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Abstract
This paper studies a multi-armed bandit (MAB)
version of the range-searching problem. In its ba-
sic form, range searching considers as input a set
of points (on the real line) and a collection of (real)
intervals. Here, with each specified point, we have
an associated weight, and the problem objective
is to find a maximum-weight point within every
given interval. The current work addresses range
searching with stochastic weights: each point cor-
responds to an arm (that admits sample access)
and the point’s weight is the (unknown) mean of
the underlying distribution. In this MAB setup,
we develop sample-efficient algorithms that find,
with high probability, near-optimal arms within
the given intervals, i.e., we obtain PAC (probably
approximately correct) guarantees. We also pro-
vide an algorithm for a generalization wherein the
weight of each point is a multi-dimensional vector.
The sample complexities of our algorithms depend,
in particular, on the size of the optimal hitting set
of the given intervals. Finally, we establish lower
bounds proving that the obtained sample complex-
ities are essentially tight. Our results highlight the
significance of geometric constructs (specifically,
hitting sets) in our MAB setting.

1 Introduction
Range searching is a fundamental problem in computational
geometry and database theory; see, e.g., [Agarwal and Erick-
son, 1999; Agarwal, 2017; Gupta et al., 2018; Rahul and Tao,
2019]. This problem has been extensively studied over the
past few decades, and applications of range searching (along
with its variants) arise in numerous real-world domains, such
as spatial databases [Samet, 1990], temporal databases [Agar-
wal et al., 2003], and networking [Li et al., 2003].

In its basic form, range searching considers as input a set
of points in R—each with an associated weight—and a col-
lection of (real) intervals.1 The problem’s objective is to effi-
ciently find, for every given interval I , an input point within
I with maximum weight.

∗Contact Author
1The given intervals are not necessarily disjoint.

Note that this classic formulation of range searching ad-
dresses fixed (deterministic) weights, i.e., one assumes that
the weight of each point is known a priori. By contrast, many
modern applications require queries to be processed on un-
certain (stochastic) data. As a stylized example of such a
setting, consider a paid crowdsourcing platform wherein the
competency of the participants (say, in performing a type of
task) is not known beforehand. Here, each participant a can
be represented as a point pa ∈ R—which denotes the fixed
monetary payment for a—and the competency (weight) of a
can be modeled as a stochastic quantity. In this setup, range
searching corresponds to the natural problem of finding, for
each queried price range (i.e., within each given interval), the
most proficient crowdworker.

Motivated, in part, by such applications, we study range
searching in the multi-armed bandit (MAB) framework. In
particular, we address a natural formulation wherein each in-
put point pa ∈ R is associated with a random variable (drawn
from an unknown distribution) and the weight of the point
corresponds to the (a priori unknown) mean, µa, of the ran-
dom variable. That is, each given point is an arm and the
objective is to identify an optimal (with respect to µa) arm
within each given interval. Here, as is standard in the MAB
literature, we assume sample access to the random variables
associated with the arms/points. The current work develops
novel, sample-efficient algorithms for this stochastic version
of range searching.

We also design algorithms for a pertinent generalization
wherein the weight of each point is a d-dimensional vector,
i.e., the random variables associated with every arm/point
and, hence, the means µas are d-dimensional vectors. For the
crowdsourcing example mentioned above, this generalization
models settings in which the proficiency of each crowdworker
needs to be assessed across d different types of tasks.2 In
this multi-dimensional setting, the problem objective extends,
from finding an optimal arm per interval, to computing a set
of Pareto optimal arms within each input interval.

Our Contributions and Techniques. Given the MAB na-
ture of the problems, we obtain PAC-style (probably approx-
imately correct) results, i.e., the developed algorithms com-
pute, with high probability, near-optimal arms for every given

2As before, the monetary payment for each crowdworker is a
fixed and known number.
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interval.
The sample complexities of our algorithms depend, in par-

ticular, on the size of the optimal hitting set of the given
collection of intervals. Recall that a (finite) set of points,
HS ⊂ R,3 is said to be a hitting set for a collection of intervals
I = {I1, I2, . . . , Iq} iff HS contains a point from the interior
of each interval Ii ∈ I . Let τ be the size of a minimum-
cardinality hitting set for the queried collection of intervals I
and n be the number of input points (arms). We show that4

(i) For range searching with single-dimensional weights
(µa ∈ R), i.e., for finding (near) optimal arms for ev-
ery interval, the number of samples required by our al-
gorithm is O

(
n
ε2 log

(
τ
εδ

))
(Theorem 1). Here, ε > 0 is

the approximation parameter and δ > 0 is the confidence
parameter in the PAC guarantee.

(ii) For range searching with multi-dimensional weights
(µa ∈ Rd), i.e., for finding (near) Pareto optimal arms
for every interval, the number of samples required by
our algorithm is O

(
nd
ε2 log( τdεδ )

)
(Theorem 3).

(iii) Finally, we establish lower bounds proving that the sam-
ple upper bounds obtained in our algorithms are essen-
tially tight (Theorem 4). Specifically, these results show
that a sample complexity dependence on log τ is un-
avoidable, in general.

Notably the above-mentioned upper bounds do not explic-
itly depend on the number of input intervals, q. Indeed, the
size of an optimal hitting set, τ , can be significantly smaller
than q, e.g., τ = 1 for a collection of intervals with a common
intersection. Even in the worst case (with pairwise-disjoint
intervals), we have τ = q; one can always select the mid-
point of each given interval to obtain a hitting set. Notably, a
guarantee in terms of τ provides refined (and matching) up-
per and lower bounds. It also highlights a novel application
of this geometric parameter in the current MAB setting.

At a high level, our algorithm for single-dimensional
weights proceeds by using the τ points in the optimal hit-
ting set to construct τ +1 pairwise-disjoint intervals (referred
to as slabs) that cover all the input intervals (which them-
selves might have multiple intersections). A key idea then
is to identify—through relevant subroutines—a candidate set
of arms within each of the τ + 1 constructed slabs and judi-
ciously combine them to find the desired set of near-optimal
arms for the input intervals. The subroutines employed to
populate the candidate set of arms are based on variations of
a result of Cheu et al. [2018] that addresses the skyline prob-
lem (with scalar weights).

We build upon this design template, with additional tech-
nical insights, to obtain an algorithm for d-dimensional
weights. Towards a subroutine, we develop a PAC algorithm
for the d-dimensional version of the skyline problem (see
Subsection 4.1 for details). Note that the algorithm provided
in [Cheu et al., 2018] solely address the single-dimensional

3The hitting set is not required to be a subset of the input points.
4Note that, even though the single-dimensional-weights setting

(d = 1) is a special case of the multi-dimensional one, we present
the settings separately to highlight the layered development of the
algorithmic ideas.

version of the skyline problem. Furthermore, even the scalar
instantiation (obtained by setting d = 1) of our skyline algo-
rithm is distinct from that of Cheu et al. [2018].

Related Work. For a broad survey of MAB literature see,
e.g., [Slivkins, 2019]. Even-Dar et al. [2006] develop a
PAC algorithm for the problem of identifying a best arm
among all the n given ones; see also [Domingo et al., 2002].
The algorithm of Even-Dar et al. has a sample complexity
of O

(
n
ε2 log 1

δ

)
and a matching lower bound was obtained

in [Mannor and Tsitsiklis, 2004]. Multiple variants of best
arm identification have also been studied in the literature;
see, e.g., [Audibert and Bubeck, 2010; Bubeck et al., 2013;
Kalyanakrishnan and Stone, 2010; Garivier and Kaufmann,
2016; Russo, 2016; Yu et al., 2018]. Note that best arm
identification can be viewed as a special case of bandit range
searching (by considering a single input interval that contains
all the arms).

Addressing settings in which each arm is associated with
a d-dimensional random variable, the work of Auer et
al. [2016] provides a PAC algorithm—with sample complex-
ity O

(
n
ε2 log nd

δ

)
—for finding Pareto optimal arms. This set-

ting is generalized in our range-searching framework with d-
dimensional weights.

Cheu et al. [2018] study a setup wherein the arms are po-
sitioned on the real line and they provide a PAC algorithm to
find a skyline. Bandit range searching generalizes this sky-
line problem as well. Complementarily, in the case of single-
dimensional weights, one can use the algorithm of Cheu et
al. [2018] as a subroutine for range searching. For multi-
dimensional weights, we in fact develop a novel algorithm
for computing skylines. This result generalizes the work of
Cheu et al. [2018] (to multi-dimensional weights) and is po-
tentially interesting in its own right. The technical connec-
tions between range searching and skylines are detailed in
subsequent sections.

Multiple recent results in computational geometry have ad-
dressed the (classic) range searching problem over uncertain
data [Tao et al., 2007; Agarwal et al., 2009; Agarwal et al.,
2018; Li and Wang, 2016]. These works primarily address
uncertainty in the point locations. By contrast, the current
setting studies fixed point locations, but stochastic weights.
Naive Algorithms: A direct approach for the problem at hand
is to first compute the empirical estimates of the weights
(means) by sampling each arm O

(
1
ε2 log n

δ

)
times and then

report the optimal arms with respect to the estimates. This
method requires O

(
n
ε2 log n

δ

)
samples overall; see, e.g., the

NAIVE algorithm in [Even-Dar et al., 2006] for a PAC anal-
ysis. One can also show (by considering a union bound over
the intervals, instead of the arms) that O

(
n
ε2 log q

δ

)
samples

suffice; here q is the number of input intervals. Notably, the
current work goes beyond these generic approaches and in-
vokes problem-specific insights (e.g., the use of hitting sets)
to develop refined upper bounds. Our tight lower bounds fur-
ther substantiate the relevance of the obtained refinement.

2 Notation and Preliminaries
The paper studies settings in which one has access to inde-
pendent draws from n unknown distributions, each supported
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on [0, 1], i.e., we have sample access to n arms. Throughout,
µa ∈ [0, 1] will be used to denote the (unknown) mean under
the ath distribution and we will refer to µa as the weight of
arm a ∈ [n] := {1, 2, . . . , n}.

Furthermore, in our framework, each arm a ∈ [n] is as-
sociated with a (fixed) point pa ∈ R. The set of points P :=
{p1, . . . , pn} is given to us as input, along with a collection of
q real intervals I := {Ii = [`i, ri]}qi=1. Without loss of gener-
ality, we will assume that each given interval has a non-empty
interior, i.e., for each interval Ii = [`i, ri] we have `i < ri.
For any interval J = [`, r], write A(J) to denote the set of
arms belonging to J , i.e., A(J) := {a ∈ [n] | ` ≤ pa ≤ r}.

The current work studies the bandit range searching prob-
lem: given a set of points P = {pa}na=1, a collection of in-
tervals I = {Ii}qi=1, and sample-access to n arms, find—for
each given interval Ii—an arm a ∈ A(Ii) with maximum
weight µa.

Given the multi-armed bandit nature of this problem, we
obtain PAC (probably approximately correct) guarantees; in
particular, we develop sample-efficient algorithms that find,
with high-probability, near-optimal arms for each given inter-
val. We next define the PAC constructs, with approximation
parameter ε > 0 and confidence parameter δ > 0.

Definition 1 (ε-optimality). For any interval I and parame-
ter ε > 0, an arm a ∈ A(I) is said to be ε-optimal for I iff
µa ≥ µb − ε for all b ∈ A(I).

Definition 2 ((ε, δ)-PAC guarantee). An algorithm ALG is
said to achieve the (ε, δ)-PAC guarantee for the bandit range
searching problem, iff—given any problem instance (P, I)—
ALG finds, with probability at least (1−δ), an ε-optimal arm
for every interval I ∈ I.

Range Searching with Multi-Dimensional Weights. We
will also develop algorithms for a generalization of bandit
range searching wherein the weights are multi-dimensional
vectors. In this generalization, for every arm, the underlying
random variable is d-dimensional and component-wise sup-
ported on [0, 1]. That is, for each arm a ∈ [n] the (unknown)
weight µa ∈ [0, 1]d. The range aspects of the problem remain
unchanged: each arm a is associated with a (given) point
pa ∈ R and, as before, we are given a collection of inter-
vals I = {Ii = [`i, ri]}qi=1. In this setup, since the weights
are d-dimensional vectors (instead of scalars), the problem
objective extends to finding ε-Pareto optimal arms (instead of
ε-optimal arms).

Note that in the single-dimensional case, if a was an ε-
optimal arm in set A, then (hypothetically) adding ε to the
weight µa, and keeping the weight of all the other arms un-
changed, ensured proper optimality of a. The notion of ε-
Pareto optimality (defined next) essentially builds upon this
perspective. It deems a set of arms T to be ε-Pareto optimal
if (hypothetically) adding ε1 to the d-dimensional weight of
each arm in T (and keeping the weight of the other arms un-
changed) gives us a legitimately Pareto optimal set. Formally,

Definition 3 (ε-Pareto optimality). For any interval I and
parameter ε > 0, a subset T ⊆ A(I) is said to be ε-Pareto
optimal for interval I iff (a) for all arms b ∈ A(I) there exists
an arm a ∈ T such that µa ≥ µb − ε1, and (b) for all arms

a ∈ T there does not exist an arm b ∈ A(I) such that µb ≥
µa + ε1.

Here, the inequalities between weights are enforced
component-wise and 1 denotes the all-ones vector. We note
that, up to pruning, a set T that satisfies Definition 3 also up-
holds the approximate-optimality criterion (specifically, Suc-
cess Condition 2) studied in [Auer et al., 2016].

Analogous to the single-dimensional case, we define the
PAC guarantee under d-dimensional weights: an algorithm
ALG is said to be (ε, δ)-correct for bandit range searching
with multi-dimensional weights, iff—given any problem in-
stance (P, I)—ALG finds, with probability at least (1 − δ),
an ε-Pareto optimal set of arms for every interval I ∈ I.

Hitting Set and Slabs. A finite set of points HS ⊂ R is
said to be a hitting set for a collection of intervals I =
{Ii = [`i, ri]}qi=1 iff for each Ii = [`i, ri] ∈ I there exists
a point e ∈ HS such that `i < e < ri.

Let HS∗ denote a minimum-cardinality hitting set for the
given collection of intervals I and write τ := |HS∗|.5 Note
that the size of an optimal hitting set, τ , is at most the number
of intervals in I, i.e., τ ≤ q.

Our algorithms use the τ points in an optimal hitting set
HS∗ and construct τ + 1 intervals that intersect only at their
endpoints and partition the real line. In particular, with
e1 < e2 < . . . < eτ denoting the set of points in HS∗, define
the following collection of τ + 1 intervals: S0 := (−∞, e1],
Sτ := [eτ ,∞), and Sj := [ej , ej+1] for 1 ≤ j < τ .

We will refer to these τ + 1 intervals as slabs. Note that,
by construction, the slabs are indexed in increasing order of
their left (or, equivalently, right) endpoints. Furthermore, the
slabs have pairwise-disjoint interiors and their union covers
all the input intervals, ∪I∈II ⊆ ∪τj=0Sj . We will also utilize
the following property of slabs, which follows from the fact
that their endpoints constitute a hitting set: for every input
interval I ∈ I there exists a sequence of at least two slabs,
Sx, Sx+1, . . . , Sy , that intersect with I , i.e.,

I ∩ St 6= ∅ for x ≤ t ≤ y (P)

Property (P) implies that every input interval gets partitioned
among two or more slabs.

3 Single-Dimensional Weights
We next state our main result for bandit range searching un-
der single-dimensional weights. Since the following theorem
can be obtained by instantiating the multi-dimensional gener-
alization (Theorem 3 with d = 1); a detailed description of
this scalar setting is deferred to the full version of this paper.

Theorem 1. Given any problem instance (P, I) with n
arms, algorithm ALG-RS drawsO

(
n
ε2 log( τεδ )

)
samples and

achieves the (ε, δ)-PAC guarantee for bandit range searching
(with single-dimensional weights); here τ denotes the size of
the minimum-cardinality hitting set for I.

5Given a collection of intervals I, an optimal hitting set HS∗

(and, hence, τ ) can be computed in polynomial-time, via a greedy
algorithm.
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4 Multi-Dimensional Weights
This subsection develops our PAC algorithm for range-
searching with d-dimensional weights. Specifically, for each
arm a ∈ [n], the (unknown) weight/mean is a d-dimensional
vector, µa ∈ [0, 1]d, and the problem objective is to find ε-
Pareto optimal arms (Definition 3) within each input interval.

The range aspects of the setup are as mentioned previ-
ously: each arm a ∈ [n] is associated with a (given) point
pa ∈ R and we are also given a collection of intervals
I = {Ii = [`i, ri]}qi=1.

Our algorithm, ALG-D-RS (Algorithm 2 in Section 4.2),
begins by constructing slabs {Sj}j from an optimal hitting set
of the input collection intervals I. Then, ALG-D-RS executes
the following two subroutines for each slab Sj : D-LSKY(·)
and D-RSKY(·). The subset of arms collected through these
executions serve as a candidate set C and the algorithm com-
putes the desired set of arms by selecting Pareto optimal (with
respect to the empirically estimated weights) candidate arms
within each input interval Ii.

The subroutines D-LSKY and D-RSKY solve the skyline
problem, which in fact can be viewed as a special case of
bandit range searching. Specifically, in the skyline problem
the points associated with the arms, {pa ∈ R}a, themselves
generate the collection of query intervals I: in the left-skyline
problems we have I = {[pa, p∞]}a and in the right-skyline
problems I = {[p−∞, pa]}a, where p∞ := maxa pa and
p−∞ := mina pa.

Prior work has only focused on the single-dimensional ver-
sion of the skyline problem (see [Cheu et al., 2018]). Hence,
towards implementations of the subroutines D-LSKY and
D-RSKY, in Section 4.1 we develop a novel algorithm for
computing ε-skylines with d-dimensional weights.

4.1 Skyline with Multi-Dimensional Weights
In this section we develop a PAC algorithm for the skyline
problem with weights in [0, 1]d.

Definition 4 (ε-skyline for d-dimensional weights). For an
interval J = [`, r] and parameter ε > 0, a set of arms L ⊆
A(J) is said to be an ε-left-skyline within interval J iff (i) for
each arm b ∈ A(J), the set L contains an ε-Pareto optimal
set T for the interval [pb, r], and (ii) each arm in L is ε-Pareto
optimal for some interval [pb, r], with b ∈ A(J).

Analogously, an ε-right-skyline, R, is defined considering
intervals {[`, pb]}b∈A(J). The following characterization of
ε-skylines will be used in the analysis; all the missing proofs
appear in the full version of this paper.

Proposition 1. A set of arms L ⊆ A(J) is an ε-left-skyline
within interval J = [`, r] iff (i) for every arm b ∈ A(J), there
exists an arm β ∈ L that satisfies pβ ≥ pb and µβ ≥ µb−ε1,
and (ii) for each arm β ∈ L, there does not exist an arm
x ∈ A(J) such that px ≥ pβ and µx ≥ µβ + ε1.

In Proposition 1—and in the remainder of this section—the
inequalities are enforced component-wise. At a high level,
the first condition of the proposition requires that for each
arm b in the given interval, L contains a dominating (com-
ponentwise and within a factor of ε) point to the right of b.
The second condition mandates that any arm in L is itself not

dominated (componentwise and beyond a factor of ε) by arms
to its right.

Our algorithm, D-LSKY (Algorithm 1), starts by settingA1

as the set of all arms within the given interval and ε1 as an ini-
tial approximation parameter. The algorithm then considers a
partition of [0, 1]d into hypercubes of side length ε1/4. Draw-
ing a conservative number of samples, the algorithm finds an
estimate µ̂a ∈ [0, 1]d for each arm a ∈ A1 and partitions the
set of arms A1 itself based on how the estimates fall across
different hypercubes.

For any hypercube B, let B(A1) be the set of arms (in A1)
whose estimates are within B. We will establish that, if the
cardinality of B(A1) is sufficiently large, then we can drop
half of the arms in B(A1) from consideration, and still not
loose ε-Pareto dominating arms. In particular, from every
large-sized set B(A1), the algorithm removes from consid-
eration half of the arms x ∈ B(A1) whose px value is less
than the median of {py}y∈B(A1). This update ensures that
the number of arms under consideration decreases geometri-
cally, and at the same time, the set of arms that remain, say
A2, continues to include an approximate skyline. The algo-
rithm repeats analogous steps over A2, with an updated ap-
proximation parameter ε2 = 3ε1/4. Iteratively, the algorithm
continues until the number of remaining arms is sufficiently
small. At this point, the algorithm concludes by sampling
the final set of arms AT (to obtain accurate-enough estimates
of their weights) and returning a skyline (based on the final
estimates) within AT .

We will now define constructs that will be useful in the
design and analysis of our algorithm. For η ∈ (0, 1], de-
fine a lattice L(η) as the set of vectors in [0, 1]d whose
components are integer multiples of η, i.e., L(η) :={

(κ1η, κ2η, . . . , κdη) ∈ [0, 1]d | κ1, . . . , κd ∈ Z
}

. For each
vector g ∈ L(η), define a (hyper) cube around it as
B(η, g) :=

{
ν ∈ [0, 1]d | ‖ν − g‖∞ ≤ η

2

}
. Note that the

collection of cubes {B(η, g)}g∈L(η) forms a cover of [0, 1]d.
Faces of these cubes can intersect. However, for ease of pre-
sentation and given that the interiors of the cubes are pair-
wise disjoint, we will consider them to constitute a partition
of [0, 1]d; in particular, by breaking ties arbitrarily, we will
assume that each ν ∈ [0, 1]d belongs to exactly one cube in
{B(η, g)}g∈L(η).

In each iteration t, with approximation parameter εt > 0,
the algorithm considers the collection of cubes obtained by
setting η = εt/4, i.e., it considersBt :=

{
B
(
εt
4 , g

)}
g∈L( εt

4 ).

Note that the cardinality of Bt is at most
(

4
εt

)d
. 6

In the analysis, we will consider a representative arm r(B)
for each cube B ∈ Bt: among all arms b whose weight µb is
in B, arm r(B) is the one with the maximum pr(B) value.

Definition 5 (Representative Arms). In any iteration t—with
set of arms At under consideration—an arm r(B) ∈ At is
said to be the representative of cube B ∈ Bt iff µr(B) ∈ B
and pr(B) ≥ pb for all arms b ∈ At whose weight µb ∈ B.

6The number of hypercubes is actually (d 4
εi
e)d, but we assume

4
εi

is an integer for ease of analysis.
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Algorithm 1 D-LSKY: finds ε-left-skyline with probability
at least 1− δ
Input: Interval J , with sample access to arms inA(J), points
{pa}a∈A(J), and parameters ε, δ > 0. Output: Set of arms
S ⊆ A(J)

1: Initialize set A1 = A(J), parameters ε1 = ε/5, δ1 = δ/2,
and iteration count t = 1

2: while |At| > 120
(

4
εt

)d
do

3: For each arm a ∈ At, find an empirical estimate,
µ̂a ∈ [0, 1]d, of its weight, by sampling the arm
8

ε2t
log

((
4

εt

)d
50d

δt

)
times

4: Initialize the set of arms to drop, Dt = ∅
5: for all cubes B ∈ Bt do
6: Write B(At) := {x ∈ At | µ̂x ∈ B} {B(At) is de-

fined using the estimated weights}
7: If |B(At)| > |At|

10

(
εt
4

)d
, then Dt ← Dt ∪{

x ∈ B(At) : px < the median of {py}y∈B(At)

}
8: end for
9: Set At+1 = At \ Dt, εt+1 = 3εt/4, δt+1 = δt/2, and

update t←− t+ 1
10: end while
11: For each arm a ∈ At, find an estimate, µ̂a ∈ [0, 1]d, of

its weight, by sampling the arm
1

ε2t
log

(
|At|d
δt

)
times

12: Set D̃ := {z ∈ At | pz ≤ px and µ̂z < µ̂x for some x ∈
At} {With respect to the estimates, condition (ii) of
Proposition 1 does not hold for arms in D̃}

13: return At \ D̃

Write Rt := {r(B)}B∈Bt
to denote the set of all represen-

tatives in iteration t. Note that representative arms are defined
considering the exact (but unknown) weights µb ∈ [0, 1]d.
Still the definition is relevant, since we use these arms solely
for the purposes of analysis, and not in the algorithm (which
only has access to estimated weights µ̂bs). Also, note that the

size of Rt is at most that of Bt and, hence, |Rt| ≤
(

4
εt

)d
.

The next lemma (Lemma 2) highlights a significance of
representative arms–it asserts that R1 (the set of represen-
tative arms in the first iteration) satisfies condition (i) of
Proposition 1, with an (absolute) approximation factor of ε/20.
Then, Lemma 3 (stated below) guarantees that, with high
probability, the algorithm essentially maintains condition (i)
between consecutive Rts.
Lemma 2. For every arm b ∈ A(J), there exists an arm
r ∈ R1 that satisfies pr ≥ pb and µr ≥ µb − ε

201.

Lemma 3. In any iteration t, with probability 1−δt, for every
representative arm r ∈ Rt, there exists an arm γ ∈ Rt+1

such that µγ ≥ µr − εt1 and pγ ≥ pr.
The following lemma bounds the number of samples re-

quired by D-LSKY.
Lemma 4. For any given interval J with m arms (m =
|A(J)|), D-LSKY draws O

(
md
ε2 log d

εδ

)
samples.

We next state and establish the main result of this section.

Theorem 2. Given any interval J with m arms, D-LSKY
draws O

(
md
ε2 log d

εδ

)
samples and returns an ε-left-skyline

within J with probability at least 1− δ.

Proof Sketch. In the interest of space, we defer the technical
details to the full version of this paper and provide a proof
sketch here. The stated sample complexity of D-LSKY fol-
lows directly from Lemma 4. Hence, we establish the theo-
rem by showing that the returned setAT \D̃ satisfies both the
conditions in Proposition 1 and, hence, is an ε-left-skyline;
here T denotes the total number of iteration of the while loop
in D-LSKY.

Towards this, first note that the representative set RT ⊆
AT satisfies condition (i) of Proposition 1, with probability
at least 1 −

∑T−1
t=1 δt. This follows from Lemma 2 and a

repeated application of Lemma 3. Furthermore, the sampling
in Line 11 ensures that, with probability 1 − δT , we have
‖µ̂a − µa‖∞ ≤ εT ≤ ε/5 for every arm a ∈ AT . For the
rest of the proof we will assume that these bounds hold and
AT satisfies condition (i). It suffices to prove the stated claim
under this assumption, since it holds with probability at least
1−

∑T−1
t=1 δt − δT ≥ 1− δ.

We note that AT \ D̃ continues to satisfy condition (i) and
it also bears conditions (ii) of Proposition 1. Condition (i)
holds (with an additional approximation loss of at most ε/20),
since in D̃ we are only removing arms that are themselves
Pareto dominated, under accurate-enough estimates. Simi-
larly, conditions (ii) follows from the fact that in AT \ D̃ we
are retaining arms that are not Pareto dominated with respect
to sufficiently-accurate estimates µ̂as, i.e., the retained arms
could not have been Pareto dominated under µas beyond an
absolute approximation factor of ε. Overall, we get that the
returned set AT \ D̃ bears both the conditions and, hence, it
is an ε-left-skyline.

Analogous to Theorem 2, one can achieve a PAC guaran-
tee for ε-right-skylines by executing D-LSKY on negated pa
values.

4.2 Algorithm for Multi-Dimensional Weights
This subsection develops an algorithm for bandit range
searching with d-dimensional weights. As mentioned previ-
ously, this result is obtained by reducing range searching to
finding ε-skylines over slabs.

In particular, given interval J and parameters ε′, δ′ >
0, the subroutine D-LSKY(J, ε′, δ′) finds, with probabil-
ity at least 1 − δ′, an ε′-left-skyline within J . Similarly,
D-RSKY(J, ε′, δ′) finds, with probability at least 1 − δ′, an
ε′-right-skyline within J . These subroutines—in addition to
identifying the desired set of arms—provide an empirical es-
timate µ̂a ∈ [0, 1]d of the true weight (mean) µa ∈ [0, 1]d of
each returned arm a. Specifically, subsumed within the same
success probability as before, for every returned arm a we
have an empirical estimate µ̂a which satisfies ‖µa− µ̂a‖∞ ≤
ε′. This property is satisfied by the algorithms in Section 4.1.

By executing these two subroutines over each slab,
ALG-D-RS populates a set of candidate arms C along with
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Algorithm 2 ALG-D-RS: (ε, δ)-PAC algorithm for range
searching d-dimensional weights
Input: Set of points P = {pa ∈ R}na=1, collection of
intervals I = {Ii = [`i, ri]}qi=1, and sample access to the n
arms, along with parameters ε > 0 and δ > 0.
Output: Subsets of arms {Ti ⊆
[n]}qi=1

1: Let e1 < e2 < . . . < eτ constitute a minimum-size hit-
ting set for I, and write e0 = −∞ and eτ+1 = +∞

2: Define slabs Sj := [ej , ej+1], for 0 ≤ j ≤ τ
3: For every slab Sj , with 0 ≤ j ≤ τ , set left sky-

line Lj = D-LSKY
(
Sj ,

ε
3 ,

δ
2(τ+1)

)
and right skyline

Rj = D-RSKY
(
Sj ,

ε
3 ,

δ
2(τ+1)

)
4: Set of candidate arms C =

⋃τ
j=0 (Lj ∪Rj)

5: For each interval Ii ∈ I, set Di =
{x ∈ C ∩ A(Ii) | µ̂x < µ̂y for some y ∈ C ∩ A(Ii)}
and Ti = (C ∩ A(Ii)) \ Di {With respect to the
estimates, Di is the set of Pareto dominated arms}

6: return {T1, . . . , Tq}

their weight estimates. Finally, for each input interval Ii, the
algorithm considers the set of candidate arms within Ii and
returns the ones that form a Pareto optimal set with respect to
the estimates.

The following theorem asserts that ALG-D-RS achieves
the desired PAC guarantee in a sample-efficient manner.

Theorem 3. Given a problem instance (P, I) with n arms,
algorithm ALG-D-RS draws O

(
nd
ε2 log( τdεδ )

)
samples and

achieves the (ε, δ)-PAC guarantee for bandit range search-
ing with d-dimensional weights; here τ denotes the size of
the minimum cardinality hitting set for I.

Proof Sketch. In the interest of space, we defer the techni-
cal details to the full version of this paper and provide a
proof sketch here. For any slab Sj = [ej , ej+1], the subrou-

tines D-LSKY
(
Sj ,

ε
3 ,

δ
2(τ+1)

)
and D-RSKY

(
Sj ,

ε
3 ,

δ
2(τ+1)

)
require O

(
nj d
ε2 log 2d(τ+1)

εδ

)
samples each; here, nj :=

A(Sj). Note that
∑τ
j=0 nj ≤ 2n; this inequality follows

from the fact that any arm can be a part of at most two
successive slabs. Now, summing over the sample complex-
ities of the subroutines, across all the slabs, we get that
O
(
nd
ε2 log( τdεδ )

)
samples are drawn in the algorithm.

Next, we complete the proof by showing that the
ALG-D-RS achieves the (ε, δ)-PAC guarantee. Write E to
denote the event that, for all the slabs, the subroutines find
the desired set of arms along with accurate-enough estimates.
Given that the success probability of each subroutine is at
least

(
1− δ

2(τ+1)

)
and there are 2(τ + 1) subroutine instan-

tiations, we get (via the union bound) that P{E} ≥ 1− δ.
We will prove that, under event E , for every input interval

Ii ∈ I, the set of arms Ti ⊆ A(Ii) (selected in Line 5) sat-
isfies both part (a) and (b) of Definition 3, i.e., Ti is ε-Pareto

optimal for Ii. Hence, the desired PAC guarantee holds.
Fix an interval Ii ∈ I and consider any arm b ∈ A(Ii). We

will first note the that there necessarily exists an arm a ∈ Ti
that satisfies condition (a) (of Definition 3) for arm b. To-
wards this, note that Property (P) of our slab construction (see
Section 2) ensures that interval Ii is partitioned among two or
more slabs, Sx, Sx+1, . . . , Sy; in particular, x < y. We will
perform a case analysis based on whether arm b is contained
in Sx and one of the intermediate slabs, or in Sy .
Case I: b ∈ A(St) with x ≤ t < y. Here, under event E , the
set of arms Lt (obtained by executing D-LSKY on St) is an
(ε/3)-left-skyline. Therefore, using condition (i) in Propo-
sition 1, one can show that there exists a candidate arm in
C ⊇ Lt and, hence, an arm in Ti that satisfies condition (a)
with respect to b. Case II: b ∈ A(Sy). The analysis here
relies on the (ε/3)-right-skyline, Ry , of slab Sy and is other-
wise identical to the previous case.

It only remains to prove that Ti satisfies part (b) of Defini-
tion 3. This follows from the observation that Ti retains arms
that are not Pareto dominated with respect to sufficiently-
accurate estimates µ̂as, i.e., the retained arms could not have
been Pareto dominated under µas beyond an absolute approx-
imation factor of ε. Therefore, parts (a) and (b) of Definition
3 hold for Ti, proving that Ti is indeed ε-Pareto optimal for
Ii. This completes the proof.

5 Lower Bound
This section presents a lower bound which shows that our al-
gorithms are essentially optimal in terms of sample complex-
ity. The following result is obtained via a nontrivial reduction
from a problem studied in [Cheu et al., 2018]; details of the
reduction are deferred to the full version of this paper.

Theorem 4. For each τ ∈ Z+, there exists a bandit range
searching instance, with n arms and interval collection I,
such that the size of optimal hitting set for I is τ , and any
algorithm that achieves the (ε, δ)-PAC guarantee for the in-
stance necessarily draws Ω

(
n
ε2 log

(
τ
εdδ

))
samples. Here, d

is the ambient dimension of the weights.

6 Conclusion and Future Work
This work establishes essentially tight sample-complexity
bounds for the problem of identifying optimal arms within
a given collection of intervals. Complementing the current
focus on sample-efficient algorithms, one can also consider a
regret version of the range searching.

Extending the range aspects to higher dimensions (e.g.,
finding optimal arms within rectangles) would also be inter-
esting. More generally, the interplay of computational ge-
ometry and multi-armed bandits stands as a rich source of
geometric problems over uncertain data.
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