
Two-sided Wasserstein Procrustes Analysis

Kun Jin1 , Chaoyue Liu1 , Cathy Xia2

1Department of Computer Science and Engineering, The Ohio State University
2Department of Integrated Systems Engineering, The Ohio State University

Abstract

Learning correspondence between sets of objects is
a key component in many machine learning tasks.
Recently, optimal Transport (OT) has been success-
fully applied to such correspondence problems and
it is appealing as a fully unsupervised approach.
However, OT requires pairwise instances be di-
rectly comparable in a common metric space. This
limits its applicability when feature spaces are of
different dimensions or not directly comparable. In
addition, OT only focuses on pairwise correspon-
dence without sensing global transformations. To
address these challenges, we propose a new method
to jointly learn the optimal coupling between two
sets, and the optimal transformations (e.g. rota-
tion, projection and scaling) of each set based on
a two-sided Wassertein Procrustes analysis (TWP).
Since the joint problem is a non-convex optimiza-
tion problem, we present a reformulation that ren-
ders the problem component-wise convex. We then
propose a novel algorithm to solve the problem har-
nessing a Gauss–Seidel method. We further present
competitive results of TWP on various applications
compared with state-of-the-art methods.

1 Introduction
Correspondence between sets of objects is useful in many
machine learning problems, such as cross-lingual translation
in natural language processing [Alvarez-Melis and Jaakkola,
2018; Grave et al., 2019] and protein alignment in computa-
tional biology [Wang and Mahadevan, 2008]. Recently, op-
timal transport (OT) has been successfully applied to solve
such correspondence problems. It is appealing as a fully un-
supervised approach, which not only derives correspondence
between two sets geometrically, but also generates a well-
founded distance between two probability distributions. This
distance, defined as the minimum transport cost between two
point clouds endowed with different measures, serves natu-
rally as a loss function in various applications, such as do-
main adaptation [Flamary et al., 2016; Courty et al., 2017a],
and generative adversarial networks [Arjovsky et al., 2017;
Lample et al., 2018].

(a) OT (b) TWP

Figure 1: Illustration of TWP.

However, OT has limited applications as it requires pair-
wise instances directly comparable in a common metric
space. If the feature dimensions of two instances are differ-
ent, they cannot be compared; even if the dimensions are the
same, direct comparison of instances may not be meaningful
as they are typically from different spaces. This is not un-
common when instance representations are learned separately
and independently from different training data. In addition,
OT only focuses on pairwise coupling without sensing global
transformations. Consider the example in Figure (1a), where
there are two domains, source domain composed of filled cir-
cles and target domain composed of stars, each of which con-
tains two classes distinguished with colors. Transformations
(rotation, projection or scaling) must be done beforehand in
order to find the optimal correspondence between source and
target domains. Only after such transformations, can OT be
applied effectively. Unfortunately, such transformations are
typically unknown.

In this paper, we propose a novel method, Two-Sided
Wasserstein Procrustes Analysis (TWP) to address above
challenges. TWP is an integrated framework that jointly learn
correspondences between two sets, and the optimal transfor-
mations of each set based on an extended form of Two-sided
Procrustes Analysis. By exploiting advanced optimization
methods, our method can eventually find the optimal corre-
spondences between instances and obtain the latent transfor-
mations explicitly. With TWP, the correspondence between
different dimensional datasets or from different spaces are
enabled. Since the optimization problem related to TWP is
non-convex, we present a novel reformulation that renders
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the problem component-wise convex. We show that TWP
has elegant analytical solutions for each sub-problem, and
the original problem can then be solved iteratively harness-
ing a Gauss-Seidel method. We experiment TWP over three
applications: protein alignment, language alignment and do-
main adaptation and demonstrate competitive performance of
TWP compared with state-of-the-art methods.

Related Work: [Mikolov et al., 2013] presents a super-
vised word embedding alignment method by learning a lin-
ear mapping between two sets using a well-aligned seed
pairs and stochastic optimization. [Zhang et al., 2017] com-
bines OT and Procrustes analysis for bilingual word em-
bedding alignment, focusing on orthogonal transformation.
They find that initializing the transformation matrix using
Wasserstein GAN [Arjovsky et al., 2017] produces match-
ing performance [Lample et al., 2018]. However, GAN has
been criticized for difficulty on converging. [Hoshen and
Wolf, 2018] presents a non-adversarial training using itera-
tive matching methods. [Alvarez-Melis and Jaakkola, 2018]
considers Gromov-Wasserstein distance for the unsupervised
alignment problem. [Grave et al., 2019] proposes Wasser-
stein Procrustes by combining Wasserstein distance and Pro-
crustes analysis to handle unsupervised alignment on differ-
ent languages. Concurrent work proposed by [Alvarez-Melis
et al., 2019] addresses the limitation of OT by involving
global invariant transformations. To the best of our knowl-
edge, TWP is the first attempt that integrate optimal transport
with general forms of transformation including scaling, pro-
jection, and rotation and obtain simultaneously solutions for
both correspondence learning and the latent transformation.

The rest of the paper is organized as follow. Section 2
presents main ideas of TWP. Section 3 covers analysis and
algorithm to solve TWP. Section 4 demonstrates the perfor-
mance of experiments. Sections 5 concludes the work.

2 Method
2.1 Problem Description
Consider two sets of samples, X = {xi}mi=1 and Y =
{yj}nj=1, separately drawn from different embedding spaces
X ⊂ Rd1 and Y ⊂ Rd2 . The goal is to learn correspondences
between sets X and Y . We are faced with two challenges:
(1) samples in X and Y might not be directly comparable.
This could be caused by many reasons, such as d1 6= d2 or
distance between xi and yj is not meaningful; (2) no prior
sample-wise correspondence information is available, lead-
ing to a fully unsupervised problem. In order to apply OT, we
first need to find two transformation functions, Px ∈ Rd×d1 ,
and Py ∈ Rd×d2 that mapX and Y respectively to a common
latent d-dimensional space, where d is prespecified.

Our problem involves two levels of decisions that are mu-
tually dependent. First, finding transformations Px and Py for
embedding spaces X and Y such that d(Pxxi, Pyyj) is small
for every paired samples (xi, yj). Here, d(·, ·) is a general dis-
tance function and is defined by default as squared Euclidean
distance, that is d(Pxxi, Pyyj) = ‖Pxxi− kPyyj‖2, where k
is a scalar variable; Second, given X̂ = PxX and Ŷ = PyY ,
finding sample-wise correspondences between X̂ and Ŷ via

an assignment function A such that x̂A(i) → ŷj if x̂i and ŷj
are in correspondence. We first discuss the solutions to each
level of the problem, and then combine them together.

2.2 Two-sided Procrustes Analysis
Given two sets X and Y , when the correspondences between
instances xi and yj are given, our transformation problem can
be formulated as

min
Px∈Rd×d1 ,Py∈Rd×d2

||PxX − kPyY ||2F , (1)

If k = 1 and Px and Py are both permutation matrices (with
d = d1 = d2), it is called Two-sided Procrustes Analysis first
introduced by [Schönemann, 1968]. Here we generalize the
constraints on Px and Py that they do not have to be orthog-
onal square matrices. We also introduce a global scalar k to
align the scaling of instances from two spaces. Note that it is
a supervised approach since it needs the prior information of
paired samples in X and Y .

2.3 Correspondence Between Samples
Given proper transformations that embed spaces X and Y
into a common metric space, we can then harness OT for cor-
respondence learning. We briefly introduce OT as follows.

Given two distributions µX and µY over spaces X and Y ,
and a transport cost function C : X ×Y → R+, OT is to find
the optimal transport map Γ that pushes forward X onto Y
so as to minimize a transport cost C(Γ). The minimum cost
is known as Wasserstein or Earth Mover’s Distance. Sup-
pose µX and µY are only accessible through discrete samples,
we then have the empirical distributions: µX =

∑n
i=1 p

x
i δxi ,

µY =
∑m
i=1 p

y
j δyj , where δxi

is the Dirac function at loca-
tion xi, and pxi (resp. pyj ) is probability mass associated to the
i-th (resp. j-th) sample in set X (resp. Y). The OT problem
can be formulated as

Γ∗ = arg min
Γ∈Π

〈Γ,C〉F , (2)

with Π := {Γ : Γ1n = µX ,Γ
T1m = µY }. Here,

Γ = [Γij ] ∈ Rm×n specifies a probabilistic coupling or
transport plan between xi and yj ; C = [cij ], whose term
cij = C(xi, yj) denotes the cost of moving a probability
mass from xi to yj ; and 〈Γ,C〉F =

∑
ij Γijcij is the Frobe-

nius dot product between matrices Γ and C. Note that OT
requires a common metric space where the distance between
two instances from two sets xi and yj can be measured.

Recently, regularized approaches [Cuturi, 2013] have been
shown to be efficient in solving Problem (2) via Sinkhorn-
Knoop algorithm with complexity O(n

2

ε2 ). We hereby adopt
a regularized discrete OT formulation by adding an en-
tropic smoothing regularizer with hyperparameter ε, i.e. term
−εH(Γ) to the objective function in (2), where

H(Γ) :=
∑
ij

−Γij log Γij . (3)

2.4 Two-sided Wasserstein Procrustes Analysis
To jointly learn transformations of each space as well as cor-
respondence between instances, we formulate our TWP cost
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function as:

min J(Γ, k, Px, Py) = J1(Γ, k, Px, Py) + βJ2(Px, Py) (4)
s.t. Γ ∈ Π, Px, Py ∈ Θ,

where β is the balance parameter, and Θ is a constraint to
avoid trivial solutions for Px and Py to be specified later. We
refer to J1 and J2 as costs associated respectively with 1) joint
learning, scaling and matching; and 2) geometry preserving,
which we next discuss in details.

Joint learning, Scaling and Matching, etc.
Given transformation Px and Py , J1 represents the optimal
transport cost after transformation under the squared Eu-
clidean distance:

J1(Γ, k, Px, Py) =
∑
ij

Γij ‖Pxxi − kPyyj‖22

= Tr
{

(PxX PyY )

(
Dr −kΓ
−kΓT k2Dc

)(
XTPTx
Y TPTy

)}
(5)

where Dr and Dc denote the diagonal matrices and i-th diag-
onal value of Dr (Dc) is defined as

∑n
j=1 Γij (

∑m
j=1 ΓTij).

Geometry Preserving
When learning the transformations, the local neighborhood
relationship of either embedding space is not expected to be
destroyed. In other words, the local geometry of either em-
bedding space should be well preserved to avoid information
loss. Inspired by [Flamary et al., 2018], we construct below
the local adjacency relationship matricesW x andW y respec-
tively for datasets X and Y .

W x = arg minW
∑
ijWij‖xi − xj‖22 − ε2H(W ), (6)

W y = arg minW
∑
ijWij‖yi − yj‖22 − ε3H(W ), (7)

whereH(W ) is the entropic smoothing regularizer forW de-
fined in (3); ε2 and ε3 are the regularizer coefficients.

The geometry preserving function is formulated as:

J2(Px, Py)

=
∑
ij

W x
ij ‖Pxxi − Pxxj‖

2
2 +

∑
ij

W y
ij ‖Pyyi − Pyyj‖

2
2

= Tr
{
PxXLxX

TPTx + PyY LyY
TPTy

}
(8)

where Lx = Dx − W x and Dx is a diagonal matrix in
which the i-th row diagonal value is Dx

ii =
∑
jW

x
ij ; simi-

larly, Ly = Dy −W y and Dy is a diagonal matrix in which
the i-th row diagonal value is Dy

ii =
∑
jW

y
ij .

Combine Equations (5) and (8), we then have

J(Γ, k, Px, Py) = J1(Γ, k, Px, Py) + βJ2(Px, Py)

= Tr
{
PZLΓ,kZ

TPT
}

(9)

where P := (Px Py), Z :=

(
X 0
0 Y

)
and LΓ is defined as

LΓ,k :=

(
Dr + βLx −kΓ
−kΓT k2Dc + βLy

)
. (10)

To avoid trivial solutions of Px, Py being zero matrices, we
use the constraint:PxPTx + PyP

T
y = PPT = Id, where Id is

the d× d identity matrix. Thus Θ := {P : PPT = Id}.

The joint optimization problem can then be written as:
min
Γ∈Π

min
k

min
P

J(Γ, k, P ) = Tr
{
PZLΓ,kZ

TPT
}

(11)

s.t. PPT = Id.

3 Optimization
3.1 Semi-definite Programming
The inner problem of (11) is non-convex in the transforma-
tion matrix P . In this section, we present a convex relaxation
which turns the inner problem into a semi-definite program-
ming, and can help us find a solution to the non-convex prob-
lem.

Note that Tr
{
PZLΓ,kZ

TPT
}

= Tr
{
PTPZLΓ,kZ

T
}

.
Let Σ := PTP , and denote set
Mp := {Mp|Mp = PTP, PPT = Id, P ∈ Rd×(d1+d2)}.

It was shown in [Overton and Womersley, 1992] that the con-
vex hull ofMp can be expressed as a convex setMe given
by
Me = {Me|Tr(Me) = d, 0 4Me 4 I(d1+d2)} (12)

where Me and Id −Me are both positive semi-definite. Each
element inMp is an extreme point ofMe.

By changing the decision variables from P to Σ = PTP ,
we have the following relaxed form of Problem (11):

min
Γ∈Π

min
k∈R

min
Σ∈Me.

J(Γ, k,Σ) = Tr
{

ΣZLΓ,kZ
T
}

(13)

The advantage of the above relaxed formulation is two-
fold. First, under a fixed Γ and k, the inner problem of (13)
is a semi-definite programming (SDP) on Σ, which can be
solved in closed-form. Second, the objective function (13)
is component-wise convex in Σ, k and Γ respectively, which
gives us the theoretical advantages to solve the problem.

3.2 Learning Transformations
Under a fixed Γ and k, the inner problem of (13) is a semi-
definite programming (SDP) on Σ:

min
Σ∈Me

Tr
{

ΣZLΓ,kZ
T
}

(14)

The optima will be at one of those extreme points of the
feasible region Me, precisely those matrices that have the
form Σ = PTP where P ∈ Mp. As shown in [Vanden-
berghe and Boyd, 1996], the optimal solution has a closed
form: Σ∗ = (P ∗)TP ∗ where P ∗ is directly given by the ma-
trix composed of eigenvectors corresponding to the d smallest
eigenvalues of ZLΓ,kZ

T . Since P = (Px Py), given P ∗,
the optimal transformations P ∗x and P ∗y to the original prob-
lem (11) follow immediately.

Note that the optimal P ∗ selects the eigenvectors for d
smallest eigenvalues while abandoning the counterpart eigen-
vectors for (d1+d2−d) largest eigenvalues. It may leave the
impression that it has abandoned a lot of information. How-
ever, P ∗ aims to find the transformations for X and Y so that
the features of X and Y can be aligned as close as possible.
Those divergent features in X and Y , leading to large eigen-
values in P ∗, will be removed. Such phenomenon also occurs
in domain adaptation [Daumé III, 2009] where more identi-
cal words (which are also features) shared between source
and target domain lead to higher prediction accuracy.
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3.3 Learning Optimal Scaling
Under given P and Γ, the optimal scaling k∗ in Problem (13)
can be derived via

min
k∈R
〈Γ,Ck〉F (15)

where Ck is the pairwise squared Euclidean distance ma-
trix between PxX and kPyY , i.e., Ck = x̂1Tn + k21mŷ −
2k(PxX)T (PyY ), where x̂ = diag((PxX)T (PxX)), ŷ =
diag((PyY )T (PyY )), and diag(·) is a function which gives a
column vector of the main diagonal elements of matrix. Thus
Problem (15) becomes

min
k∈R

k2〈Γ, 1mŷ〉F − 2k〈Γ, (PxX)T (PyY )〉F + 〈Γ, x̂1Tn 〉F
(16)

which is a convex problem in k. Hence, the optimal k can be
simply obtained via the first-order optimization condition:

k∗ =
〈Γ, (PxX)T (PyY )〉F

〈Γ, 1mŷ〉F
:= k(Γ, P ). (17)

In case of k being infinite, we restrict k ∈ [0, b], where b is a
finite large number. The optimal scaling is then the solution
to (15) projected onto range [0, b], i.e., max(0,min(k∗, b)).

3.4 Learning Correspondences
Under given P and k, Problem (13) boils down to the follow-
ing OT problem:

min
Γ∈Π

∑
ij

Γij ‖Pxxi − k(Γ, P )Pyyj‖22 (18)

As discussed in Section 2.3, Γ∗ can be derived through OT
using entropy regularizer (3).

3.5 Three-block Gauss-Seidel Method
Observe that the decision variables in Problem (13) are
grouped into three blocks Γ, k and Σ. It is easily checked that
the objective function J(Γ, k,Σ) is component-wise convex
since the three subproblems (18), (16) and (14) are convex
respectively in Γ, in k and in Σ. We can therefore solve the
Problem (13) using a three-block Gauss-Seidel (GS) method,
where the detailed procedure is given in Algorithm 1.

In words, the GS method [Grippof and Sciandrone, 1999],
iteratively optimizes one block with the other blocks fixed
(see lines 3-5 of Algorithm 1). A convergence proof for the
GS method in the unconstrained case is given by [Grippof
and Sciandrone, 1999] when the problem is jointly convex.
In our case, Γ, k and Σ are constrained in convex regions and
each subproblem is convex, but the Problem (13) is not jointly
convex with respect to Γ, k and Σ. Fortunately, it was shown
in [Grippo and Sciandrone, 2000] that, under the GS method,
if it converges, every limit point must be a critical point under
the condition that each subproblem is convex.

The initialization of Px, Py and k in Algorithm 1 is

important. We use k0 = Tr(XTX)
Tr(Y TY )

as the initial value
for k since it is the analytical solution to mink ‖X − kY ‖2F .
The initialization strategy for Px and Py varies for differ-
ent applications and datasets. For protein alignment and

Algorithm 1 TWP

Require:
• Data source: X ∈ Rd1×m,Y ∈ Rd2×n

• Dimension: d, Entropy regularization: ε
• Initialization of P: P 0

1: l = 0
2: loop
3: Γl = arg minΓ J(Γ, kl, P l)− εH(Γ)
4: P l+1 = arg minP J(Γl, kl, P )
5: kl+1 = arg mink J(Γl, k, P l)
6: if converged then
7: break
8: end if
9: l = l + 1

10: end loop
11: Return J(Γl, P l), kl, P l,Γl

domain adaptation experiments, Px and Py are suggested
to be the first d largest components of projection matri-
ces derived from PCA of X and Y [Fernando et al., 2013;
Sun et al., 2016]. For cross-lingual translation, Px and Py are
suggested to first use a small dataset to initialize as a warm
start [Grave et al., 2019; Alvarez-Melis and Jaakkola, 2018;
Alvarez-Melis et al., 2019]. Based on these suggestions, we
use a simulated annealing strategy to initialize Px and Py .

4 Experiments

4.1 Protein Alignment

Protein 3D structure reconstruction is a key step of determin-
ing the Nuclear Magnetic Resonance (NMR) protein struc-
ture, which is a chain of amino acids. NMR techniques might
determine multiple models since more than one configura-
tion can be consistent with the distance matrix and the con-
straints. Therefore, the reconstructed result is a set of models
rather than a single structure, and these structures are stored in
the Protein Data Bank (PDB). Models derived from the same
protein should be similar and comparisons between them in-
dicate how well the protein conformation is determined by
NMR. We refer to [Cavalli et al., 2007] for more details.

We use the data from [Wang and Mahadevan, 2008], where
Glutaredoxin protein PDB-1G7O composed of 215 amino
acids is used. The 3D sequences of two models 1G7O-1
(Protein 1) and 1G7O-10 (Protein 2) are illustrated in Fig-
ure (2a). The Protein 1 is much larger than the protein 2,
and their orientation is very different. To apply TWP, we set
the dimension of the common embedding space to be d = 3
(3D), d = 2 (2D) and d = 1 (1D), respectively. We apply
TWP to align the models obtained from the same protein in
the three settings. The 3D, 2D and 1D matching results of
the two sequences are shown in Figure (2b),(2c),(2d), respec-
tively. Observe that the two models match very well (in scales
and orientations) after alignment by TWP using scaling, ro-
tation and projection. This demonstrates the effectiveness of
TWP in the protein alignment task.
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(a) Original Protein Structure (b) 3D Alignment with TWP

(c) 2D Alignment with TWP (d) 1D Alignment with TWP

Figure 2: Protein Alignment with TWP.

4.2 Unsupervised Language Alignment
In this experiment, we evaluate TWP on the task of unsu-
pervised language alignment. Given word embeddings pre-
trained from different monolingual corpora, the aim is to in-
fer a bilingual dictionary in which each pair of words share
similar semantic meanings. We use the same exact word vec-
tors and evaluation datasets as [Alvarez-Melis and Jaakkola,
2018]. We focus on five language pairs as most related
work reports: English to Spanish, French, German, Italian
and Russian. We use a supervised Procrustes method as
baseline where 5K pairs of words are known in prior. We
compare TWP with previous state-of-the-art unsupervised
methods for this task, namely, Adversarial training (ADV)
method [Lample et al., 2018], Iterative Closest Point (ICP)
method [Hoshen and Wolf, 2018], Gromov-Wasserstein (G-
W) [Alvarez-Melis and Jaakkola, 2018], Optimal Transport
with Global Invariances (INVAROT) method [Alvarez-Melis
et al., 2019] and Wasserstein Procrustes (WASSERSTEIN)
approach [Grave et al., 2019]. All of the reported accuracy
numbers are taken directly from their papers. CSLS denotes
the cross-domain similarity local scaling method proposed by
[Lample et al., 2018] to mitigate the hubness problem of near-
est neighbors searching in high-dimensional spaces.

In this experiment, we set d = 230. We initialize the Px
and Py via the simulated annealing as a warm start based on
a small dataset of 5K most frequent words in each language.
After obtaining the warm Px and Py , we then run TWP algo-
rithm to get optimum. Table 1 demonstrates the performance
of TWP is competitive to state-of-the-art methods.

4.3 Domain Adaptation
In this experiment, we evaluate TWP on two data adaptation
datasets, namely Moons in [Bruzzone and Marconcini, 2009]
and Office-Caltech in [Gong et al., 2012]. We set d = 2 in
moons dataset and d = 120 in image dataset.

Moons
The Moons dataset is designed to perform a binary classifica-
tion task and it is composed of two intertwined moons, each
representing a class. The target dataset is constructed by ro-
tating the source moons dataset with an angle ranging from
10 to 130 degrees, which generates 13 increasingly difficult
adaptation tasks. The performance of Moons dataset is listed
in Table (2), we could see that TWP always finds the optimal
transformation (rotation) function and obtains accuracy of
100%. Figure (3a) depicts the original source and target do-
main datasets, Figure (3b) illustrates the transformed dataset,
and Figure (3c) demonstrates the decreasing of TWP loss,
i.e., Equation (11), along with the iterations until TWP al-
gorithm converges. Observe that after TWP, the transformed
source and target domain match well. This is not surprising
because the target dataset is the rotation of source dataset and
one strength of TWP to find such transformation. When there
is prior knowledge that rotation of data exist in two domains,
TWP can be the top choice. Similar results could be reached
through the method in [Alvarez-Melis et al., 2019].

Noisy Moons
One column of noisy values, which follows Normal distri-
bution N (0, 1), is added to the source moons dataset, while
the target dataset remains unchanged. The source is of 3D
while the target is of 2D, a setting which fails INVROT di-
rectly. We use Gromov-Wasserstein (G-W) [Alvarez-Melis
and Jaakkola, 2018] and COOT [Titouan et al., 2020] as base-
line methods. Observe that the accuracies obtained by G-W
method and COOT both have a large variance by repeated
runs while TWP is very stable, always obtaining perfect re-
sult. We report the average score in Table (3). G-W relies
on the distance matrix between samples in two domains, and
COOT requires the distance between source and target sam-
ples as well as the distance between source and target fea-
tures. If features are noisy, which leads to the distance be-
tween samples and distance between features inaccurate, G-
W and COOT will have low performance. This experiment
shows that TWP is a noise robust method by learning the op-
timal projections and correspondence of projected samples.

Office-Caltech
The Office-Caltech dataset is composed of images from 4 dif-
ferent domains: Amazon (A), Caltech (C), DSRL (D) and
Webcam (W), each of which contains 10 classes with num-
ber of images ranging from 157 to 1123. Choosing one as
source dataset and another one as target, we obtain 12 dif-
ferent source → target pairs. The features we use in the ex-
periment are Surf features extracted from each image. We
compare TWP with different methods listed as: Subspace
Alignment (SA) [Fernando et al., 2013], Correlation Align-
ment (CA) [Sun et al., 2016], Transfer Component Analysis
(TCA) [Pan et al., 2010], Optimal Transport with Domain
Adaptation (OTDA) [Courty et al., 2017b], Joint Distribution
Optimal Transport (JDOT) [Courty et al., 2017a]. We use
1-Nearest Neighbor (1NN) as the classifier since 1NN does
not need tuning parameters. Table 4 demonstrates the perfor-
mance of TWP on the Office-Caltech dataset. Observe that
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EN-ES EN-FR EN-DE EN-IT EN-RU

Supervision → ← → ← → ← → ← → ←
PROCRUSTES 5K words 77.6 77.2 74.9 75.9 68.4 67.7 73.9 73.8 47.2 58.2
PROCRUSTES + CSLS 5K words 81.2 82.3 81.2 82.2 73.6 71.9 76.3 75.5 51.7 63.7
ADV + CSLS None 75.7 79.7 77.8 71.2 70.1 66.4 72.4 71.2 37.1 48.1
ADV + CSLS + REFINE None 81.7 83.3 82.3 82.1 74.0 72.2 77.4 76.1 44.0 59.1
WASERSTEIN + CSLS None 82.8 84.1 82.6 72.9 75.4 73.3 - - 43.7 59.1
G-W None 81.7 80.4 81.3 78.9 71.9 72.8 78.9 75.2 45.1 43.7
INVAROT + CSLS None 81.3 81.8 82.9 81.6 73.8 71.1 77.7 77.7 41.7 55.4
ICP + CSLS None 81.1 82.1 81.5 81.3 73.7 72.7 77.0 76.6 44.4 55.6

TWP + CSLS None 82.4 85.6 83.7 81.2 75.9 73.4 79.6 76.1 46.2 58.9

Table 1: Accuracy on the word translation task.

Angle SA CA TCA OTDA JDOT TWP

10 99.7 100 100 99.7 98.0 100
30 96.7 96.7 96.0 90.7 88.7 100
50 90.3 91.0 89.7 76.7 77.3 100
70 85.0 83.0 85.0 63.3 64.0 100
90 75.7 67.0 75.7 48.7 50.0 100
110 49.7 43.3 55.0 35.0 35.3 100
130 35.0 33.0 36.7 20.6 22.0 100

AVG 76.0 73.4 76.9 62.1 62.2 100

Table 2: Accuracy of domain adaptation on Moons.

G-W COOT TWP

69.3 75.6 100

Table 3: Accuracy of domain adaptation on Noisy Moons.

(a) Original Moons (b) Moons after TWP (c) TWP errors

Figure 3: Domain adaptation on Moons by TWP.

TWP outperforms other methods in 8 out of the 12 scenar-
ios, showing the effectiveness of TWP in domain adaptation.
Note that the performance of OTDA and TWP is comparable
in most cases.

5 Conclusion
We propose TWP, an integrated method that jointly learn the
optimal correspondence between two sets via OT, and the op-
timal transformations of each set via Two-sided Procrustes
Analysis. We show that the joint learning problem is non-
convex but embraces a relaxed reformulation where the sub-
problems have nice convex properties. We develop a three-
block Gauss-Seidel method to solve the problem. We ex-

Dataset SA CA TCA OTDA JDOT TWP

A → C 40.2 25.4 40.0 40.2 39.9 41.2
A → D 39.3 26.8 31.8 40.1 37.6 41.4
A → W 39.9 26.8 41.7 37.3 38.0 40.3
C → A 41.3 23.6 39.8 52.7 48.1 53.0
C → D 45.4 26.1 44.6 47.8 49.7 47.1
C → W 36.6 23.7 36.9 46.4 43.4 46.4
D → A 35.4 28.8 32.9 32.4 32.8 35.7
D → C 32.3 30.0 31.5 32.0 31.7 33.9
D → W 88.5 84.4 84.7 88.8 82.7 80.7
W → A 32.6 26.2 29.4 33.7 37.6 37.7
W → C 29.0 22.6 29.2 34.1 33.1 34.6
W → D 89.5 84.1 91.7 92.4 89.8 79.0

AVG 45.8 35.7 44.5 48.2 47.0 47.6

Table 4: Accuracy on Office-Caltech.

periment TWP over three applications and demonstrate that
TWP is effective and competitive to state-of-the-art work.
It is possible to harness the convexity of subproblems and
exploit higher order approaches, such as [Liu et al., 2013;
Liu et al., 2016] for faster convergence, we will leave this as
future investigation.
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