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Abstract
Spiking Neural Networks (SNNs), as bio-inspired
energy-efficient neural networks, have attracted
great attentions from researchers and industry. The
most efficient way to train deep SNNs is through
ANN-SNN conversion. However, the conversion
usually suffers from accuracy loss and long infer-
ence time, which impede the practical application
of SNN. In this paper, we theoretically analyze
ANN-SNN conversion and derive sufficient condi-
tions of the optimal conversion. To better corre-
late ANN-SNN and get greater accuracy, we pro-
pose Rate Norm Layer to replace the ReLU acti-
vation function in source ANN training, enabling
direct conversion from a trained ANN to an SNN.
Moreover, we propose an optimal fit curve to quan-
tify the fit between the activation value of source
ANN and the actual firing rate of target SNN. We
show that the inference time can be reduced by op-
timizing the upper bound of the fit curve in the
revised ANN to achieve fast inference. Our the-
ory can explain the existing work on fast reason-
ing and get better results. The experimental re-
sults show that the proposed method achieves near
loss-less conversion with VGG-16, PreActResNet-
18, and deeper structures. Moreover, it can
reach 8.6× faster reasoning performance un-
der 0.265× energy consumption of the typical
method. The code is available at https://github.
com/DingJianhao/OptSNNConvertion-RNL-RIL.

1 Introduction
As a representative of artificial intelligence methods, deep
learning has begun to exceed or approach human performance
in various tasks, including image classification, natural lan-
guage processing, and electronic sports [He et al., 2016a;
Brown et al., 2020; Berner et al., 2019]. But this suc-
cess is at the cost of high energy consumption. Recently,
neuromorphic hardware, including TrueNorth, SpiNNaker,
Loihi, and so on [DeBole et al., 2019; Painkras et al., 2013;
Davies et al., 2018], is attracting more and more researchers
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Figure 1: Illustration of the ANN-SNN converison.

due to their high temporal resolution and low power budget.
This kind of hardware runs Spiking Neural Networks (SNNs)
instead of Artificial Neural Networks (ANNs). With unique
memory and communication designs, an SNN implemented
on SpikNNaker can achieve the power consumption of 0.3W
for MNIST classification [Stromatias et al., 2015]. For ob-
ject detection, the spiking version of a YOLO model is esti-
mated to be at least 100 times more energy-efficient than that
on GPU [Kim et al., 2020]. Such dedicated hardware and
algorithms are highly appealing for mobile applications like
autonomous vehicles and other power-limited scenes.

Nevertheless, training high-performance SNNs is a non-
trivial problem. The neurons in SNNs emit discrete spikes,
which disables the direct backpropagation training. Up
to now, the training algorithms for SNNs can be sum-
marised into four methodologies: supervised backpropaga-
tion through time [Wu et al., 2019; Zenke and Vogels, 2021],
unsupervised STDP learning [Kheradpisheh et al., 2018;
Diehl and Cook, 2015], ANN-SNN conversion [Cao et al.,
2015; Diehl et al., 2015; Rueckauer et al., 2017], and other
mixture methods [Lee et al., 2018; Tavanaei and Maida,
2019; Rathi et al., 2020]. For deep SNN training, ANN-
SNN conversion requires less GPU computing than super-
vised training with surrogate gradients. Meanwhile, it has
yielded the best performance in large-scale networks and
datasets among methodologies. Therefore, ANN-SNN con-
version has become the first choice for deep SNN training,
which is also the focus of this paper.

As illustrated in Fig. 1, ANN-SNN conversion is to map
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the parameters of a pre-trained ANN to an SNN with low
accuracy loss. Cao et al. [2015] started the study of ANN-
SNN conversion. They found the equivalence between the
ReLU activation and the spiking neurons’ firing rate, which
is the foundation of later rate-based methods. Diehl et al.
[2015] attributed the performance loss to inappropriate acti-
vation of neurons and proposed Weight Normalization meth-
ods (model-based and data-based) to scale the ANN weights.
Rueckauer et al. [2017] gave a detailed theoretical explana-
tion of ANN-SNN conversion and proposed a new reset-by-
subtraction neuron to overcome accuracy degradation. They
also extended the use of bias and Batch Normalization (BN)
and proposed the Max Normalization algorithm (Max Norm
for short), which uses maximum values of activation as scal-
ing factors. Kim et al. [2020] suggested to use channel-wise
normalization for convolutional nets. Different from conver-
sion using ANN activation, Sengupta et al. [2019] proposed
SpikeNorm, which makes use of spiking statistics to set the
thresholds. To enable more accurate conversion, Rueckauer
et al. [2017] further proposed Robust Normalization (Robust
Norm for short), where the scaling factor changes from max-
imum activation value to 99.9% of activation. Yet this is not
the first attempt to manually manipulate the threshold or fac-
tor. Cao et al. [2015] set the firing thresholds based on spike
density. These practices allow the firing rates of some neu-
rons to be constant 1. Here we refer to this phenomenon as
spike saturation. However, both the maximum and 99.9% are
rigid, which inspires us to explore a trainable way to achieve
low conversion loss.

The conversion methods mentioned above all incur long
simulation time when applied to deeper networks and more
complicated datasets. That is, converted SNNs need a longer
time to rival the original ANNs in precision. This restricts
the practical promotion, such as real-time tracking and de-
tection. Robust Normalization somewhat mitigates this prob-
lem by increasing the firing rates. Spike saturation actually
causes the subsequent layers to infer faster. Based on this
observation, Han et al. [2020] started to improve the in-
ference latency by scaling the SpikeNorm thresholds. Han
et al. then gave a theoretical analysis of the scale (setting
the firing threshold as the expectation of weights × spikes),
but they used the manually set value eventually. Neverthe-
less, this inspires us that inference latency and parameters
can establish associations on the model. A hybrid training
scheme also helps. Rathi et al. [2020] realized fewer infer-
ence time-steps by conversion-based initialization and spike-
timing-dependent backpropagation. Other methods concern
coding schemes to achieve fast inference (i.e. shorter in-
ference time), including Temporal-Switch Coding [Han and
Roy, 2020], FS-conversion coding [Stöckl and Maass, 2021].
However, simply bypassing rate coding is not that rational.
Though rate coding is not the perfect coding scheme, it is par-
tially in line with observations in the visual cortex [Rullen and
Thorpe, 2001]. Therefore, fast inference for rate-encoding
deep SNNs is an important research direction. But it still
lacks instructive principles and theories.

In this paper, we propose an ANN-SNN conversion method
that enables high accuracy and low latency. The main contri-
butions of this paper are summarized as follows:

• We theoretically analyze ANN-SNN conversion and de-
rive the sufficient conditions of the optimal conversion.
Based on this, we propose Rate Norm Layer to replace
the ReLU activation function in source ANN, enabling
direct conversion from a trained ANN to an SNN. This
will reduce the potential loss of information caused by
normalization.

• We propose an optimal fit curve to quantify the fit be-
tween the activation value of source ANN and the actual
firing rate of target SNN, and derive one upper bound
of this convergent curve. We show that based on the
Squeeze Theorem, the inference time can be reduced by
optimizing the coefficient in the upper bound. These re-
sults can not only systematically explain previous find-
ings that reasonable scaling of the threshold can speed
up inference, but also give a proper theoretical basis for
fast inference research.

• We demonstrate the utility of the proposed method with
near loss-less conversion in deep network architectures
on the MNIST, CIFAR-10, CIFAR-100 datasets. More-
over, it achieves 8.6× faster reasoning under 0.265× en-
ergy consumption of the typical method.

2 Methods
In this section, a theory for ANN-SNN conversion is first
introduced. Based on this, Rate Norm Layer with trainable
threshold is thus proposed. Then, we analyse the reason for
slow inference and suggest optimization for fit of firing rates.
Finally, we present a stage-wise learning strategy for accurate
and fast SNN.

2.1 Theory for Conversion from ANN to SNN
The fundamental principle of ANN-SNN conversion is to
match analog neurons’ activation with spiking neurons’ fir-
ing rate. One common way is to convert ReLU nonlinearity
activation to the Integrate-and-Fire (I&F) neuron. To be spe-
cific, for analog neurons in layer l (l = 1, 2, ..., L), the ReLU
activation can be described by:

al = max(Wl−1al−1 + bl−1, 0), (1)

where vector al is the output of all ReLU-based artificial neu-
rons in layer l, Wl−1 and bl−1 is the weight and the bias term
for the neurons in layer l − 1.

As for the I&F neuron, the membrane potential vil(t) for
the i-th neuron in layer l is formulated by:

dvil(t)

dt
=
∑
j

∑
tj∈Tj

W ij
l−1δ(t− tj) + bil−1, (2)

where bil−1 denotes the bias current to the i-th neuron, W ij
l−1

denotes the synaptic weight between the j-th presynaptic neu-
ron in layer l−1 and the i-th neuron in layer l. δ(·) is the delta
function. Tj denotes the set of spike time of the j-th presy-
naptic neuron, i.e., Tj = {t(1)j , t

(2)
j , . . . , t

(K)
j }. When the

membrane potential vil(t) exceeds the firing threshold vth,l in
layer l, a spike is generated and the membrane potential vil(t)
is reset to the rest value vrest < vth,l.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2329



To match analog neurons’ activation with spiking neurons’
firing rate, we discretize and vectorize Eq. 2 into time-steps
and obtain the spiking neuron model for layer l.

ml(t) = vl(t− 1) +Wl−1sl−1(t) + bl−1,

sl(t) = U(ml(t)− vth,l), (3)
vl(t) = ml(t)− vth,lsl(t),

where ml(t) and vl(t) represent the membrane potential of
all I&F neurons in layer l after neuronal dynamics and after
the trigger of a spike at time t, U(·) is the Heaviside Step
Function, sl(t) denotes the vector of binary spikes, the ele-
ment in which equals 1 if there is a spike and 0 otherwise.
bl−1 is the vector of bil−1, and Wl−1 is the weight matrix.
Note that here we use the "soft reset" [Han et al., 2020] in-
stead of the "hard reset". At the moment of a spike, the mem-
brane potential vl(t) is reduced by an amount equal to the
firing threshold vth,l, instead of going back to the reset value.

Based on these definitions, we can derive the relationship
between the firing rate rl(t) of spiking neurons in layer l
and rl−1(t) of neurons in layer l − 1, which is depicted in
Lemma 1. The proof can be found in the Appendix.
Lemma 1. For a spiking neural network consisting of the
reset-by-subtraction neurons mentioned in Eq. 3, assume that
Wl−1 and bl−1 are the parameters for layer l−1. Then when
t → ∞, the relation of the firing rate rl(t) and rl−1(t) is
given by:

rl = clip

(
Wl−1rl−1 + bl−1

vth,l
, 0, 1

)
, (4)

where clip(x, 0, 1) = x when x ∈ [0, 1], clip(x, 0, 1) = 1
when x > 1, and clip(x, 0, 1) = 0 when x < 0.

With Lemma 1 and Eq. 1, We can derive the theorem for
conversion from ANN to SNN:
Theorem 1. For an L-layered ANN with the ReLU activation
and an L-layered SNN with the reset-by-subtraction neurons,
assume that W ANN

l−1 , b
ANN
l−1 are the parameters for layer l− 1 of

the ANN, andW SNN
l−1 , b

SNN
l−1 are the parameters for layer l−1 of

the SNN. maxl is the maximum activation of layer l in ANN,
and vth,l is the firing threshold of layer l in SNN. The ANN
can be converted to the SNN when t → ∞ (Eq. 1 equals
Eq. 4) if for l = 1, 2, ..., L, the following equations hold:

W SNN
l−1
vth,l

= W ANN
l−1

maxl−1
maxl

,
bSNN
l−1
vth,l

=
bANN
l−1

maxl
. (5)

The proof of Theorem 1 is presented in the Appendix.
Eq. 5 implies that scaling operations are necessary to convert
ANN to SNN, either scaling weights (i.e. weight normaliza-
tion) or setting thresholds (i.e. threshold balancing). In this
sense, weight normalization is equivalent to threshold balanc-
ing.

2.2 Rate Norm Layer
The choices of scaling factors are often empirical, and post-
training [Rueckauer et al., 2016; Han et al., 2020]. To over-
come this, we propose Rate Norm Layer (RNL) to replace the
ReLU activation in ANN. The idea is to use a clip function

ReLU
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Figure 2: Response of simulated firing rate of Rate Normalization
Layer with regard to ANN activation. The trainable threshold can
adapt during training, and manual setting can be cancelled.

with a trainable upper bound to output the simulated firing
rate, which is the limitation of actual firing rate in SNN when
inference time T → ∞. Here we denote the simulated firing
rate as r̂l , Rate Norm Layer can be formally expressed as
follows:

θl = pl ·max(Wl−1r̂l−1 + bl−1),

zl = clip(Wl−1r̂l−1 + bl−1, 0, θl), (6)

r̂l =
zl
θl
,

where pl is a trainable scalar (pl ∈ [0, 1]), and θl is the thresh-
old of the l-th layer. With Theorem 1 satisfied (vth,l = θl) and
pl = 1, one can find that Eq. 6 is equivalent to Eq. 4. In this
case, RNL will degenerate to the Max Norm algorithm, which
scales the weight Wl−1 by maxl−1

maxl
and the bias bl−1 by 1

maxl
.

A diagram comparison of different scaling schemes can be
seen in Fig. 2. For mini-batch training, different batches
have different maximum outputs. To reduce the perturbation
caused by data sampling, running_max(Wl−1r̂l−1 + bl−1)
is used instead of max(Wl−1r̂l−1 + bl−1). The design of the
Rate Norm Layer mainly considers the following three fac-
tors:

• Compared with directly cutting the simulated firing
rate to 1, the backpropagation becomes more effec-
tive in RNL training. max(Wl−1r̂l−1 + bl−1) and
running_max(Wl−1r̂l−1 + bl−1) can enable the gradi-
ent to flow out smoothly. Their participation in threshold
calculating is similar to Batch Norm (BN) in mini-batch
training. However, RNL cannot replace BN, because BN
rescales the data to a normal distribution, which is re-
lated to the characteristics of ANN.

• The threshold θl enables better generalization. Existing
solutions mainly focus on using a subset of the training
data for offline normalization. This will potentially in-
fluence the generalization of the scaled SNN for data out
of subset. In contrast, θl uses all data in training, which
can be used directly in SNN inference.

• The threshold θl is determined in training. For faster
inference, Robust Norm requires empirical percentile
which RNL doesn’t need, as pl is trainable. Certainly,
just using ANN loss will not guide the model to reduce
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Figure 3: Firing rate curves of output neurons in a toy SNN with
different rate coding schemes. The membrane potential of spiking
neurons has been randomly initialized from independent samplings.

the inference delay. This also requires additional loss
design, which will be shown later.

2.3 Optimization for Fast Inference
Rate-based SNN models take rate coding as input, and the
time average of the output spikes as output. In the conversion
methods, the coding scheme mainly consists of two ways.
One is Poisson coding, of which spikes obey the Poisson
process. The other is constant coding, to cooperate with the
reset-by-subtraction neuron. Constant coding is not a new
thing, it can be regarded as an integrating ADC in the signal
processing [Eng Jr and Matson, 1994]. The two primary rate
coding forms take time for the firing rate to approach its ex-
pectations. For the constant coding, its accumulated current
needs to be rounded down when converted to spike counts. So
the firing rate will be jagged and approach the analog value
(Fig. 3). Using both codings will bring about unpredictable
rate output in the first few time-steps. Following the sugges-
tions of previous literature, constant coding is chosen as the
primary scheme in this paper.

The time when the output firing rate of an SNN matches the
analog output of an ANN is referred to as “inference time”,
“inference latency” or “inference delay” [Neil et al., 2016].
Fig. 3 implies that for both rate coding schemes, there will
be an output delay. In deep neural networks, the stacking of
layer-by-layer delays will bring greater inference delay. For
example, ResNet-44 requires 350 time-steps to achieve the
best accuracy [Hu et al., 2018]. This problem is not limited
to ANN-SNN Conversion. The BPTT trained SNN model
also has similar issues.

Now that the reason for slow inference is attributed to the
deviation of the encoder accumulation. To further analyze
the characteristics, we propose to useK(r̂, r(t)) (K curve) to
quantify the relationship between the simulated firing rate r̂
of ANN and the real firing rate r(t) of SNN after conversion.

K(r̂, r(t)) =
‖r(t)− r̂‖22
‖r̂‖22

. (7)

Note that the design of K resembles the chi-square test in
hypothesis testing. r̂ and r(t) denote the firing rates of
all neurons in a certain layer. ‖ · ‖2 indicates L2 norm.
The denominator ‖r̂‖22 makes K(r̂, r(t)) have scale invari-
ance. Therefore, we can compare the fitting of the firing rate
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Figure 4: Layer-wise K curves over time of a VGG16 model. (a)
The result of SNN using the Max Norm algorithm; (b) The result of
scaling the thresholds by 0.8.

between different layers. Ideally, given enough “inference
time”, K(r̂, r(t)) will converge to 0. We believe K curve is
an adequate metric as the neuron population encoding infor-
mation is considered rather than any single neuron.

Specifically, Fig. 4 gives an example to illustrate how the
K curve fits between different layers of a VGG16 and a con-
verted SNN. An image is used for reasoning and calculating
K curves. As the layer deepens, the convergence speed of the
K curve becomes slower. By accelerating the convergence of
the K curve, the inference can speed up. Here we derive one
of the upper bound for K(r̂, r(t)).

Theorem 2. For layer l in an ANN and the converted SNN
with constant coding, given the simulated firing rate r̂l and
the real firing rate rl, we have:

Kl <
2Ωl
t
, (8)

where Kl denotes the abbreviation of K(r̂l, rl(t)) in layer l,
Ωl = ‖r̂l‖1

‖r̂l‖22
. ‖ · ‖p denotes Lp norm.

The detailed proof of Theorem 2 is described in the Ap-
pendix. Ωl is named as Rate Inference Loss (RIL) of the l-th
layer. Eq. 8 indicates that Kl is less than an inverse propor-
tional curve to t.

For the convergence of the last layer (the L-th layer), if ΩL
reduces,KL will converge faster to 0 due to the Squeeze The-
orem. That is, the real firing rate of the SNN approaches the
simulated value of the ANN more faster, leading to faster and
more stable outputs of SNN. However, considering that the
network actually has inference delays layer by layer, a better
solution is to reduce the average value of Ωl(l = 1, 2, . . . , L).
Thus, the overall training loss is composed of the loss related
to the task and RIL multiplied by hyperparameter λ.

L ′(f(x),y) = L (f(x),y) + λ

∑
Ωl
L

, (9)

where (x,y) is data tuple for training and f(·) is the network
with L Rate Norm Layers. Based on Eq. 6, we are able to

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2331



Stage 1

Stage 2t Layer i Layer j

Forward Pass
Backward Pass

r̂∗j

min L (r̂j ; y)

r̂′j

min T (r̂∗j , r̂′j)

∂T
∂θi

∂T
∂θj

∂L
∂w

Figure 5: Diagram of SNN training. The training consists of two
stages. It first trains for accuracy by adjusting weights. Then it
optimizes for fast inference by adjusting firing thresholds.

calculate the partial derivative of ΩL w.r.t. pL, and obtain:

∂ΩL
∂pL

=
∑
i

∂ΩL
∂r̂L,i

∂r̂L,i
∂pL

=
∑
i

[(
‖r̂L‖22 − 2r̂L,i‖r̂L,i‖1

‖r̂L‖42

)(
− r̂L,i

pL

)]
=
‖r̂L‖1
pL‖r̂L‖22

, (10)

where r̂L,i denotes the i-th element of r̂L.
Eq. 10 implies that the partial derivative of ΩL w.r.t. pL

is positive. Simply minimizing ΩL will reduce the neurons’
pl. The upper limit of pl is unnecessary in this sense. Nev-
ertheless, this will lead more neurons to saturation state and
lose model accuracy. Thus, we jointly optimize the two losses
and tune the hyper-parameter λ to reach the optimal trade-off
between model accuracy and conversion loss.

So far, the current theories and analyses can also system-
atically explain the findings of Han et al. That is, reasonable
scaling of the threshold can speed up the inference. If the
threshold is set smaller, the Rate Inference Loss will decrease.
Since the curve value and time are inversely proportional, it
is equivalent to accelerating the decrease of the curve. On
the contrary, if the threshold is too large, many neurons in
the SNN will have low firing rates to produce accurate out-
put. Of course, the threshold should not be too small to pre-
vent more neurons from saturating and losing information.
Fig. 4(b) shows the K curve after adjusting the threshold us-
ing the algorithm of Han et al.

2.4 Training for Accurate and Fast SNN
In Section 2.2, the pl of the Rate Norm Layer is restricted to
[0, 1]. This means if the Rate Norm Layer is directly trained,
the simulated firing rate after clipping and scaling will in-
evitably bear information loss. The information loss here in-
dicates that the output distribution due to cropping is different
from the original distribution. This will make it difficult to
take advantage of ANN’s performance. So the training strat-
egy needs to be carefully designed. When pl = 1 is fixed,
zl is clipped with running_max(zl), which has less infor-
mation loss. After the network synaptic parameters are fixed,

the neuron threshold starts training. The training goal at this
stage is to reduce information loss and to reduce Rate Infer-
ence Loss. As the output f(x) of an ANN is r̂L, the goal is
to optimize (according to Eq. 9):

L ′(r̂L,y) = L (r̂L,y) + λ

∑
ΩL
L

, (11)

we decompose this goal into two stage goals (shown in
Fig. 5):

Stage 1 is accuracy training, when network outputs r̂∗L.
The target is:

min
W,b

L (r̂∗L,y). (12)

Stage 2 is for fast inference. Assume the output of this
stage is r̂′L. Then the target is:

min
θ

T (r̂∗j , r̂
′
j),

T (r̂∗j , r̂
′
j) =1− Cos(r̂∗L, r̂′L) + λ

∑
ΩL
L

. (13)

The cos distance is used to maintain neuron information. The
detailed training and converting algorithm is described in Al-
gorithm 1 in the Appendix.

3 Experiments
3.1 Experiment Implementation
We validate our methods on the image recognition bench-
marks, namely the MNIST1, CIFAR-10, CIFAR-1002

datasets. For MNIST, we consider a 7-layered CNN and
AlexNet. For CIFAR-10, we use VGG-16 and PreActResNet-
18 network structures. It is worth noting that we did not use
the common ResNet as we think PreActResNet will help the
training of Rate Norm Layers [He et al., 2016b]. For CIFAR-
100, VGG-16, PreActResNet-18 and PreActResNet-34 are
used. We present the simulation results and analysis in the
following subsections.

3.2 Accuracy Performance
We first evaluate the effectiveness of the proposed Rate Norm
Layer. A network with Rate Norm Layers is trainable with
backpropagation. When testing SNN performance, all Rate
Norm Layers are converted to I&F neuron models with θl as
the threshold. Table 1 shows the best accuracy of the con-
verted SNNs compared with typical works. The converted
SNNs achieve the state-of-the-art performance on MNIST
and CIFAR-100 datasets, and reach a similar performance
on CIFAR-10. For VGG-16 trained by CIFAR-100, the pro-
posed method reaches top-1 accuracy 75.02%, whereas the
state-of-the-art ANN-SNN algorithm reaches 70.93%. Con-
version loss is considered here to evaluate the quality of the
ANN-SNN conversion. As illustrated in Table 1, ANN-SNN
conversion with Rate Norm Layers has low conversion loss,
or even negative conversion loss, indicating that the converted
SNN may outperform the original ANN. In contrast, the loss
is usually positive for other methods, meaning that the per-
formance of the converted SNN is not as good as ANN.
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Network SNN Conversion
Acc (%) Loss (%)

MNIST
[Diehl et al., 2015] Spiking NN 98.6 -
[Rueckauer et al., 2017] - 99.44 0.00
This work (RNL) 7-Layered CNN 96.51 0.00
This work (RNL) AlexNet 99.46 -0.04

CIFAR-10
[Sengupta et al., 2019] ResNet-20 87.46 +1.64
[Sengupta et al., 2019] VGG-16 91.55 +0.15
[Hunsberger and Eliasmith, 2015] - 83.54 +0.18
[Cao et al., 2015] 7-Layered CNN* 77.43 +1.69
[Han et al., 2020] ResNet-20 91.36 +0.11
[Han et al., 2020] VGG-16 93.63 0.00
[Rueckauer et al., 2017] - 88.82 +0.05
This work (RNL) VGG-16 92.86 -0.04
This work (RNL) PreActResNet-18 93.45 -0.39

CIFAR-100
[Han et al., 2020] VGG-16 70.93 +0.29
[Han et al., 2020] ResNet-20 67.82 +0.90
This work (RNL) VGG-16 75.02 +0.54
This work (RNL) PreActResNet-18 75.10 -0.45
This work (RNL) PreActResNet-34 72.91 +0.80

Table 1: Best Accuracy Performance comparing with related meth-
ods. Values in the table represent the best accuracy and the accu-
racy loss of conversion (AccANN − AccSNN). The structure of 7-
Layered CNN is 32C3-P2-32C3-P2-32C3-P2-32FC10, which is dif-
ferent from the one with asterisk in the table.

3.3 Fast Inference Performance
We test whether the proposed Rate Inference Loss can speed
up inference, that is, speed up the convergence of the K curve.
Fig. 6(a) and (b) show how the K curve and accuracy change
over latency, where the dotted line in Fig. 6(a) represents the
Max Norm method. As can be seen from Fig. 6(a), the K
curves of the proposed method converge to 0 quickly, which
are much faster than those of the Max Norm method. Thus
the proposed method can implement fast inference. The in-
ference performance can be observed in Fig. 6(b). The pro-
posed method reaches an accuracy of 85.40% using 32 time-
steps, whereas the methods of Max Norm, Robust Norm, and
RMP-SNN reach 10.00%, 43.03% and 63.30% at the end of
32 time-steps. Moreover, the proposed method achieves an
accuracy above 90% using only 52 time-steps, which is 8.6
times faster than Max Norm that uses 446 time-steps. De-
tailed accuracy comparison on time T is shown in Table 2.

The threshold and Ω of VGG-16 are visualized in Fig. 6(c).
For the Max Norm method, as all the I&F neurons use the
same threshold 1, we regard the maximum value of ReLU
outputs as the equivalent threshold. It can be found that the
distribution gap of the threshold is relatively large. But when
paying attention to the Ω distribution, the Ω after the thresh-
old scaling (orange column) is usually smaller than that of
Max Norm (blue column). In contrast, training with Rate In-
ference Loss will keep Ω at a relatively low and average level,
and thus benefit inference.

3.4 Energy Estimation of Neuromorphic
Hardware

SNNs have a considerable potential on neuromorphic chips.
One of the benefits is to reduce the energy budget. To study

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/ kriz/cifar.html
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Figure 6: Fast inference performance of SNNs converted from
VGG-16 trained on CIFAR-10. (a) The K curve over time. For
readability, 4 of the 16 layers of VGG-16 are extracted to display
the K curves. (b) Accuracy curves over time. The dotted line only
indicates the tendency due to the lack of data. (c) Ω and threshold
distribution.

Network 16 32 64 128 256

Max Norm VGG-16 10.07 10.00 12.17 50.37 81.85
[Rueckauer et al., 2017] PreActResNet-18 11.75 11.75 21.08 55.25 78.33
Robust Norm VGG-16 10.11 43.03 81.52 90.80 92.75
[Rueckauer et al., 2017] PreActResNet-18 13.50 13.00 23.50 59.50 80.50
[Han et al., 2020] VGG-16 - 60.30 90.35 92.41 93.04
This work (RNL+RIL) VGG-16 57.90 85.40 91.15 92.51 92.95
This work (RNL+RIL) PreActResNet-18 47.63 83.95 91.96 93.27 93.41

Table 2: Fast Inference Performance comparing with related meth-
ods. Values in the table represent the instant accuracy of latency T.
All the networks are trained on CIFAR-10.

the energy efficiency of fast reasoning, we use the energy
model proposed by Cao et al. [Cao et al., 2015] to model the
energy consumption on neuromorphic chips. Assume that a
spike activity would bring about the energy consumption of
α Joules and 1 time-step takes 1ms. Then the power model
is defined as:

P =
total spikes

1× 10−3
× α (Watts) (14)

The previous energy analysis mainly focused on total en-
ergy consumption during inference. However, in real appli-
cation scenarios, the total energy consumed before the model
reaches reliable accuracy is more important. In this regard,
we evaluate the performance of the proposed method and the
Max Norm method on energy. Fig. 7(a) is the power his-
togram over time. Due to the lower threshold, the power of
our model is relatively high. The integral of the deep color
area represents the energy consumed to achieve 90% accu-
racy. The energy consumption of the proposed model is only
0.265 times of the Max Norm method when it reaches 90%
accuracy. This means that the 8.6 × reasoning speedup will
not bring much more energy consumption. Fig. 7(b) shows
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Figure 7: Energy analysis of VGG-16 on neuromorphic chips. (a)
is the power histogram. The integral of the deep color area is the
energy for accuracy to reach 90%. (b) is the logarithmic ratio of
energy consumption and inference speedup. ‘p’ is for the proposed
method, and ‘b’ is for the baseline Max Norm method.

the logarithmic ratio of energy and inference speedup. Our
model exhibits the properties of “fast reasoning” and “energy
efficiency”.

4 Conclusions
This paper proposes a method to convert conventional ANNs
to SNNs. The Rate Norm Layer is introduced to replace
ReLU for optimal conversion. Besides, we quantify the fit
between the ANN activation and the firing rate of the con-
verted SNN by an optimal fit curve. The inference time can
be reduced by optimizing the coefficient of the upper bound
of the fit curve, namely Rate Inference Loss. Thus, a two-
staged learning scheme is proposed to obtain fast and accu-
rate deep SNNs. Experimental results demonstrate that our
methods achieve low accuracy loss and fast reasoning with
deep structures such as VGG and PreActResNet.
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Appendix A: Proofs
Here we provide the theoretic proofs of theorems and lemmas
in this paper.
Lemma 1. For a spiking neural network consisting of the
reset-by-subtraction neurons mentioned in Eq. 3, assume that
Wl−1 and bl−1 are the parameters for layer l−1. Then when
t → ∞, the relation of the firing rate rl(t) and rl−1(t) is
given by:

rl = clip

(
Wl−1rl−1 + bl−1

vth,l
, 0, 1

)
, (1)

where clip(x, 0, 1) = x when x ∈ [0, 1], clip(x, 0, 1) = 1
when x > 1, and clip(x, 0, 1) = 0 when x < 0.

Proof. For the reset-by-subtraction spiking neurons formu-
lated by Eq. 3 in the main text, we can stack the equations
and get the discrete function between spikes of layer l and
layer l − 1:

vl(t)− vl(t− 1) = Wl−1sl−1(t) + bl−1 − vth,lsl(t). (2)

By summing the left and right expressions over time and di-
viding tvth,l on the both sides, the equation can be reformu-
lated as:

rl(t) =

∑
(sl(t))

t
=
Wl−1rl−1(t) + bl−1

vth,l
− vl(t)

tvth,l
, (3)

where rl(t) denotes the firing rates of all neurons in layer l.
From the membrane potential updating function (Eq. 3),

vl(t) is in the range of [0, vth,l], thus we have:

lim
t→∞

vl(t)

tvth,l
= 0. (4)

As the value of sl(t) can only be 0 or 1, the firing rate rl(t) is
strictly restricted in [0, 1]. When t→∞, it’s straightforward
to conclude that

rl = clip

(
Wl−1rl−1 + bl−1

vth,l
, 0, 1

)
. (5)

Theorem 1. For an L-layered ANN with the ReLU activation
and an L-layered SNN with the reset-by-subtraction neurons,
assume that W ANN

l−1 , b
ANN
l−1 are the parameters for layer l− 1 of

the ANN, andW SNN
l−1 , b

SNN
l−1 are the parameters for layer l−1 of

the SNN. maxl is the maximum activation of layer l in ANN,
and vth,l is the firing threshold of layer l in SNN when t →
∞. The ANN can be converted to the SNN (Eq. 1 equals Eq. 4)
if for l = 1, 2, ..., L, the following equations hold:

W SNN
l−1
vth,l

= W ANN
l−1

maxl−1
maxl

,
bSNN
l−1
vth,l

=
bANN
l−1

maxl
. (6)

Proof. The conversion of ANN to SNN is built on the basis of
the equivalent of SNN firing rate and ANN activation. Con-
sidering spiking neurons of layer l and l − 1 in an SNN, the
relationship between the firing rate rl(t) and rl−1(t) is:

rl = clip

(
W SNN
l−1 rl−1 + bSNN

l−1
vth,l

, 0, 1

)
. (7)

Note that the firing rate ri(i = 1, 2, . . . , L) in Eq. 7 is re-
stricted in [0, 1]. But the ANN activation (ReLU) only satisfy
ai ≥ 0 (Eq. 1 in the main text). In fact, for countable limited
dataset, the activation generated by the network is also upper
bounded. Assume that the upper bound for the output of all
ReLU-based artificial neurons in layer i is maxi, we have:

0 ≤ ai ≤ maxi. (8)

Let zi = ai

maxi
, then 0 ≤ zi ≤ 1 (i = 1, 2, . . . , L). Accord-

ing to Eq. 1, the activation of layer l and l − 1 satisfy:

al = max
(
WANN
l−1 al−1 + bANN

l−1 , 0
)

(9)

As the al clipped by maxl equals the original al. Then,

al = clip
(
WANN
l−1 al−1 + bANN

l−1 , 0,maxl
)

(10)

By dividing maxl on both sides of Eq. 10 and substituting ai
by zi maxi, we have:

zl = clip

(
WANN
l−1 zl−1 maxl−1 +bANN

l−1
maxl

, 0, 1

)
(11)
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Comparing Eq. 7 and Eq. 11, We can conclude that Eq. 7
equals Eq. 11 if for l = 1, 2, ..., L, the following equations
hold:

W SNN
l−1
vth,l

= WANN
l−1

maxl−1
maxl

,
bSNN
l−1
vth,l

=
bANN
l−1

maxl
(12)

Theorem 2. For layer l in an ANN and the converted SNN
with constant coding, given the simulated firing rate r̂l and
the real firing rate rl, we have:

Kl <
2Ωl
t
, (13)

where Kl denotes the abbreviation of K(r̂l, rl(t)) in layer l,
Ωl = ‖r̂l‖1

‖r̂l‖22
. ‖ · ‖p denotes Lp norm.

Proof. Consider that firing is a cumulative and rounded firing
process. When r̂l is given, rl(t) is approximate as br̂ltc

t , also
r̂l,i − 1

t <
br̂l,itc
t ≤ r̂l,i, where r̂l,i denotes the i-th element

of the vector r̂l. For the l-th layer, we have:∥∥∥∥rl(t)− r̂l

∥∥∥∥2
2

=

∥∥∥∥br̂ltct − r̂l

∥∥∥∥2
2

=
∑
i

[
br̂l,itc
t
− r̂l,i

]2
=
∑
i

[(
br̂l,itc
t

)2

− 2r̂l,i
br̂l,itc
t

+ r̂2l,i

]

<
∑
i

[
r̂2l,i − 2r̂l,i

(
r̂l,i −

1

t

)
+ r̂2l,i

]
=
∑
i

[
r̂2l,i − 2r̂2l,i + 2r̂l,i

1

t
+ r̂2l,i

]
=
∑
i

2r̂l,i
t

=
2‖r̂l‖1
t

(14)

The last equality holds as simulated firing rate r̂l ≥ 0. Thus
the sum of all items in r̂l equals its L1 norm. Now we con-
clude that:

Kl =
‖rl(t)− r̂l‖22
‖r̂l‖22

<
2‖r̂l‖1
‖r̂l‖22t

=
2Ωl
t

(15)

Appendix B: Supplementary of Methods and
Experiments
The training and converting algorithm is described in Algo-
rithm 1. In Stage 2, since each trainable pi will scale the out-
put, to reduce the instability of threshold training on the deep
model, all layers share the same pi when training. Besides,
to limit pi ∈ [0, 1] of Rate Norm Layer, use sigmoid(p′i) in
place of pi.

The experiments are conducted on the PyTorch platform.
The GPU used in training is NVIDIA GeForce RTX 2080 Ti.

Algorithm 1 Mini-batch training and converting a spiking
neural network from a source ANN with Rate Norm Layers.
‘r_max’ is short for ‘running_max’.
Require:A spiking neural network fSNN with thresholds
{vth,k |k=1, 2, · · · , L}; A network with L Rate Norm Layers
fANN ; Dataset D for training; Number of epochs for Stage 1
epoch1; Number of epochs for Stage 2 epoch2
Ensure: pk=1.0, r_maxk=1.0 (k = 1, 2, . . . , L); momentum
parameter m = 0.1, λ = 0.5

1: {Stage 1: Accuracy Training for fANN }
2: for e = 1 to epoch1 do
3: for length of Dataset D do
4: Sample minibatch (x,y) from D
5: r̂∗0 = x
6: for k = 1 to L do
7: r_maxk = (1-m) r_maxk +m max(r̂∗k−1)
8: θk = pk r_maxk
9: r̂∗k = clip[(Wk−1r̂

∗
k + bk−1)/θk,0,1]

10: end for
11: Loss = L (r̂∗L; y)
12: Backward propagation through network
13: Update Wk and bk(k = 1, 2, . . . , L− 1)
14: end for
15: end for
16: {Stage 2: Fast Inference Training for fANN }
17: for e = 1 to epoch2 do
18: for length of Dataset D do
19: Sample minibatch (x,y) from D
20: r̂∗0 = r̂′0 = x
21: for k = 1 to L do
22: r_maxk = (1-m) r_maxk +m max(r̂∗k−1)
23: θk = pk r_maxk
24: r̂∗k = clip[(Wk−1r̂

∗
k + bk−1)/θk,0,1]

25: end for
26: for k = 1 to L do
27: r_maxk = (1-m) r_maxk +m max(r̂′k−1)
28: θk = pk r_maxk
29: r̂′k = clip[(Wk−1r̂

′
k + bk−1)/θk,0,1]

30: end for
31: Loss = T (r̂∗L, r̂

′
L) (Eq.13)

32: Backward propagation through network
33: Update pk(k = 1, 2, . . . , L)
34: end for
35: end for
36: {Converting SNN fSNN from pre-trained fANN }
37: for k = 1 to L do
38: fSNN .Wk = fANN .Wk

39: fSNN .bk = fANN .bk
40: fSNN .vth,k = fANN .θk
41: end for
42: return fSNN
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