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Abstract

Fine-grained entity typing (FET) aims to annotate
the entity mentions in a sentence with fine-grained
type labels. It brings plentiful semantic information
for many natural language processing tasks. Exist-
ing FET approaches apply hard attention to learn
on the noisy labels, and ignore that those noises
have structured hierarchical dependency. Despite
their successes, these FET models are insufficient
in modeling type hierarchy dependencies and han-
dling label noises. In this paper, we directly tackle
the structured noisy labels by combining a forward
tree module and a backward tree module. Specif-
ically, the forward tree formulates the informative
walk that hierarchically represents the type distri-
butions. The backward tree models the erroneous
walk that learns the noise confusion matrix. Empir-
ical studies on several benchmark data sets confirm
the effectiveness of the proposed framework.

1 Introduction

Fine-grained Entity Typing (FET) [Ling and Weld, 2012]
aims at assigning proper fine-grained type labels for entity
mentions in a sentence. The finely annotated mention type is
often utilized to facilitate many downstream natural language
processing (NLP) tasks, such as question answering [Dong
et al., 2015], semantic parsing [Yavuz et al., 2016] and in-
formation extraction [Koch er al., 2014; Ling et al., 2015;
Schiitze et al., 20171.

Existing FET models face two challenges: modeling the
type hierarchy dependency and reducing the label noise. Type
hierarchy (or Taxonomy) is a natural and practical structure
that used to organize the type labels (Concepts). Figure 1 il-
lustrates a type hierarchy sampled from a FET data set. In the
figure, type PERSON and its three sub-types ACTOR, AU-
THOR and DIRECTOR form a hierarchical structure. Sev-
eral methods have been presented to model the type hierarchy
dependency, including hierarchically embedding method [Ma
et al., 2016], heuristic normalization loss [Xu and Barbosa,
2018] and hierarchical structure loss [Murty et al., 2018].
However, these models are limited by: (1) only modeling the
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Figure 1: A type hierarchy sampled from the data set. The root node
in the tree denotes mention Demi Lovato in the sentence “Don’t
Forget” is the third and final single released from Demi Lovato’s
debut album. 1t is labeled as PERSON, PERSON.ACTOR, PER-
SON.ARTIST and ORGANIZATION.

parent-child relation, ignoring other relaitons (e.g. sibling).
(2) using the same bilinear matrix or penalty hyper-parameter
to model the correlations between different subtypes and their
parent types. The AFET model [Ren et al., 2016] attempts to
tackle these limitations by utilizing adaptive margins between
types. The margin of two types is computed through their nor-
malized number of shared entities in Knowledge Graph (KG).
Nonetheless, the incompleteness and noisy annotations of KG
may make those margins unreliable.

Label noise comes with the unreliable data acquisition pro-
cesses such as distant supervision (DS) method [Mintz et al.,
2009]. The DS method assigns all the possible types of the
entity for its mentions in the corpus. However, an entity men-
tion may belong to different types in different contexts. As
is shown in Figure 1, the phrase Demi Lovato may refer to
PERSON in a general sense, and refer to PERSON.ARTIST
in a specific sense. But type ORGANIZATION can not be
inferred from the given sentence, thus turns to a noisy type.
Such noisy types may degrade the performance of the FET
models. Although various approaches [Ren et al., 2016;
Abhishek et al., 2017; Xu and Barbosa, 2018; Zhang et al.,
2020] have been proposed to handle these noises, they ig-
nore the fact that the noisy labels are structural. For in-
stance, (PERSON.ACTOR, PERSON.SINGER) is a set of
fine-grained types, where PERSON is in a higher level, and
ACTOR/SINGER are in a lower level. NDP [Wu et al.,
2019] considers such structural information by assigning type
weights through random walking in the mention level. How-
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ever, it provides too much freedom in learning, thus may po-
tentially risk over-fitting.

In this paper, we present a novel FET framework that
jointly model the hierarchical dependency and the label
noises of the types. This framework consists of a forward
tree module (FTree) and a backward tree module (BTree). For
modeling type hierarchical dependency, we first transform the
pre-defined type hierarchy into the normalized type hierarchy
that each leaf node represents a valid type. Then, the FTree
module is proposed to compute the distribution of the type
labels through random walking on the type hierarchy.

To model the label noises in other research topics, previous
works [Schiitze er al., 2017; Luo et al., 2017; Goldberger and
Ben-Reuven, 2017] learn the transformation from the true la-
bels to the observed labels. However, these models ignore the
inherentent hierarchical structure. We provide an alternative
that parameterizes this transformation via the random walk
process on the type hierarchy tree. we formulate the pertur-
bation process with the BTree module. It learns the transfor-
mation from the latent true labels to observed noisy labels by
backward random walking on type hierarchy. It parametrizes
the confusion matrix of the type labels under the assumption
that a label is likely to be perturbed into its nearby label in the
tree. This approach puts an additional constraint on the con-
fusion matrix according to the structure of the type hierarchy,
thereby restricting the model capacity.

The empirical studies confirm the capability of our model
in modeling the type hierarchy and discovering the true labels
from the noisy data. The extensive ablation studies verify the
effectiveness of each component of our model.

2 Related Work

2.1 Hierarchical Type Modeling

The most earlier models ignore the type hierarchy and treat
this problem as a multi-label classification task [Ling and
Weld, 2012; Yogatama et al., 2015; Abhishek et al., 2017].
Recently, some studies [Yosef ef al., 2012; Ren et al., 2016;
Shimaoka et al., 2017; Xu and Barbosa, 2018; Murty et al.,
2018; Chen et al., 2020] have made efforts to explicitly model
the correlation among hierarchical types. These models, al-
though demonstrating some successes, rely on additional loss
function constraints and some heuristic procedures to walk
along the type hierarchy to find the predicted type. In this
paper, we propose a generic method that directly models the
hierarchical structure without additional steps for inferring or
loss functions for model training.

2.2 Label Noise Handling

Various methods have been proposed to deal with noisy train-
ing samples. Specifically, [Gillick et al., 2014] refined the
training data by applying a set of heuristics. This method,
however, reduces the size of the training set and leads to per-
formance degradation, as seen in [Ren et al., 2016].
Recently, many methods have been proposed to avoid
the deletion of training samples or pruning type hierarchy.
Some works [Yogatama et al., 2015; Ma et al., 2016] treat
clean and noisy entity mentions equally and utilize rank-
ing loss to attenuate the effects of extraneous labels. How-
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ever, some studies [Ren et al., 2016; Abhishek et al., 2017;
Xu and Barbosa, 2018] deal with the problem by model-
ing noisy and clean entity mentions separately and force the
model to choose the most relevant type as the true label for
noisy samples during the training process. NDP [Wu et al.,
2019] proposed to weight out the noisy type during the train-
ing process. NFETC-AR [Zhang er al., 2020] directly esti-
mated the pseudo-truth type distribution from noisy type dis-
tribution by minimizing the KL-divergence.

Although existing models have shown effectiveness in han-
dling label noise, the noise detection and the hierarchical clas-
sification are modeled separately. In addition, the cleaned
data should be feed-backed to the original model to improve
the model trained from the noisy data. We argue, in this paper,
these facts should be considered when building FET models.

3 Model

3.1 Problem Definition

In this section, we formally describe the fine-grained entity
typing (FET). Given a pre-defined type label set with a hier-
archical structure 7" and training data D = {(s;,m;, 7;),% €
{1,2,---, N}}, where s; denotes a sentence, m; represents
an entity mention, and 7; denotes the noisy type label set. The
objective of the FET task is to train a predictive model on D
that is capable of predicting the true type for any sentence-
mention pair (s, m), despite the fact that D is noisy.

For convenience, we denote a (s,m) pair by random vari-
able X, and denote the true label by random variable Y.

3.2 Sketch of Overall Model

Overall our proposed model assumes the following genera-
tive process from X to Z. Assume that a random walker is to
walk on the type hierarchy tree 7" from the root. It assumes a
probabilistic walk strategy generated from X. Following the
strategy, at each node of T, it may keep going down along
a downstream branch or may choose to stop. Whenever it
stops, the node it lands on is the true type Y. We will call this
walk “informative walk”.

But the true type Y can not be directly observed. It then
assumes another random walk strategy. At each node of T,
it may walk along any direction (even going back) or choose
to stop following this strategy. The node it stops at is then
the observed noisy type Z. We will call this walk “erroneous
walk”. The process of informative walk and erroneous walk
is formulated as follows:

Pz x(z|z) = Z Pz v x (2ly, ) Py x (y|z) ey
yeT

In this paper, we assume the erroneous walk process is in-
dependent with input sentence z, we have

Pz x(z|z) = Z Pz v (2]y) Py x (ylz) 2)
yer

Note that the move from the true type Y to the noisy label Z
can be aggregated to a transition matrix (also called confu-
sion matrix) A. Choosing a strategy for the erroneous walk is
equivalent to parameterizing the matrix A. Then we can get:
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Figure 2: Left: The Feature Embedding process. Middle: An example of Forward Tree. Right: An example of Backward Tree construction

where Py |x(-|z) is the conditional distribution of Y given
X = x written as a vector, and Pz x (-|z) is defined as simi-
larly. We postpone defining the loss function later.

To define and implement this model, we first introduce a
“normalized type hierarchy” from previous work [Wu er al.,
2019] on which informative walk and erroneous walk can be
interpreted as walking forward and walking backward.

3.3 Normalized Type Hierarchy

Let 7" denotes the type hierarchy of the given entity mention.
Each node in T" denotes a token from a type name. For ex-
ample, an entity mention could belong to PERSON or PER-
SON.ACTOR, where these types are in the different levels of
the hierarchy 7'. Thus, models must take necessary measures
to predict the proper grained type. In this paper, we use the
same normalized type hierarchy as the previous work [Wu et
al., 2019]. Specifically, we transform a hierarchical structure
T into the normalization type hierarchy 7 by adding a stop
node as the child of each non-leaf node. For example, after
type hierarchy normalization, node PERSON T’ is followed
by a new node PERSON.PER-STOP, as shown in the middle
picture of Figure 2. Normalizing type hierarchy allows every
type being mapped to a unique leaf node in 7, thus maintains
the information of the original type in its hierarchy level.

For later use, we denote a node in the normalized type hi-
erarchy as u € T, and denote a type as ¢t. Each type ¢ is a path
from the root to a leaf node in 7. From here on, whenever we
speak of a type, we refer to its leaf-node representation in 7.

3.4 Feature Embedding

Give the (s, m) pair, we utilize the neural network proposed
in NFETC [Xu and Barbosa, 2018] to extract the feature em-
bedding (s, m) as described in the following.

Given the entity mention m = {wp,--- ,w,}, the aver-
age feature m is the average word embedding of the word in
m. Moreover, the LSTM is applied to the extended men-
tion m* = {wp_1,---, w41} and generates the outputs
{hp=1,--+ ,hey1}. The last output hyt4 is regarded as the

LSTM representation h(m) of m.
The Bidirectional LSTM combined with a word-level at-
tention module is applied to the context sequence ¢ =

{wp—k,- -+ ,weyr} to generate the context feature h(c),
where k is the context window size.

Then, the final feature embedding is the concatenation of

the above three features: = = (s, m) = [m, h(m), h(c)].

3.5 Modelling Informative Walk

During the informative walk, the random walker starts walk-
ing from the root node and is allowed to only stop on a leaf
node. For each node u € T, we define its token embedding
as T € R%*! Then we measure the similarity between an
input x and a node w via a score function

Pz, u) =2 ' Wa 4)

where W € R% *4u denotes a trainable matrix.

To compute the weights of edges in 7, we introduce a nota-
tion H,, to denote the set of all child nodes of node ¢ together.
Then the probability of the informative walker walking from
a father node u; to a child node u; is calculated as

(a:) e¢(w’uj)
q (u]|ul) = ZukEH A ed(z,ur) )

Given a type path t = {ug,u1,- - ,ur}, we then define the
the probability of the walker arriving at ¢ given z as

L

P () == [ ¢ (wilwi-1) (©6)

i=1

where L is the depth of 7 and wg is the root node. Then

the true probability of type distribution given the input zx is
defined as:

Pyix(|z) = [p@(t1), - 0@ (1)) )

where J denotes the number of all types.
The informative-walk component is referred to as “For-
ward Tree” or FTree.

3.6

We next describe the “backward tree” or BTree, which mod-
els the perturbation process using the erroneous walk. It ap-
proximates the confusion matrix A that transforms the true
labels Y to the noise label Z.

Modelling Erroneous Walk

3952



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Backward Tree Construction

The backward tree is constructed for every type to explicitly
modeling backtracking trace from a leaf node to another leaf
node. Figure 2 shows a backward tree for a random walker
starting from the leaf token of type path “PERSON.ACTOR”.

The root of backward tree for type ¢; = {ug,i)7 e ,u(Li)}

is the leaf token u%). For convenience, we virtually add a
blue square token to denote keeping staying in this leaf token.
When the random walker lands on a leaf token, it has only two
choices, staying there or back-walk to its parent token. When
it goes back to its parent, in the next step, it can continue to
go back to the parent token or a child token of the current
token until reaching the leaf token u(Lj). This process models
the type perturbation from type ¢; to type ;.

There are five types of backtracking edges: (1) The edge
from the starting token to a square token; (2) The edge from
a token to its father token; (3) The edge from a token to its
child token, (4) the edge from the level 1 token (such as PER-
SON) to another level 1 token (such as ORGANIZATION)
through dummy token and (5) The edge from a non-starting
leaf token to a square token. For each type of backtracking
edge, we use a learnable parameter to describe the tendency
that the random walker walking through this edge. Specifi-
cally, as shown in the right picture of Figure 2, the parameter
of the first four types of backtracking edges are S, F, C, and
M, and we fix this probability for the fifth edge as one to re-
strict a random walker from backtracking again. Note that for
the level 1 type token (such as PERSON, ORGANIZATION),
its father token is a dummy token which has no correspond-
ing type token. It forces the random walker not to stop and
continue walking to one of its children tokens.

Type Confusion Matrix Generation
The backtracking process can be expressed as a type confu-
sion matrix A € R7*”_ where .J is the number of all types.
To model the confusion between type ¢; and ¢;, we imagine an
erroneous walker on the backward tree 7; starts from type t;’s
leaf node and stop on ;’s leaf node. The probability of the
erroneous walker lands on ¢; leaf token is exactly the element
A;; in the confusion matrix A. To compute A;;, we define
the probability of the erroneous walker which starts from u(Ll)
walking through edge r(u,’, u;/) from a father node u; to a
child node ;- is calculated as:
o — el
7-(ui/,uj/) Zue’}{z_/ efcy.(ui,,u)

where Hgi, denotes the set of all child nodes of node u;, and
Kr(uyu) € {F® c® s(®) M) 1} denotes the weight that
erroneous walker of type ¢; chooses edge r(u;,u). These
weight parameters are randomly initialized and updated dur-
ing training. The confusion probability between type ¢; and
type t; is then defined as:

A= ][ o ©)

TER;

®)

where I;_, ; denotes the edge set from type ; to type ¢;. Sim-
ilarly, we can get the confusion probabilities among all types.
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Datasets Wiki (FIGER) OntoNotes BBN
#Type hierarchy depth 2 3 2
#Type tokens 177 141 63
#STOP tokens 49 52 16
#Leaf types 128 89 47
#Training ment 2.69M 220,398 86,078
#Test ment 563 8,963 12,845
%Noisy training ment 3542 274 24.08
%Noisy test sent 11.72 6.23 0
Table 1: Statistics of datasets
The whole confusion matrix is computed as:
A= A +ex1y (10)

where the parameter € € (0, 1) is a hyper-parameter that re-
stricts the the training process from over-fitting.

So far, Pz x is well defined through Equation 3. It is
noteworthy that the confusion matrix generated by BTree is
highly constrained and independent from the FTree. Apart
from FTree, it can be applied to other mention-to-type com-
patibility models.

3.7 Loss Function

With Py x defined via the FTree and Py or (matrix A) de-
fined by BTree, the model is naturally optimized by minimiz-
ing the negative log-likelihood of the training set. We define
the loss function as follows:

N
LzzflogPZ‘X(z*\mi) (11)

=1

where z; = argmax.c,, Pz x(z|r;) and N is the total
training sample numbers. When Y is completely hidden the
model, such a loss is non-identifiable, and there are uncount-
able solutions for Py |x that will equally minimize the loss.
To fix this, we proposed following revision of loss function:

L= —log Pyx(zlai) + Y —log Pyix(yilzi) (12

iEN i€C

where N denotes the noisy training sample set, in which
training example may have been labeled with more than one
type, and C denotes the clean training sample set that means
a training example is labeled only with one type, y; is the
only type label in clean type set 7;. In this loss function, we
essentially have assumed that the examples in C have clean
labels. In the other words, we assume that the sample with
only one type path is labeled with the true type. This will al-
low the model to anchor the solution of Py-|x around those
compatible with the examples in C.

3.8 Type Inference

In the training process, we jointly train the FTree and BTree.
We denote the joint model of FTree and BTree by FBTree.
During type inference, we directly utilize the type probability
distribution of FTree as the predictive probability. The type ¢
with the highest probability is then declared as the true type.
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Model Wiki OntoNotes BBN
Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1
AFET 533 69.3 66.4 55.1 71.1 64.7 67.0 72.7 73.5
ABH 65.8 81.2 774 52.2 68.5 63.3 60.4 74.1 75.7
NFETC 56.2 4+ 1.0 772409 743+1.1 54.8+04 T71.8+04 65.0+04 | 73.8+£0.6 78.4+0.6 78.94+0.6
NFETC-hier 68.9 4+ 0.6 81.9+0.7 79.0 £ 0.7 60.2 + 0.2 76.4 +0.1 70.24+0.2 73.9+1.2 788 +1.2 79.44+1.1
NDP 67.7 81.8 78 58 71.2 64.8 72.7 76.4 777
MLL2R (exclusive) 69.1 82.6 80.8 58.3 72.4 67.2 48.2 63.2 61.0
MLL2R (undefined) 65.5 80.5 78.1 58.7 73.0 68.1 75.2 79.7 80.5
NFETC-AR 58.1+ 1.1 79.0+04 76.1+04 | 6284+04 77.8+0.4 71.8+0.5 76.7+0.2 814+0.3 81.54+0.3
NFETC-AR-hier 70.1+09 83.2+0.7 801+06 | 64.0+03 788+03 73.0+£03 | 749+06 804+0.6 80.3+0.6
FTree 68.5+09 823+04 794403 | 620+04 77.5+0.3 T71.44+0.3 75.54+0.2 804+0.2 80.7+0.2
FBTree 70.7+1.2 83.7+09 809+09 |640+01 784+02 725+02 |77.3+04 820+03 82.2+0.3
Table 2: Performance of FET models on Wiki, OntoNotes and BBN datasets
Hyper-parameter | Wiki  OntoNotes = BBN 80[ 67577 737475 ma7a] s 6T s
Learningrate | 00002  0.0006  0.0007 o e 0
Batch size 512 512 512 E o 2 ' 2
Hidden size 180 440 180 20 0 HH " 191921
L2-loss weight {le-4,2¢-4,3e-4} . . . HHH
€ {0. 1 ’0.2’03’04’05} ‘Wiki OntoNotes BBN Wiki OntoNotes BBN OntoNotes
Pos emb size 85 70 20 [IsNFETC-hier 1o FTree 10 FBuree | [WNFETC-hier 11 FTree i FBuree | [1INFETC-hier i FTree 1o FBree |
Table 3: Hyper-parameters for our proposed model (a) Level 1 (b) Level 2 (c) Level 3

4 Experiment

4.1 Datasets and Settings

Three benchmark datasets, Wiki, OntoNotes, and BBN are
used to evaluate our proposed models. We utilize the pre-
processed data set provided by [Ren er al., 2016]. Following
the standard protocol adopted in the previous works [Ren et
al., 2016; Abhishek et al., 2017; Shimaoka et al., 2017], we
split 10% instances from each test set as the validation set.
Table 1 shows the statistics of the three datasets. As shown
in Table 1, nearly 30% of the training samples contain noisy
labels among all datasets.

In our implementation, Glove embedding [Pennington et
al., 2014] is exploited to initialize the word embeddings
and they are fixed during the training process. We utilize
Adam [Kingma and Ba, 2014] as the model optimizer. An
early-stop strategy is employed to terminate training when
the loss on validation set is stable. Dropout [Srivastava et
al., 2014] and L2 regularization are used to alleviate over-
fitting. We determine the optimal hyper-parameters by ran-
dom search on the valid dataset. The main hyper-parameters
are shown in Table 3. Different datasets may set different
hyper-parameters because they vary in structures and scales.

4.2 Predictive Comparison

We compare our proposed model FTree, FBTree with various
recent FET models: ATTN [Shimaoka et al., 2017], ABH,
ABH-AIIC [Abhishek et al., 2017], NFETC [Xu and Bar-
bosa, 2018], NDP [Wu et al., 2019], NFETC-AR [Zhang et
al., 2020] and MLL2R [Chen et al., 2020]. We take the eval-
uation results of these baselines from their original papers.
Three standard metrics [Ling and Weld, 2012], Accuracy
(Acc), Micro-averaged F1 (Mi-F1) score and Macro-F1 (Ma-
F1) score, are used to evaluate the performance of models.
The overall performances are presented in Table 2, where
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Figure 3: Performance of different level types on three test data sets

the best value is highlighted in bold. We observed that our
FBTree model outperforms all compared models on Wiki and
BBN and achieves comparable performance with the SOTA
model on OntoNotes. These results are desirable as we note
the following. The testing set of BBN is considered noiseless,
or as the true type probability. But the testing sets of Wiki and
OntoNotes are in fact noisy, somewhat inconsistent from the
ground truth. This makes our model perform better on BBN.

It is worth noting that adding BTree module can signifi-
cantly improve the performance of the FTree module. It also
achieves more stable performance across all datasets than all
other models.

4.3 Performances at Different Levels of Type
Hierarchy

We further investigate the performances of the compared
models at each level of the type hierarchy. The depth of type
hierarchy for Wiki, OntoNotes, and BBN are 2, 3, and 2. The
results are given in Figure 3. We find that with the increasing
of the label level of the tested entities, the model performance
on Wiki and OntoNotes is decreasing. However, the perfor-
mance of all compared models on BBN does not varies signif-
icantly. This phenomenon might be caused by the level distri-
bution in the training set. It can also be observed that FBTree
achieves the best performances at all levels of all datasets.
This study confirms the superior of FBTree.

4.4 Ablation Study

Effectiveness of informative walk. We conduct experi-
ments to evaluate the effect of our mention-to-type compati-
bility model FTree. We compare our FTree model with Com-
plEx that utilizes complex bilinear mappings to capture hi-
erarchical information [Murty ef al., 2018]. The results in
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Model Wiki OntoNotes BBN
Acc Ma-F1 Mi-F1 Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1
ComplEx 68.3 1.3 81.70.8 79.1£0.7 | 57.6£0.2 71.9+0.3 67.2+0.3 | 73.6x£1.1 783+1.1 78.8+1.0
ComplEx+FLAT 67.9+£0.5 81.8+0.2 79.3x0.3 | 58.7+0.4 74.0£04 67.6x0.4 | 74.8+41.1 79.2+1.1 79.8+%l1.1
ComplEx+TypeCorr | 69.1£1.0  82.3x0.8 79.5+0.8 | 59.3+0.5 74.5£0.5 68.2+0.5 | 75.2+0.5 79.1£0.5 79.6+0.5
ComplEx+BTree 69.120.3 82.0£0.5 79.9+0.6 | 59.7+0.2 74.5+0.1 67.9+0.1 | 75.9+£0.6 80.9+0.5 81.1+0.4
FTree 68.5+0.9 82.3+04 79.4+0.3 | 62.0£0.4 77.5+0.3 71.4+0.3 | 75.5+0.2 80.4+0.2 80.7%0.2
FTree+FLAT 69.2+0.7 81.3x0.8 78.1£0.8 | 62.0£0.1 77.4+0.2 71.3x£0.2 | 75.4+0.2 80.2+0.2 80.5%0.2
FTree+TypeCorr 67.2+0.5 80.0+0.7 77.0£0.5 | 61.7£0.4 77.0£0.4 70.9+0.5 | 75.6£0.1 80.5+0.1 80.7+0.2
FBTree 70.7+1.2 83.7+0.9 80.9+0.9 | 64.0+0.1 78.4+0.2 72.5+0.2 | 77.3x0.4 82.0+0.3 82.2+0.3
Table 4: Performance of variant FET models
Model Dataset AW PW C2F F2C I: Coarse
Wiki 125 1.8 53 119 We’ve told Senator Pryor isn’t yet a co-sponsor, but if - - -
FTree OntoNotes 16.1 1.4 33 17.3 Annotation Label PY|X PZ\X
BBN 165 37 25 1.8 PERSON 0.774 0.066
Wiki 1.1 2.0 3.8 12.4 ORG.GOVERNMENT 0.126 0.079
FBTree | OntoNotes | 15.0 1.5 34 16.0 1I: Fine

BBN 151 3.6 35 0.5

Table 5: Error analysis for FTree and FBTree on Acec metric

Table 4 indicates that FTree is more effective than ComplEx
in modeling label dependencies.

Effectiveness of erroneous walk. We further analyze the
results of our BTree model. As shown in Table 4, we com-
pare the type confusion matrix leaned by the highly con-
strained model BTree with FLAT and TypeCorr. FLAT de-
notes that confusion matrix is random initialized and Type-
Corr regard the normalized number of shared entities in KG
between types as the type confusion weight [Ren et al., 2016].
From the table, we observe that the type confusion matrices
learned by the two baselines may not bring improvements on
all data sets. But our BTree model brings significant perfor-
mance gains on all data sets. This experiment result confirms
that BTree is efficient in noise detection.

4.5 Analysis

We make an error analysis on the FTree and FBTree model.
As shown in Table 5, we classify errors into four types: all
wrong (AW), partial wrong (PW), coarse to fine (C2F), and
fine to coarse (F2C). The results show that FBTree decreases
AW and C2F errors by about 1%, 0.7%, with a slight increas-
ing in PW and C2F on the Wiki dataset. It also decreases
AW and F2C by about 1% with a slight increasing in PW and
F2C on OntoNotes and BBN. This error analysis confirms
that BTree can effectively detect noises and confirms the mo-
tivation of our proposed model.

Three noisy examples in the BBN data set are used to
demonstrate the effectiveness of FBTree. As shown in Ta-
ble 6, BTree tends to produce low label scores in all samples.
For sample II and III, the classifier can detect the two noisy
types by their lower score than the most appropriate type.
We also find that it is possible for the distributions Pz x and
Py x to have different polarity e.g. sample L. This study indi-
cate that FBTree tries to reduce the confidence of the classifier
on noisy samples, thus has superior generalization.
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Now a new law in Texas seems to be providing the proof.

Annotation Label Py|X PZ\X
LOCATION 0.004 0.023
GPE.STATE_PROVINCE 0.923 0.513

III: Siblings
... propose new generation of jet trainers for the U.S. Air Force

Annotation Label Py x Pz x
ORG.GOVERNMENT 0.902 0.507
ORG.CORPORATION 0.097 0.068

Table 6: The predicted type scores of FTree and FBTree-LA. The
words with a underline represents the mentions to be labeled

5 Conclusion

In this work, we identify that the entanglement of type hierar-
chy and noisy labels is a key obstacle for developing a high-
performance predictive FET models. We tackle this prob-
lem by separately modelling the two aspects using a forward
random walk on the type hierarchy and a backward random
walk on a reversed tree. The two components are then used
to jointly model the noisy hierarchical types that are observed
in the datasets. Interestingly, we found that the random walk
process is able to estimate the true entity type more than we
expected, by evaluating the importance of the noisy entity
types through the walk process. The empirical study con-
firms the effectiveness of our proposed model, outperforming
recent models on benchmark datasets.

It is also worth noting that the modelling techniques pre-
sented in this work can be extended to model labels with hi-
erarchical structure and observation noise. We hope this work
may inspire more exploitation of such ideas to much broader
scope of applications.
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