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Abstract

By contrasting positive-negative counterparts,
graph contrastive learning has become a prominent
technique for unsupervised graph representation
learning. = However, existing methods fail to
consider the class information and will introduce
false-negative samples in the random negative
sampling, causing poor performance. To this end,
we propose a graph debiased contrastive learning
framework, which can jointly perform repre-
sentation learning and clustering.  Specifically,
representations can be optimized by aligning with
clustered class information, and simultaneously,
the optimized representations can promote cluster-
ing, leading to more powerful representations and
clustering results. More importantly, we randomly
select negative samples from the clusters which
are different from the positive sample’s cluster. In
this way, as the supervisory signals, the clustering
results can be utilized to effectively decrease the
false-negative samples. Extensive experiments on
five datasets demonstrate that our method achieves
new state-of-the-art results on graph clustering and
classification tasks.

1 Introduction

Graph convolutional networks (GCNs) reconcile the expres-
sive power of graphs with learning capacity of deep models,
which have become the powerful tools for graph represen-
tation learning. By exploiting the properties of graph with
a neighborhood aggregation scheme, most GCNs [Deffer-
rard et al., 2016; Kipf and Welling, 2017; Chen et al., 2020;
Yang et al., 2020a] are established on a supervised or semi-
supervised setting, needing a number of high-quality node la-
bels for effective model optimization. However, in real-world
applications, high-quality node labels are hard to be obtained.
Therefore, unsupervised graph representation learning is still
a challenging task.

According to the learning objective, existing unsupervised
graph representation learning methods can be typically di-
vided into reconstruction-based methods [Kipf and Welling,
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Figure 1: The common practice of sampling negative examples from
nodes except itself may result in false-negative samples that actually
have same label with v;.

2016] and contrastive methods [Veli¢kovi¢ et al., 2019;
Hassani and Khasahmadi, 2020]. Among them, the con-
trastive learning methods, which usually learn representations
by leveraging local mutual information maximization across
the graph’s patch representations, have outperformed even su-
pervised methods and become a prominent technique. How-
ever, existing contrastive learning methods fail to consider
the class information, leading to less discriminative represen-
tations. Meanwhile, as illustrated in Figure 1, these meth-
ods usually randomly select negative samples, which would
bring false-negative samples with the same class as positive
samples. This phenomenon, which we refer to as sampling
bias [Chuang et al., 2020], can empirically lead to a signifi-
cant performance drop.

To address the above problems, this paper presents a
graph debiased contrastive learning method, which can joint-
ly perform representation learning and clustering in a unified
framework. Specifically, we obtain graph representations by
contrasting positive and negative pairs. At the same time, we
perform a clustering layer to predict their class information
with an auxiliary target distribution, which could align the
representations with clustering results. In addition, to correct
the sampling bias, we randomly select negative samples from
the clusters that are different from the positive sample’s clus-
ter. By iteratively optimizing the graph representations, the
clustering results, and the negative samples on the end-to-end
training process, these three parts can benefit from each other.

Our main contributions can be summarized into the follow-
ing three aspects:

e We propose an end-to-end contrastive learning frame-
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work that can jointly learn graph representations and
clustering results from unlabeled graph datasets.

e We develop a debiased sampling strategy to correct the
bias for negative samples, where the clustering result-
s are employed to decrease the false-negative samples.
Both theoretical analysis and experimental results indi-
cate that, the proposed debiased strategy could alleviate
the sampling bias phenomenon.

e Extensive experiments demonstrate that our learned rep-
resentation is consistently competitive on clustering and
classification tasks.

2 Related Work

2.1 Unsupervised Graph Representation Learning

Generative Approaches learn representations by designing
loss functions in the output space. Among them, most meth-
ods use auto-encoder framework to capture the latent repre-
sentation. Graph Auto-Encoder (GAE) [Kipf and Welling,
2016] first merges GCN [Kipf and Welling, 2017] as an en-
coder into the auto-encoder framework to seek the latent rep-
resentation by reconstructing the adjacency matrix. Howev-
er, GAE fails to consider the data distributions of the laten-
t representation and suffer from inferior embedding in real-
world graph data. So, [Pan et al., 2018] enforced the laten-
t codes to match a prior distribution. But the decoder part
in these methods cannot be learnable and the graphical fea-
ture cannot be used at all in the decoder part. Then, [Park
et al., 2019] proposes the first completely symmetric graph
convolutional autoencoder, which utilizes both the structure
of the graph attributes through the whole encoding-decoding
process. Moreover, due to the strong ability of the Genera-
tive Adversarial Network (GAN) [Goodfellow et al., 2014]
for distribution matching, some works [Pan e al., 2018;
Gao et al., 2019; Zheng et al., 2020] have introduced GAN
into the unsupervised graph representation learning.

Contrastive Approaches design objective function in latent
space by contrasting positive and negative pairs. Deep Graph
Infomax (DGI) [Veli¢kovi¢ et al., 2019] obtains node repre-
sentations by maximizing mutual information [Hjelm et al.,
2019] between patch representations and corresponding high-
level summaries of graphs. Then, Multi-View Graph Repre-
sentation Learning method (MVGRL) [Hassani and Khasah-
madi, 2020] introduces different structural views into DGI
for learning node and graph-level representations. And [Y-
ou et al., 2020] explored different augmentation strategies to
facilitate invariant representation learning.

However, these methods fail to consider the class infor-
mation, leading to less discriminative representations. And
the randomness of negative samples in these methods would
lead to a sampling bias problem, resulting in performance de-
crease. In this paper, we propose a graph debiased contrastive
learning framework, where the class information could be
predicted by a clustering layer as well as utilized to correct
the sampling bias.

2.2 Deep Clustering

Deep clustering approaches [Xie et al., 2016; Ji et al., 2017,
Yang et al., 2019; Dang er al., 2020; Yang et al., 2020b] in-

3435

tegrate the embedding and clustering processes to obtain op-
timal embedding subspace for clustering, which can be more
effective than shallow clustering methods [Ng et al., 2001;
Yang et al., 2018]. For example, Deep Embedding Clustering
(DEC) [Xie et al., 2016] learns a mapping from the data space
to a lower-dimensional feature space, in which, it iterative-
ly optimizes a clustering objective. To help the auto-encoder
learn a better data representation, Improved Deep Embedding
Clustering (IDEC) [Guo et al., 2017] adds a reconstruction
loss to DEC as a constraint, which can jointly optimize clus-
ter labels assignment and learn features that are suitable for
clustering. Then, [Ji et al., 2017] introduced a novel self-
expressive layer between the encoder and decoder to mimic
the self-expressiveness property that has proven to be effec-
tive in traditional subspace clustering. In addition, to gener-
ate discriminative and robust latent representations, [Yang et
al., 2019] proposed a novel dual autoencoder network with
the mutual information estimation and different reconstruc-
tion results.

In this paper, with an auxiliary target distribution, a clus-
tering layer is introduced into our graph contrastive learning
framework to make each other optimize better. In addition,
aiming to correct the sampling bias, the clustering results
could intervene the negative sampling process to decrease the
false-negative samples.

3 Method

In this section, we present the proposed graph debiased con-
trastive learning framework in detail, starting with the over-
all framework of contrastive objectives, followed by specific
graph clustering part. In our framework, the graph contrastive
learning and clustering can be optimized jointly and benefit
from each other, and the clustering results can alleviate the
affect of false-negative samples, correcting the sampling bias
in contrastive learning. The whole framework is illustrated in
Figure 2.

3.1 Problem Formulation

We denote an undirected graph as G = {V,&,X}. V =
{v;}_, is the finite set of n nodes. & € R™*"™ defines
the adjacency relationships (i.e., edges) between nodes in G.
X € R™*? records the node features, that is, each node v; is
associated with a d-dimensional feature vector «;. According
to the adjacency relationships in £, the corresponding adja-
cent matrix of graph G can be denoted as A € R"*™, and
then we can obtain the diagonal degree matrix D according
to D” = Zj A”

3.2 Graph Contrastive Learning

For simplicity, the graph contrastive learning framework is
consist of the commonly used graph convolution network
(GCN) [Kipf and Welling, 2017], denoted as ge(:). The
key idea of graph contrastive learning is to contrast seman-
tically similar (positive) and dissimilar (negative) pairs of
data points, encouraging the representation of similar pairs
(zi, 2] to be close, and those of dissimilar pairs (z;, z; ) to
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Figure 2: Framework overview of graph debiased contrastive learning model, which consist of a graph contrastive learning framework and a
clustering layer. Specifically, we could learn the node representations by contrasting positive and negative samples, where the positive sample
is generated by one augmentation strategy: masking node features and the negative samples are randomly selected from a debiased negative
sample set. Then the clustering layer inputs the embedded representations ge (X) to jointly improve clusters and embedded representation

by the total loss L.

be more orthogonal:

ego (@) go(x))

Lcl(mz) log g@(a:i)Tge(m:r) +Zi\il ega(mi)Tge)(w;),

ey
where the w;r is obtained by utilizing a feature-space
augmentation strategy: masking node feature x; random-
ly, and {z;,}, is M negative samples, which is usu-
ally randomly selected from )V except v;. Note that the
graph after this feature-space augmentation is denoted as
Gt ={V*r & Xx*} and X = {z]}7, records the node
features of V7.

However, this framework fails to consider the class infor-
mation, leading to less discriminative representations. And
without access to labels, the randomly sampled negative sam-
ples may actually have the same label as the positive sample,
causing performance drop. Thus, we introduce a clustering
layer into this framework and jointly optimize it with graph
representations to alleviate these problems.

3.3 Graph Clustering

We first perform a clustering layer on the embedded rep-
resentation ge(x;) to joint optimize with graph contrastive
learning framework. Then, a debiased strategy is developed
through clustering layer to decrease the false-negative sam-
ples, correcting the sampling bias phenomenon in graph con-
trastive learning.

Aiming to obtain more accurate clustering results (pseu-
do labels) and discriminative representations, the clustering

loss Lqys is utilized to optimize clustering and contrastive
learning simultaneously. And L, is defined as the KL di-
vergence is calculated between distributions P and (), where
@ is the distribution of soft labels measured by student’s ¢-
distribution and P is the target distribution derived from Q:

& j ij

where £ represents the k-th node in V, j represents the j-th
cluster. gy; is the similarity between embedded representa-
tion ge () and cluster center ft5, and gg; is measured by
Student’s ¢-distribution:

€ 75(CS R
21+ lge(@k) — u;ll?)
Dk; in Equation 2 is the target distribution P defined as:
Pij = qij/Zi dk; .
Z(Qij/zl qr;j)
And the cluster centers { uj __, are initialized by employ-

ing clustering layer on gg(X), where C represents the num-
ber of clusters. Therefore, the loss on the whole framework
can be denoted as:

3)

“4)

n
L= Z Lcl(wi) + aLclusa

i=1
where « is a hyper-parameter that controls the compromise
between the two terms. Moreover, in the training process, the

®)
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Figure 3: The negative sample set updated on two phenomenons:
the true labels are known and the pseudo labels generated from clus-
tering are known.

target distribution P serves as groundtruth soft label but also
depends on predicted soft label. Thus, to avoid instability, P
should not be updated at each iteration. In practice, P is up-
dated every T iterations according to Equation 4. And given
the learning rate [r, the clusters are updated by the backprop-

agation:
Ir
Hi =M= Z
v; €V

aLclus
Oy

(6)

At the same time, the graph contrastive learning framework’s
weights are updated by:

®=0-— — @)

In this way, representations can be optimized by aligning with
the clustering results, and simultaneously, the optimized rep-
resentations can promote clustering, leading to more power-
ful results.

Debiased Strategy. After we obtain the precise cluster-
ing results, we can randomly select negative samples from
the clusters which are different from the positive samples’
cluster. In this way, as the supervisory signals, the cluster-
ing results can be utilized to effectively decrease the false-
negative samples in the negative sampling process. Without
access of labels, existing graph contrastive learning method-
s [Velickovié et al., 2019; Hassani and Khasahmadi, 2020;
You er al., 2020] obtain the negative samples by randomly
sampling from the set N; = {v,, }(m # ¢), which would ex-
ist several false-negative samples. As shown in Figure 3, the
ideal negative sample set for v; can be obtained when nodes
with same true label as v; are removed from N;. Howev-
er, since ground-truth labels are unavailable, the pseudo la-
bels is alternatively used to decrease the false-negative sam-
ples, which can alleviate the negative effect of false-negative
points. Specifically, the pseudo labels generated by the clus-
tering layer are denoted as Y, = {y;}/";. Then, to decrease
the false-negative samples in N, we remove nodes with the
same pseudo label as node v; from A;, and denote the new

negative node set as N:

Ni = {om} Ym # vi)- (8)

Algorithm 1 Graph Debiased Contrastive Learning

Input: Graph G, Maximum Iterations M axIter

Parameter: GCN parameter ®, hyper-parameter: sample
size of negative points M

Output: Optimized GCN parameters, clustering results.

1: Initialize ©, {y; }JC:1 according to Section 4.2.
2: while iter € {0,1, ..., MaxIter} do
3:  ifiter%T == 0 then
4 Embed node representations by ge(+)
5 Update P by Equation 4.
6: endif
7:  Generate Y), by clustering layer.
8:  Update {N;}"_,by Equation 8.
9:  Update ©, {1;}5_, by Equation 6 and 7.
10: end while

Actually, clustering can also have false predictions, which
means the pseudo labels are not exactly accurate. Therefore,

N; may still have slight false-negative nodes, but it can be
proved through a simple mathematical derivation that this de-
biased strategy could still decrease the false-negative samples
to correct the sampling bias.

The whole algorithm is summarized in Algorithm 1. With
the joint optimization of GCN and clusters, we could obtain
the discriminative representations and clustering results, si-
multaneously.

4 Experiments

In this section, we first detail our experimental protocol, and
then present comparision results of our method with the state
of the art for graph representation learning.

4.1 Datasets

For comparison, we select five widely used graph datasets to
verify the performance of our method in unsupervised rep-
resentation learning. Specifically, for node classification and
clustering, there are three citation network datasets, i.e., Co-
ra, Citeseer and Pubmed. Moreover, for graph classification,
we use two datasets: MUTAG and PTC-MR.

4.2 Experimental Setup

Protocols and Evaluation Metrics. The task of node clus-
tering and node classification are employed to evaluate the
learned node representation of contrastive learning. In par-
ticular, for node clustering, we adopt the results predicted
by clustering layer directly. As in [Park er al., 2019], accu-
racy (ACC), normalized mutual information (NMI), and ad-
justed rand index (ARI) are used to measure the performance
of clustering. And we report the averaged clustering results
over 20 times of execution. While for node classification, we
closely follow the experimental setup of DGI [Veli¢kovi¢ et
al., 2019] and report the mean classification accuracy with
standard deviation on the test nodes after 20 runs. Final-
ly, for graph classification, we follow MVGRL [Hassani and
Khasahmadi, 2020] and report the mean 10-fold cross valida-
tion accuracy with standard deviation after 5 runs.
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Method Cora Citeseer Pubmed

ACC NMI ARI ACC NMI ARI ACC NMI ARI
Spectral 36,7 126 3.1 238 55 1.0 528 9.7 6.2
k-means 492 321 229 540 305 27.8 595 315 28.1
GAE 59.6 429 347 408 176 124 672 277 279
VGAE 502 329 254 467 260 205 630 229 213
DGI 554 41.1 327 514 315 326 589 277 315
ARGA 640 449 352 573 350 341 668 305 295
ARVGA 64.0 450 374 544 261 245 690 290 30.6
MVGRL 732 562 519 68.1 432 434 693 344 323
GALA 745 57.6 531 693 441 446 693 327 321
DBGAN 748 56.0 540 670 407 414 694 324 327
Ours w/o L., 764 609 562 702 458 46.0 71.0 356 34.2
Ours 781 61.0 579 719 464 469 720 36,5 34.6

Table 1: Clustering performance with three different metrics on three datasets.

Methods Cora Citeseer Pubmed
Ours WoPL & L.j,s 72.8 67.2 68.0
Ours w/o PL 74.8 69.9 70.8
Ours W/0 Lgjys 76.4 70.2 71.0
Ours 78.1 71.9 72.0

Table 2: Effect of the clustering loss and the debiased strategy on
node clustering tasks.

Implementation Details. Following suggestions in [Guo et
al., 2017], we pretrain the contrastive learning framework
before perform debiased strategy. And the cluster center-
s {u; }jC:1 are initialized by employing clustering layer on
ge(X). For node clustering task, one-layer GCN is used in
the graph contrastive framework and the hidden dimension of
GCN is set to 220. The learning rate is set to 0.0001 on Cora
and Citeseer, 0.00004 on Pubmed. The hyper-parameter « is
set to 0.1 on Cora and Pubmed, 0.5 on Citeseer. For the node
classification task, the learning rate is set to 0.01 on all three
datasets when optimize the classification layer. For the graph
classification task, the hidden dimension of GCN is 512, «v is
set to 0.3 on MUTAG and PTC-MR datasets.

4.3 Node Clustering

Comparison Methods. We compare our method with two
kinds of clustering methods: I. methods that only use fea-
tures or graph structures: k-means and DeepWalk [Perozzi et
al., 2014]; II. methods that use both features and graph struc-
tures: Spectral clustering, GAE [Kipf and Welling, 2016],
VGAE [Kipf and Welling, 2016], ARGA [Pan et al., 2018],
ARVGA [Pan et al., 2018]. DGI [Veli¢kovié et al., 2019],
MVGRL [Hassani and Khasahmadi, 2020], GALA [Park et
al., 2019] and DBGAN [Zheng et al., 2020].

Results Analysis. Table 1 depicts the clustering perfor-
mance with three different metrics on Cora, Citeseer and
Pubmed datasets. It shows that we could achieve remarkable
performance on all three datasets. For example, we achieve
78.1%, 71.9% and 72.0% accuracy on Cora, Citeseer and
Pubmed datasets, which have 3.3%, 2.6% and 1.9% relative
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Figure 4: (a)Our model with different negative sample sizes on Cora
dataset, (b) parameter sensitivity analysis of o on node clustering.

improvement over previous state-of-the art, respectively. We
can observe that without the clustering loss, it also can out-
perform the state-of-the art, e.g., 76.4% vs 74.8% on Cora
dataset, which indicate that the proposed debiased strategy
is effective. Moreover, these compared methods usually first
learn representations, and then the learned representations are
clustered by k-means or spectral clustering [Park et al., 2019;
Zheng et al., 2020]. Meanwhile, our end-to-end model can
obtain better embedded representations and clustering result-
s, simultaneously. In addition, existing graph contrastive ap-
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Methods Cora Citeseer Pubmed
DeepWalk 70.74+ 0.6 51.440.5 74.3+0.9
GAE 71.5+04 65.8+04 72.1£+0.5
GCN 81.5+0.3 70.3+0.4 79.0+0.3
GAT 83.0+0.7 72.5+0.7 79.0+0.3
DeepGCN 85.54+0.3 73.44+04 80.3+0.5
DGI 83.8+0.5 72.0+0.6 77.9+0.3
MVGRL 86.8+0.5 73.3+0.5 80.1+0.7
Ours w/o PL 86.5+0.4 73.3+0.3 80.0+0.8
Ours w/o L., 87.0£0.6 73.840.5 80.64+0.4
Ours 87.8+0.5 74.5+0.6 81.0 +0.5

Table 3: Mean node classification accuracy for supervised and un-
supervised models. Note that ‘Ours w/o PL’ represents our method
without the debiased strategy.

proaches DGI [Veli¢kovié et al., 2019] and MVGRL [Hassani
and Khasahmadi, 2020] use two-layer GCN with 512 hidden
dimension while one-layer GCN with 220 hidden dimension
is used in our model. Therefore, we have fewer parameters of
model while our proposed method outperform them. More-
over, the ablation study has been done as shown in Table 2.
Without the clustering loss, our method with the debiased s-
trategy also outperforms the basic graph contrastive learning
framework, e.g., 76.4% vs 72.8% on Cora dataset, which in-
dicates that the pseudo labels can actually correct the sam-
pling bias.

Parameter Analysis. And as depicted in Figure 4(a), we
explore the influence of negative sample size (/) to our mod-
el on Cora dataset. To better explore the influence, we re-
move the clustering loss, so the clustering accuracy curves
with/without debiased strategy are reported. For comparison,
we also record the accuracy curve of the graph contrastive
learning framework with unbiased negative sampling. The
negative sample size barely have affect on the biased con-
trastive learning, which is mainly caused by the existence of
false-negative samples. On the contrary, the accuracy of both
unbiased and debiased contrastive learning improve gradual-
ly with the increase of the negative sample size. Compared
to the unbiased contrastive learning, accuracy of the biased
is lower, indicating that the sampling bias would lead to per-
formance dropping. Furthermore, the parameter sensitivity
analysis of o« on node clustering are depicted in Figure 4(b).

4.4 Node Classification

Comparison Methods. To evaluate node classification un-
der the linear evaluation protocol, we compare our method
with unsupervised methods including DeepWalk [Perozzi et
al., 2014], GAE [Kipf and Welling, 2016], DGI [Veli¢kovié
et al., 2019] and MVGRL [Hassani and Khasahmadi, 2020].
Moreover, we compare our results with supervised models in-
cluding GCN [Kipf and Welling, 2017], GAT [Veli¢kovié et
al., 2018] and DeepGCN [Chen et al., 2020].

Results Analysis. The results reported in Table 3 show that
we achieve state-of-the art results with respect previous un-
supervised model and even supervised GNN methods. More
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Methods MUTAG PTC-MR
Random Walk 83.7+ 1.5 579+1.3
node2vec 72.6+10.2 58.6+8.0
graph2vec 83.249.6 60.2+6.9
infoGraph 89.0£1.1 61.7+1.4
MVGRL 89.7+1.1 62.5+1.7
Ours 90.5+1.6 63.6+1.8

Table 4: Mean graph classification accuracy for unsupervised graph
representation learning models.

specifically, we can achieve better accuracy than the state-of-
the art method MVGRL [Hassani and Khasahmadi, 2020],
e.g.,, 87.8% vs 86.8% on Cora dataset and 81.0% vs 80.1%
on Pubmed dataset. These results demonstrate that our graph
contrastive learning framework could learn more discrimina-
tive representations under the assistance of clustering layer.

4.5 Graph Classification

Our model can also perform the graph-level contrastive learn-
ing. When we learn representations on graph level, we need
to add a readout layer to the GCN output of each graph. Cor-
respondingly, the inputs of the clustering layer are the readout
outputs of multiple graphs, and the sampling process is also
for graphs.

Comparison Methods. We compare the results with five
unsupervised methods including Random Walk [Gértner
et al., 2003], node2vec [Grover and Leskovec, 2016],
graph2vec [Narayanan et al., 2017], InfoGraph [Sun et al.,
2020] and MVGRL [Hassani and Khasahmadi, 2020].

Results Analysis. The results shown in Table 4 suggest that
our approach achieves state-of-the-art results with respect to
unsupervised models. It shows that we could achieve remark-
able performance on both datasets. For example, we achieve
90.5%, 63.6% accuracy on MUTAG and PTC-MR datasets,
which have 0.8% and 1.1% relative improvement over previ-
ous state-of-the art method MVGRL.

5 Conclusion

In this paper, we design a graph debiased contrastive learn-
ing model, which jointly performs graph representation learn-
ing and clustering in a unified framework. With an auxiliary
target distribution, the graph representations and clustering
results are jointly optimized to obtain better results. At the
same time, aiming to correct the sampling bias in the nega-
tive samples, the clustering results are utilized to decrease the
false-negative samples. Extensive experiments demonstrate
that the representation and clusters learned by our method is
consistently competitive on graph classification, node cluster-
ing and classification tasks.
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