in Artifi-
cial Intelligence - 34nd Canadian Conference on Artificial
Intelligence, Canadian AI 2021, Kingston, ON, Canada,
May 25-28, 2021, Proceedings, 2021.

[Sharon et al., 2015] Guni Sharon, Roni Stern, Ariel Felner,
and Nathan R. Sturtevant. Conflict-based search for op-
timal multi-agent pathfinding. Artif. Intell., 219:40–66,
2015.

[Tateo et al., 2018] D. Tateo, J. Banfi, A. Riva, F. Amigoni,
and A. Bonarini. Multiagent connected path planning:
PSPACE-completeness and how to deal with it. In AAAI
20018,, pages 4735–4742, 2018.

[Yu and LaValle, 2016] J. Yu and S. M. LaValle. Optimal
multirobot path planning on graphs: Complete algorithms
and effective heuristics. IEEE Transactions on Robotics,
32(5):1163–1177, 2016.

[Yu and Rus, 2014] Jingjin Yu and Daniela Rus. Pebble mo-
tion on graphs with rotations: Efficient feasibility tests and
planning algorithms. In H. Levent Akin, Nancy M. Amato,
Volkan Isler, and A. Frank van der Stappen, editors, Algo-
rithmic Foundations of Robotics XI - Selected Contribu-
tions of the Eleventh International Workshop on the Algo-
rithmic Foundations of Robotics, WAFR 2014, 3-5 August
2014, Boğaziçi University, İstanbul, Turkey, volume 107
of Springer Tracts in Advanced Robotics, pages 729–746.
Springer, 2014.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5011

http://koupy.net/graphrec.php

	Introduction
	Demonstration Outline
	Instance Selection
	Visualize Generated Plans
	Map Creation

	Architecture of the Tool
	Front-End
	Back-End

	Algorithm
	High-Level
	Low-Level

	Conclusion

