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Abstract

Text generation has become one of the most im-
portant yet challenging tasks in natural language
processing (NLP). The resurgence of deep learning
has greatly advanced this field by neural generation
models, especially the paradigm of pretrained lan-
guage models (PLMs). In this paper, we present
an overview of the major advances achieved in the
topic of PLMs for text generation. As the pre-
liminaries, we present the general task definition
and briefly describe the mainstream architectures
of PLMs for text generation. As the core content,
we discuss how to adapt existing PLMs to model
different input data and satisfy special properties
in the generated text. We further summarize sev-
eral important fine-tuning strategies for text gen-
eration. Finally, we present several future direc-
tions and conclude this paper. Our survey aims to
provide text generation researchers a synthesis and
pointer to related research.

1 Introduction

Text generation, which is often formally referred as natural
language generation, has become one of the most important
yet challenging tasks in natural language processing (NLP).
It aims to produce plausible and readable text in human lan-
guage from input data (e.g., a sequence and keywords). Re-
searchers have developed numerous techniques for a wide
range of applications of text generation [Li et al., 2021al.
For example, machine translation generates text in a differ-
ent language based on the source text [Yang et al., 2020al;
summarization generates an abridged version of the source
text to include salient information [Guan et al., 2020].

With the recent resurgence of deep learning, various works
have been proposed to solve text generation tasks based on
recurrent neural networks (RNN) [Li ez al., 2019], convolu-
tional neural networks (CNN) [Gehring er al., 2017], graph
neural networks (GNN) [Li ef al., 2020], and attention mech-
anism [Bahdanau et al., 2015]. One of the advantages of
these neural models is that they enable end-to-end learning
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of semantic mappings from input to output in text generation.
Besides, neural models are able to learn low-dimensional,
dense vectors to implicitly represent linguistic features of
text, which is also useful to alleviate data sparsity.

Despite the success of neural models for text generation, a
major performance bottleneck lies in the availability of large-
scale datasets. Existing datasets for most of supervised text
generation tasks are rather small (except machine transla-
tion). Deep neural networks usually have a large number of
parameters to learn, which are likely to overfit on these small
datasets and do not generalize well in practice.

In recent years, the paradigm of pretrained language mod-
els (PLMs) is thriving [Peters er al., 2018]. The idea is to
first pretrain the models in large-scale corpus and then fine-
tune these models in various downstream tasks to achieve
state-of-the-art results. It is widely recognized that PLMs
can encode a large amount of linguistic knowledge from cor-
pus and induce universal representations of language. There-
fore, PLMs are generally beneficial for downstream tasks
and can avoid training a new model from scratch [Brown
et al., 2020]. Moreover, with the increasing of computa-
tional power and the emergence of Transformer architec-
ture [Vaswani et al., 2017], PLMs have advanced from shal-
low to deep and achieved outstanding performance in many
tasks, such as BERT [Devlin et al., 2019] and GPT [Rad-
ford et al., 2019]. Therefore, researchers have proposed vari-
ous methods to solve text generation tasks based on PLMs.
Pretrained on large-scale corpus, PLMs are able to under-
stand natural language accurately and express in human lan-
guage fluently, both of which are critical abilities to fulfill
the text generation tasks. Existing surveys in this area have
only partially reviewed some related topics. Zaib et al. [2020]
and Guan et al. [2020] provided a synthesis to the research
on some text generation subtasks, i.e., dialogue systems and
summarization, but did not go broader to the other important
generation tasks. Qiu et al. [2020] summarized two gener-
ations of PLMs for the whole NLP domain and introduced
various extensions and adaption approaches of PLMs. To
the best of our knowledge, our survey is the first work that
presents a comprehensive review of PLMs for text generation.
It aims to provide text generation researchers a synthesis and
pointer to related research.

To start with, we first present a general task definition with
the formulations of different text generation tasks in Sec-
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tion 2, and then briefly describe the mainstream architectures
of PLMs that are used in text generation in Section 3. Since
the core of text generation is to model the semantic mappings
from input to output, we further organize the major advances
with respect to the two aspects of input and output in Sec-
tion 4-5. For input, we mainly discuss how to adapt existing
PLMs to different data types. For output, we study how to
satisfy special properties for the generated text. Furthermore,
we summarize several important fine-tuning strategies for text
generation in Section 6. Finally, we present several future di-
rections and conclude this paper in Section 7.

2 Task and Typical Applications

In what follows, we formally define the text generation task.
The core of text generation is to generate a sequence of dis-
crete tokens V = (y1,...,Yj,...,Yn), Where each y; is
drawn from a word vocabulary V. In most cases, text gen-
eration is conditioned on input data, such as attributes, text
and structured data, which is denoted as A’. Formally, the
text generation task can be described as:

According to input X, we next introduce several typical
applications of text generation:

e If X' is not provided or a random noise vector z, this
task will degenerate into language modeling or unconditional
generation task [Radford et al., 2019], which aims to generate
text without any constraint.

* If X is a set of discrete attributes (e.g., topic words, sen-
timent labels), the task becomes topic-to-text generation or
attribute-based generation [Keskar et al., 2019]. The informa-
tion in & plays the role of guiding the text generation process
and controlling the modes of the generated text.

o If X is structured data like knowledge graph or table, this
task will be considered as KG-to-text or table-to-text gener-
ation, called data-to-text generation [Li et al., 2021c]. This
task aims to generate descriptive text about structured data.

e If X is multimedia input such as image and speech, the
task becomes image caption [Xia et al., 2020] or speech
recognition [Fan er al., 2019]. The core of image caption is to
generate a description of an image, while speech recognition
enables programs to process human speech into a text format.

* The most common form of X is also a text sequence,
and there exist several applications such as machine trans-
lation, summarization and dialogue system. Machine trans-
lation [Conneau and Lample, 2019] aims to translate text
from one language into another language automatically, sum-
marization [Zhang et al., 2019b] is focused on generating
condensed summary of a long document, and dialogue sys-
tem [Wolf et al., 2019] is designed to converse with humans
using natural language.

We present the formulations for the major text generations
in Table 1.

3 Standard Architectures for Text Generation

Pretrained language models (PLMs) are pretrained with a
mass of unlabelled text data and can be fine-tuned on down-
stream generation tasks. Pretrained on large-scale corpus,
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Input X Tasks

Random noise Unconditional text generation

Topic-to-text generation

Discrete attributes - -
Attribute-based generation

Structured data Data-to-text generation

Multimedia .
Speech recognition

Machine translation

Text sequence Summarization

|
|
|
|
|
\ Image caption
|
|
|
\ Dialogue system

Table 1: Major tasks and inputs for text generation.

PLMs encode massive linguistic and world knowledge into
vast amounts of parameters, which can enhance the under-
standing of language and improve the generation quality. The
idea of pretraining is inspired by human beings, i.e., we trans-
fer and reuse our old knowledge of what we have learned in
the past to understand new knowledge and handle a variety
of new tasks. In this way, PLMs can successfully perform on
new tasks with their old experience and knowledge.

Owing to the great achievements that Trans-
former [Vaswani et al., 2017] has made, almost all PLMs
employ the backbone of Transformer. For the text generation
tasks, some of PLMs utilize the standard Transformer
architecture following basic encoder-decoder framework,
while the others apply a decoder-only Transformer. Next, we
will introduce these two methods successively.

Encoder-decoder Transformer. A standard Transformer
utilizes the encoder-decoder architecture, which is composed
of two stacks of Transformer blocks. The encoder is fed with
an input sequence, while the decoder aims to generate the out-
put sequence based on encoder-decoder self-attention mech-
anism. Based on aforementioned architecture, models such
as MASS [Song et al., 2019], T5 [Raffel et al., 2020], and
BART [Lewis et al., 2020] have improved quality of the gen-
erated text.

Decoder-only Transformer. Models such as GPT [Rad-
ford et al., 2019; Brown et al., 2020] and CTRL [Keskar
et al., 2019] employ a single Transformer decoder blocks,
which is typically used for language modeling. They apply
unidirectional self-attention masking that each token can only
attend to previous tokens. Besides language modeling, sev-
eral works also utilize the decoder-only achitecture to gen-
erate text conditioned on input text. However, these mod-
els do not have an independent module to encode input se-
quence. Interestingly, they concatenate the input and output
sequence with a special token (e.g., “[SEP]”) and employ a
novel seq2seq masking [Dong et al., 2019] that each token in
the input sentence can attend to each other and generated to-
kens can attend to all input tokens and previous generate ones.
Compared to unidirectional masking, seq2seq masking is a
natural way for decoder-only PLMs to solve conditional gen-
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eration tasks, which is similar to the encoder-decoder archi-
tecture. Raffel et al. [2020] has researched the performance
between the above two methods and made a conclusion that
the addition of an explicit encoder-decoder attention is bene-
ficial.

The core of text generation tasks is to learn the semantic
mappings from input to output. On one hand, different tasks
will correspond to a variety of input data, and we need to
develop special techniques to model different data types. On
the other hand, the generated text should satisfy important
properties in order to cope with different task requirements.
Next, we discuss the recent advances with respect to the two
aspects, i.e., input and output.

4 Modeling Different Data Types from Input

As discussed in Section 2, different text generation tasks usu-
ally involve specific kinds of input. In this section, we will
introduce three main kinds of input for text generation, i.e.,
unstructured input, structured input, and multimedia input,
and discuss how to model these input data in PLMs.

4.1 Unstructured Input

In NLP research, most of studies focus on modeling unstruc-
tured text input (e.g., sentence, paragraph, and document).
To generate satisfactory output text, it requires an excellent
capacity of language understanding beyond surface meaning
of individual words in the input text. Thus, Liu and Lap-
ata [2019] and Zheng and Lapata [2019] employed PLMs
(e.g., BERT [Devlin et al., 2019]) as text encoder for con-
densing text into low-dimensional vectors while preserving
most of its meaning. Compared with traditional shallow neu-
ral models (e.g., CNN), PLMs have a large number of pa-
rameters encoding massive world knowledge, which is po-
tentially beneficial to capture the core meaning of text.

In some cases, the input text might be a long document
consisting of several sentences and paragraphs. For PLMs
trained on sentences or short paragraphs, they are less capa-
ble of accurately modeling long-range dependencies in a doc-
ument. Considering this challenge, Zhang et al. [2019b] and
Xu et al. [2020b] proposed hierarchical BERT to learn inter-
actions between sentences with self-attention for document
encoding. Besides, for capturing inter-sentential relations,
DiscoBERT [Xu er al., 2020a] stacked graph convolutional
network (GCN) on top of BERT to model structural discourse
graphs. By directly operating on the discourse units, Dis-
coBERT retains capacities to include more concepts or con-
texts, leading to more concise and informative output text.

We observe that most recent PLMs are pretrained on En-
glish text. While, many multilingual generation tasks such
as machine translation involve multiple languages and cer-
tain languages are low-resource. This challenge hinders the
wide application of monolingual PLMs to multilingual text
generation tasks. Therefore, Conneau and Lample [2019]
proposed to learn cross-lingual language models (XLMs) for
multilingual language understanding. Based on cross-lingual
PLMs, text generation models can still obtain effective input
word embeddings even in a low-resource language [Wada and
Iwata, 2018].
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4.2 Structured Input

Structured data (e.g., graph and table) is also a critical kind
of input for text generation in many real-world applications
such as weather report generation. However, in real-world
scenario, it is difficult to collect a large amount of labelled
structured data with ground-truth text for training. Since pre-
trained on large-scale corpus, PLMs encode a large amount
of linguistic knowledge and show excellent few-shot capabil-
ities in many tasks. Motivated by this, Chen et al. [2020b] and
Gong et al. [2020] explored incorporating PLMs for data-to-
text generation, especially in few-shot settings.

When applying PLMs to structured data, a major challenge
is how to feed structured data into PLMs, which are originally
designed for sequential text. To adapt to the sequential nature
of PLMs, Ribeiro er al. [2020] and Mager et al. [2020] lin-
earized input knowledge graph (KG) and abstract meaning
representation (AMR) graph into a sequence of triples, Li et
al. [2021b] introduced an additional graph encoder to encode
the input KG, and Gong et al. [2020] employed a template-
based method to serialize input table into text sequence. For
example, the attribute-value pair “name: jack reynolds” will
be serialized as a sentence “name is jack reynolds”. How-
ever, direct linearization will lose the structural information
of original data, which may lead to generating unfaithful text
about data. Thus, in addition to generating faithful text, Gong
et al. [2020] proposed an auxiliary reconstruction task for re-
covering the structural information of input data, which can
enhance the capacity of modeling structural information.

In general, the output text should retain as much as impor-
tant information from structured data. Therefore, to gener-
ate high-fidelity text adhereing to input, the pointer genera-
tor mechanism [See et al., 2017] is adopted to copy words
from input knowledge data [Chen er al., 2020b]. Through
grounding PLMs on external knowledge, it is likely to endow
a generative model with both rich knowledge and good gen-
eralization ability. Besides, Gong et al. [2020] proposed a
content matching loss for measuring the distance between the
information in input data and the output text.

4.3 Multimedia Input

In addition to the above textual data, several attempts have
been made to take as input multimedia data (e.g., image,
video, and speech) such as image caption and speech recog-
nition. Both VideoBERT [Sun e? al., 2019b] and CBT [Sun
et al., 2019a] conducted pretraining for the video caption
task. While, they performed pretraining only for the BERT-
based encoder to learn bidirectional joint distributions over
sequences of visual and linguistic tokens. So they have
to train a separate video-to-text decoder, which tends to
cause a pretrain-finetune discrepancy. In contrast, Unified
VLP [Zhou et al., 2020] used a shared multi-layer Trans-
former network for both encoding and decoding. Following
UniLM [Dong e al., 2019], they pretrained the model on two
masked language modeling (MLM) tasks, like cloze tasks de-
signed for sequence-to-sequence LM. Inspired by generative
pretraining objectives in GPT, Xia et al. [2020] proposed a
cross-modal pretrained model (XGPT) by taking images as
inputs and using the image caption task as the basic genera-
tive task in the pretraining stage.
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Besides image and video, speech recognition is also hun-
gry for human-transcripted supervised data. So a number of
unsupervised and semi-supervised methods are developed to
integrate PLMs for weakly-supervised learning. For exam-
ple, Fan et al. [2019] proposed an unsupervised approach to
pretraining encoder-decoder model with unpaired speech and
transcripts. Two pretraining stages are used to extract acous-
tic and linguistic information with speech and transcripts,
which is useful for downstream speech recognition task.

5 Satisfying Special Properties for Qutput
Text

In different text generation tasks, the generated text should
satisfy several key properties. In this section, we will intro-
duce three key properties in text generation, i.e., relevance,
faithfulness, and order-preservation.

Relevance. According to the linguistic literatures [Li er al.,
2021c], in text generation, relevance refers that the topics
in output text is highly related to the input text. A repre-
sentative example is the task of dialogue systems, which re-
quires the generated response to be relevant to the input di-
alogue history. In addition to the dialogue history, a con-
dition corresponding to the type of response might be also
provided as an external input such as the topic of response
and the persona of speaker. The generated responses should
also be relevant to the condition. Recently, due to the ab-
sence of long-term memory, RNN-based models still tend to
generate irrelevant output text and lack consistency with in-
put. Therefore, through applying PLMs to the task of dia-
logue systems, TransferTransfo [Wolf et al., 2019] and Di-
aloGPT [Zhang er al., 2020] were able to generate more rel-
evant and context-consistent responses than traditional RNN-
based models. Furthermore, to generalize to various types
of conditions, Zeng and Nie [2020] utilized elaborated con-
dition blocks to incorporate external conditions. They used
BERT for both encoder and decoder by utilizing different in-
put representations and self-attention masks to distinguish the
source and target sides of dialogue. On the target (generation)
side, a new attention routing mechanism is adopted to gener-
ate context-related words. Similar approaches have been used
in non-conditioned dialogue [Bao et al., 2020].

Faithfulness. Similarly, faithfulness is also a critical prop-
erty of text, which means the content in generated text should
not contradict the facts in input text. Sometimes, it further
means the generated text is in accord with the world facts.
A representative example is the task of text summarization,
which aims to generate faithful text representing the most im-
portant information within the original content. Pretrained
on large collections of text, PLMs are potentially beneficial
to generate faithful text by utilizing background knowledge.
Rothe er al. [2020] experimented with a large number of set-
tings to initialize the encoder and decoder with three out-
standing PLMs, i.e., BERT, GPT and RoBERTa. With pre-
training, the models are more aware of the domain character-
istics and less prone to language model vulnerabilities. Con-
sequently, they are more confident in predicting tokens from
the document, hence, improving faithfulness. To improve the
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level of faithfulness of summary, Kryscinski et al. [2018] pro-
posed to decompose the decoder into a contextual network
that retrieves relevant parts of the source document and a
PLM that incorporates prior knowledge about language gen-
eration. Also, to generate faithful text in different target do-
mains, Yang et al. [2020b] fine-tuned PLMs on target do-
mains through theme modeling loss. The role of the theme
modeling module is to make the generated summary seman-
tically close to the original article.

Order-preservation. In NLP area, order-preservation de-
notes that the order of semantic units (word, phrase, etc.)
in both input and output text is consistent. The most repre-
sentative example is the task of machine translation. When
translating from source language to target language, keep-
ing the order of phrases consistent in source language and
target language will ensure the accuracy of the translation
results to some extent. One line of research to achieve
the order-preservation property is to perform semantic align-
ment in machine translation. Yang et al. [2020a] proposed
Code-Switching Pre-training (CSP) for machine translation.
They extracted the word-pair alignment information from the
source and target language, and then applied the extracted
alignment information to enhance order-preserving. Besides,
it is more common to perform translation across multiple
languages, called multilingual machine translation [Conneau
and Lample, 2019]. However, little work can effectively en-
hance order-preservation for any pairs of languages. Thus,
Lin et al. [2020] proposed mRASP, an approach to pretrain-
ing a universal multilingual machine translation model. The
key to mRASP is the technique of randomly aligned substi-
tution, which enforces words and phrases with similar mean-
ings across multiple languages to be aligned in the representa-
tion space. Also, Wada and Iwata [2018] focused on aligning
word representations of each language, making it possible to
preserve the word order consistent cross multiple languages.

6 Fine-tuning Strategies for Text Generation

For text generation with PLMs, a key factor is how to design
suitable fine-tuning strategies. In this part, we review several
commonly-used fine-tuning strategies from different views.

6.1 Data View

When applying PLMs to text generation tasks especially in a
new domain, how to design suitable and effective fine-tuning
strategies adapting to the characteristics of new domain is an
important consideration.

Few-shot Learning. In many text generations, it is difficult
and expensive to obtain sufficient annotated data. Owing to
the success of pretraining, PLMs can encode massive linguis-
tic and world knowledge, which provides an effective solution
to data scarcity. A commonly adopted approach is to plug the
existing module with pretrained parameters. Then we fine-
tune it with a few, one, or even no examples for the studied
task, which are so-called few-shot, one-shot and zero-shot,
respectively. For example in multilingual translation, some
low-resource languages lack sufficient parallel corpus. XLM
[Conneau and Lample, 2019] proposed to learn cross-lingual
language models and can leverage the knowledge learned
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Data | Categories | Methods
BERT acts as text encoders [Liu and Lapata, 2019; Zheng and Lapata, 2019],
Unstructured | hierarchical PLMs for document modeling [Zhang er al., 2019b; Xu et al., 2020b], and cross-
lingual PLMs for multilingual input text [Conneau and Lample, 2019; Wada and Iwata, 2018].
Input Linearize KG and AMR graph as triple sequence [Mager er al., 2020; Ribeiro ef al., 2020],
Structured graph encoder for encoding KG [Li et al., 2021b], and serialize table into template-based
text sequence [Gong et al., 2020].
. . Video caption [Sun et al., 2019b; Sun et al., 2019al, image caption [Xia et al., 2020],
Multimedia .
and speech recognition [Fan et al., 2019].
Fine-tune PLMs in dialogue systems for generating more relevant and context related responses
Relevance [Wolf et al., 2019; Zhang et al., 20201, and generalize to any type of input conditions based on
BERT [Zeng and Nie, 2020].
Output Improve faithfulness with several PLMs [Rothe et al., 20201, retrieve relevant parts from input
Faithfulness | and incorporate prior knowledge of PLMs [Kryscinski ef al., 2018], and generate faithful text in
different target domains through theme modeling loss [Yang et al., 2020b].
Order- Word-pair alignment [Yang ef al., 2020al, a universal multilingual machine translation model
preservation | [Lin et al., 2020], and word representation alignment [Wada and Iwata, 2018].

Table 2: Categories of input types and output properties for text generation.

in high-resource languages to low-resource languages. Us-
ing the method proposed in Section 4, few-shot learning can
also be applied in data-to-text tasks, such as table-to-text
generation[Chen ef al., 2020b; Gong et al., 2020] and KG-to-
text generation[Li et al., 2021b]. Chen er al. [2020b] directly
fed GPT-2 with a small amount of serialized attribute-value
pairs and Gong et al. [2020] further applied multiple tasks to
better leverage structured information of tables. Moreover,
Li et al. [2021b] proposed representation alignment to bridge
the semantic gap between KG encodings and PLMs in order
to enhance the correspondence between KG and text.

Domain Transfer. Equipped with vast amounts of parame-
ters and pretrained on large-scale corpus, PLMs have pow-
erful generalization capability. However, they still cannot
directly adapt to new domains with large distribution dis-
crepency from pretraining domain [Hendrycks et al., 2020].
An effective solution is to continue training PLMs on spe-
cific data with pretraining objectives before fine-tuning them
on target tasks. Mask prediction is a widely used method,
attempting to predict the masked tokens using the remaining
ones. There exist several variants of masking ways in domain
transfer. Zeng and Nie [2020] proposed TF-IDF based mask-
ing to select more condition-related tokens to mask, in order
to focus on domain features. Document masking is usually
utilized in summarization task to capture document-level fea-
tures of long documents [Zhang et al., 2019b].

6.2 Task View

Besides characteristics of new domains, it is also meaningful
to consider some special concerns such as language coher-
ence and text fidelity in specific generation tasks when fine-
tuning PLMs.

Enhancing Coherence. To enhance the language coher-
ence, an important approach is to better model language con-
text during fine-tuning. Models fine-tuned by contrastive
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learning are good at distinguishing whether a sentence pair
is similar or not. Through this method, PLMs are forced to
understand the positional or semantic relationship between
two sentences, so that they can derive better representations.
Next sentence prediction (NSP) is a commonly adopted way
to judge whether two input sentences are consecutive seg-
ments, which can be applied to summarization [Yang et al.,
2020b] and dialog system [Wolf ef al., 2019]. Zheng and La-
pata [2019] proposed to rearrange the sentence order accord-
ing to their semantic similarities. CBT [Sun et al., 2019a]
proposed noise contrastive estimation (NCE) in cross-modal
training to encourage the model to identify the correct video-
text pair compared to a set of negative distractors. Denois-
ing autoencoding (DAE) takes the corrupted text as input and
aims to recover the original text. The model fine-tuned with
DAE has a strong ability to understand the overall sentences
and capture longer-range correlations. For example, TED
[Yang et al., 2020b] utilized DAE to refine essential seman-
tic information for abstractive summarization. XGPT [Xia
et al., 2020] attempted to model the underlying text-image
alignments using image-conditioned denoising autoencoding
(IDA), in order to force the model to reconstruct the whole
sentence.

Preserving Fidelity. Text fidelity refers that how the gen-
erated text adheres to the original input information, which is
an important aspect to consider in many text generation tasks.
The universal structure in PLMs is unable to retain the text fi-
delity in specific text generation tasks. For the table-to-text
generation task, the structure information of table is required
to be encoded. Gong er al. [2020] proposed to utilize multi-
task learning, in order to reconstruct from table embeddings
and enforce the match between table embeddings and content
embeddings. Besides, the pointer generator [See et al., 2017]
can be applied to KG-to-text generation to copy the entity and
relation information in KG [Chen et al., 2020b].
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6.3 Model View

To enhance the quality of generated text, a key is to well train
the parameters of PLMs according to task-specific data, so
that PLMs can capture the semantic characteristics specially
for the generation task. However, as mentioned above, task-
specific data is inadequate, thus it is likely to occur the over-
fitting case when fine-tuned on limited data. In this part, we
will introduce several fine-tuning methods in view of models.
Gu et al. [2020] employed a fixed teacher GPT to preserve
the knowledge encoded in another fine-tuned GPT. Chen et
al. [2020a] proposed to utilize a BERT model (teacher) as
supervision to guide the Seq2Seq model (student) for better
generation performance. Besides, Liu and Lapata [2019] uti-
lized two optimizers to update the parameters of PLM and
initial module separately, in order to solve the discrepancy
between two modules. There also exist other ways to guide
the fine-tuning process. For example, Reinforcement learning
can be applied to directly guide models by non-differentiable
metrics [Zhang er al., 2019al, such as ROUGE. Zhao et
al. [2020] utilized curriculum learning to let the model learn
from easy documents to hard documents. Moreover, DI-
ALOGPT [Zhang er al., 2020] implemented a maximum mu-
tual information (MMI) scoring function to alleviate generat-
ing bland, uninformative responses.

7 Conclusion and Future Outlooks

This paper presents an overview of the recent advances
achieved in pretrained language models for text generation.
We mainly summarize the extensions of PLMs in modeling
different data types in input and satisfy special text proper-
ties in output. We also discussed several useful fine-tuning
strategies for text generation.

To advance this field, there are several promising future
directions for applying PLMs to text generation.

Model Extension. Although various extensions have been
proposed in Section 3, there still exist discrepancies between
pretraining and downstream generation tasks. For example,
the “[MASK]” token in pretraining stage will not be used in
fine-tuning stage, which further aggravates the pretraining-
finetuning discrepancy. Thus, it further desires to design an
appropriate pretraining paradigm for text generation. More-
over, incorporating external knowledge into PLMs during
pretraining has been shown to be effective [Zhang er al.,
2019c], and it is promising to investigate how to inject related
knowledge for text generation.

Controllable Generation. Controllable text generation
with PLMs is an interesting direction but still at a very early
stage. Controlling some attributes of the generated text has
many useful applications such as generating positive response
to patients with depression in dialogue systems. However,
PLMs are usually pretrained in universal corpus, which is
difficult to control the multi-grained attributes of the gener-
ated text (e.g., sentiment, topic, and coherence). Keskar et
al. [2019] has explored text generation with control codes that
govern style, content and task-specific behavior. While, these
control codes are preset and coarse-grained. Future work can
explore multi-grained control and develop PLMs that are suf-
ficiently steerable.

Model Compression. Although PLMs with large-scale pa-
rameters have achieved success in text generation, these mod-
els are challenging to be deployed in resource constrained
environments. As a result, it is meaningful to study how
to achieve competitive performance with a small number of
parameters. Several methods have been proposed to com-
press PLMs, such as parameter sharing [Lan et al., 2020] and
knowledge distillation [Sanh et al., 2019], whereas most of
them focused on BERT-based models, and little attention has
been paid to compressing PLMs for text generation.

Fine-tuning Exploration. The direct intention of pretrain-
ing is to distill the linguistic knowledge learned in PLMs to
downstream generation tasks. And, fine-tuning is the pre-
dominant transfer method at present. There could be vari-
ous ways to transfer knowledge from PLMs to downstream
models. For example, Chen et al. [2020a] exploited knowl-
edge distillation by adopting BERT as teacher model and a
vanilla RNN generation model as student model. Through
this method, the linguistic knowledge of BERT can be dis-
tilled into the downstream model.

Language-agnostic PLMs. Nowadays, almost all the
PLMs for text generation are mainly based on English.
These PLMs will encounter challenges when dealing with
non-English generation tasks. Therefore, language-agnostic
PLMs are worthy to be investigated, which need to capture
universal linguistic and semantic features across different lan-
guages. An interesting direction is how to reuse existing
English-based PLMs for text generation in non-English lan-
guages.

Ethical Concern. Currently, PLMs are pretrained on large-
scale corpus crawled from the web without fine-grained fil-
tering, potentially causing ethical issues such as generating
private content about users. Therefore, researchers should try
their best to prevent misusing PLMs. For this purpose, we
can follow the key steps provided by Ross [2012], such as
identifying threats and potential impacts and assessing likeli-
hood. Besides, the text generated by PLMs might be preju-
diced, which is in line with the bias in training data along the
dimensions of gender, race, and religion [Brown et al., 2020].
Hence, we ought to intervene PLMs for preventing such bi-
ases. The research on the general approach is extensive but
still preliminary for PLMs.
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