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Abstract

Network representations are powerful tools for the
analysis of time-varying financial complex system-
s consisting of multiple co-evolving financial time
series, e.g., stock prices, etc. In this work, we de-
velop a new kernel-based similarity measure be-
tween dynamic time-varying financial networks.
Our ideas is to transform each original financial
network into quantum-based entropy time series
and compute the similarity measure based on the
classical dynamic time warping framework associ-
ated with the entropy time series. The proposed
method bridges the gap between graph kernels and
the classical dynamic time warping framework for
multiple financial time series analysis. Experi-
ments on time-varying networks abstracted from fi-
nancial time series of New York Stock Exchange
(NYSE) database demonstrate that our approach
can effectively discriminate the abrupt structural
changes in terms of the extreme financial events.

1 Introduction

Network representations are powerful tools to analyze the
financial market that can be considered as a time-varying
complex system consisting of multiple co-evolving finan-
cial time series [Zhang and Small, 2006; Nicolis et al., 2005;
Shimada et al., 2008; Silva et al., 2015], e.g., the stock mar-
ket with the trade price. This is based on the idea that
the structure of the so-called time-varying financial network-
s [Bullmore and Sporns, 2009] inferred from the correspond-
ing time series of the system can represent richer physical in-
teractions between system entities than the original individual
time series. One main objective of existing approaches is to
detect the extreme financial events that can significantly in-
fluence the network structures [Bai et al., 2020].

In machine learning, graph kernels have been widely em-
ployed for analyzing structured data represented by graphs
or networks [Xu et al., 2018]. The main advantage of em-
ploying graph kernels is that they can offer us an effec-
tive way of mapping the network structures into a high di-
mensional space so that the standard kernel machinery for
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vectorial data is applicable to the network analysis. Most
existing graph kernels are based on the idea of decompos-
ing graphs or networks into substructures and then mea-
suring pairs of isomorphic substructures [Haussler, 1999],
e.g., graph kernels based on counting pairs of iso-
morphic a) paths [Borgwardt and Kriegel, 2005], b) walk-
s [Kashima er al., 2003], and c¢) subgraphs [Bai et al., 2015b]
or subtrees [Shervashidze er al., 2009]. Unfortunately, direct-
ly adopting these graph kernels to analyze the time-varying
financial networks inferred from original vectorial time se-
ries tends to be elusive. This is because these financial
network structures are by nature complete weighted graph-
s [Ye er al., 2015; Bai et al., 2020], where each vertex repre-
sents an individual time series of a stock and is adjacent to
all remainder vertices, and each edge represents the interac-
tion (e.g., the correlation or distance) between a pair of co-
evolving financial time series. It is difficult to decompose a
complete weighted graph into the required substructures, and
thus influences the effectiveness of most existing graph ker-
nels for financial network analysis.

One way to address the aforementioned problem is to con-
struct sparse structures of the original time-varying financial
networks. With this scenario, Cui et al. [Cui et al., 2018]
have used the well-known threshold-based approach to pre-
serve the weighted edges falling into the larger 10% of the
weights, and employed the classical graph kernels associat-
ed with the resulting sparse structures for financial network
analysis. Bai et al. [Bai er al., 2020] have abstracted the min-
imum or maximum spanning trees associated with the com-
mute time matrix of the original complete weighted financial
networks, and developed a novel quantum graph kernel over
the spanning trees of the financial networks. Although, both
the approaches overcome the restriction of employing graph
kernels for time-varying financial network analysis, their re-
quired sparse structures also lead to significant information
loss. Since many weighted edges of the original complete
weighted financial networks are discarded. In summary, ana-
lyzing time-varying financial networks associated with graph
kernels still remains challenges.

The aim of this paper is to overcome the aforementioned
problems by developing a new kernel measure between time-
varying networks for multiple co-evolving financial time se-
ries analysis. Overall, the main contributions are threefold.

First, for a family of time-varying financial network-
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s, we commence by computing the average mixing ma-
trix [Godsil, 2013] to summarize the time-averaged be-
haviour of continuous-time quantum walks (CTQW) evolved
on the network structures. The reason of using the CTQW
is that it not only accommodates complete weighted graphs,
but also better reflects richer financial network characteris-
tics than the classical random walks [Bai ez al., 2015al (see
details in Section II-A). We show how the average mixing
matrix of the CTQW allows to compute a quantum-based en-
tropy for each vertex of the financial networks and represents
the original networks as quantum entropy time series.

Second, with each pair of time-varying financial networks
to hand, we define a Quantum-inspired Entropic Kernel be-
tween their quantum entropy time series through the classical
dynamic time warping framework. The proposed kernel not
only accommodates the complete weighted graphs through
the entropy time series, but also bridges the gap between
graph kernels and the classical dynamic time warping frame-
work for time series analysis (see details in Section III-B).

Third, we perform the proposed kernel on time-varying
financial networks abstracted from multiple co-evolving fi-
nancial time series of New York Stock Exchange (NYSE)
database. Experiments demonstrate that the proposed ap-
proach can effectively discriminate the abrupt structural
changes in terms of the extreme financial events.

2 Preliminary Concepts

In this section, we briefly review some preliminary concepts.

2.1 The Average Mixing Matrix of the CTQW

The continuous-time quantum walk (CTQW) is the quan-
tum analogue of the classical continuous-time random walk
(CTRW) [Farhi and Gutmann, 1998]. The CTQW models
a Markovian diffusion process over the vertices of a graph
through their transition information. Assume a sample graph
is G(V,E), where V is the vertex set and E is the edge
set. Similar to the classical CTRW, the state space of the
CTQW is the vertex set V' and its state at time ¢ is a com-
plex linear combination of the basis states |u), i.e., [t)(t)) =
> uev ult) [u), where v, (t) € Cand [1(t)) € CIVI are the
amplitude and both complex. Furthermore, o, (t)a (¢) indi-
cates the probability of the CTQW visiting vertex u at time
t D uey Qu(t)ag(t) = 1 and ay(t)aj(t) € [0,1], for al-
lu € V,t € Rt. Unlike the classical CTRW, the CTQW
evolves based on the Schrodinger equation

a/at |1/Jt> = —iH Wt> ) (1)

where ‘H denotes the system Hamiltonian. In this work, we
employ the adjacency matrix as the Hamiltonian. When a
CTQW evolves on the sample graph G(V, E), the behaviour
of the walk at time ¢ can be summarized using the mixing
matrix [Godsil, 2013]

M(t) =U(t) o U(—t) = ' o et )

where o denotes the Schur-Hadamard product of two ma-
trices, i.e., [A o Blyy = AuyBuy. Since U is unitary,
M (t) is a doubly stochastic matrix and each entry M (),
indicates the probability of the CTQW visiting vertex v at
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time ¢ when the walk initially starts from vertex u. How-
ever, Qs (t) cannot converge, because U(t) is also norm-
preserving. To overcome this problem, we can enforce con-
vergence by taking a time average. Specifically, we take
the Cesaro mean and define the average mixing matrix as

Q = limr_, fOT Qs (t)dt, where each entry @, of the av-
erage mixing matrix () represents the average probability for
a CTQW to visit vertex v starting from vertex u, and @ is still
a doubly stochastic matrix. Godsil [Godsil, 2013] has indicat-
ed that the entries of () are rational numbers. We can easily
compute () from the spectrum of the Hamiltonian # that can
be the adjacency matrix A of G. Let A1, ..., \jy| represent
the |V/| distinct eigenvalues of H and IP; be the matrix repre-
sentation of the orthogonal projection on the eigenspace as-
sociated with the \;, i.e., H = Z‘jvl
the average mixing matrix () as

1 A;P;. Then, we rewrite

Q= Z]Pj oP;. (3)
j=1

Remarks. The CTQW has been successfully employed to
develop novel approaches in machine learning and data min-
ing [Bai et al., 2014; Bai et al., 2016], because of the richer
structure than their classical counterparts. The reason of uti-
lizing the CTQW in this work is that the state vector of the
CTQW is complex-valued and its evolution is governed by
a time-varying unitary matrix. By contrast, the state vec-
tor of the classical CTRW is real-valued and its evolution
is governed by a doubly stochastic matrix. As a result, the
behaviour of the CTQW is significantly different from their
classical counterpart and possesses a number of important
properties. For instance, the CTQW allows interference to
take place, and thus reduces the tottering problem arising in
the classical CTRW. Furthermore, since the evolution of the
CTQW is not dominated by the low frequency components
of the Laplacian spectrum, it has better ability to distinguish
different graph structures. Finally, the CTQW can accommo-
date the complete weighted graph, since the Hamiltonian of
the CTQW can be the complete weighted adjacency matrix.

2.2 The Dynamic Time Warping Framework

We review the global alignment kernel based on the dynamic
time warping framework proposed in [Cuturi, 2011]. Let T
be a set of discrete time series that take values in a space X'.
For a pair of discrete time series P = (p1,...,pm,) € T and
Q = (¢1,.-.,9n) € T with lengths m and n respectively,
the alignment 7 between P and Q is defined as a pair of in-
creasing integral vectors (m,,m,) of length I < m +n — 1,
where 1 = 7m,(1) < --- < mp(l) = mand 1 = 7my(1) <
.-+ < my(l) = n such that (mp, 7,) is assumed to have uni-
tary increments and no simultaneous repetitions. Note that,
for P and Q, each of their elements can be an observation
vector with fixed dimensions at a time step. For any index
1 <i <1 —1, the increment vector of m = (m,, m,) satisfies

(=2 <L ()G ()
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Within the framework of the classical dynamic time warp-
ing [Cuturi, 2011], the coordinates 7, and 7, of the align-
ment 7 define the warping function. Assume A(m,n) cor-
responds to a set of all possible alignments between P and
Q, Cuturi [Cuturi, 2011] has proposed a dynamic time warp-
ing inspired kernel, namely the Global Alignment Kernel, by
considering all the possible alignments in .A(m, n). The ker-

nel is defined as
kaa(P,Q) = > e Pralm, (5)
TeA(m,n)

where Dp q(7) is the alignment cost given by

I~

Dp q(m) = Z O(Pr, (i)5 Gy (i) (6)
i=1

and is defined through a local divergence ¢ that quantifies the
discrepancy between each pair of elements p; € P and ¢; €
Q. In general, ¢ is defined as the squared Euclidean distance.
Note that, the kernel kg measures the quality of both the
optimal alignment and all other alignments ©# € A(m,n),
thus it is positive definite. Moreover, kga provides richer
statistical measures of similarity by encapsulating the overall
spectrum of the alignment costs { Dp q(7), 7 € A(m,n)}.

Remarks. The dynamic time warping based Global Align-
ment Kernel kg is a powerful tool for analyzing vectori-
al time series [Mikalsen et al., 2018; Jain, 2019]. To extend
kaga into graph kernel domains, Bai et al. [Bai et al., 2018]
have developed a nested graph kernel by measuring kga
between the depth-based complexity traces of graph-
s [Bai and Hancock, 2014]. Specifically, the complexity trace
of each graph is computed by measuring the entropies on a
family of K'-layer expansion subgraphs rooted at its centroid
vertex. Although, the nested graph kernel outperforms local
substructure based graph kernels [Johansson et al., 2014] on
graph classification tasks. Unfortunately, the financial net-
works are by nature complete weighted graphs and it is diffi-
cult to decompose such graphs into required expansion sub-
graphs rooted at the centroid vertex. Thus, directly preform-
ing the dynamic time warping inspired graph kernel for time-
varying financial networks still remains challenges.

3 Kernels for Time-varying Networks

In this section, we propose a Quantum-inspired Entropic Ker-
nel between time-varying networks for multiple co-evolving
financial time series analysis. We commence by character-
izing each financial network as a discrete quantum entropy
time series through the CTQW. Moreover, we define the new
kernel associated with the entropy time series, in terms of the
classical dynamic time warping framework [Cuturi, 2011].

3.1 The Quantum Entropy Time Series

We introduce how to characterize each financial network
structure as the quantum entropy time series through the C-
TQW. Assume G = {G4,...,Gp,...,Gq,...,Gr} denotes
a family of time-varying financial networks extracted from
a complex financial system S with a specific set of IV co-
evolving financial time series, i.e., the system has a fixed
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number of components (e.g., stocks) co-evolving with time.
Gp(V,, Ep, A,) is the sample network extracted from the sys-
tem at time step p. For G, each individual vertex v € V), rep-
resents a corresponding time series of a different stock (e.g.,
the stock price), each edge e € I, represents the interaction
(e.g., distances or correlations) between a pair of time series,
and A, is the interaction based weighted adjacency matrix.
This is a popular way of modelling the multiple co-evolving
financial time series as network structures [Silva et al., 2015;
Bai et al., 2020]. Note that, since the vertices of each finan-
cial network G, € G correspond to the same N components
of the system S, all the networks in G have the same vertex
set, whereas the edge sets E, are quite different with time ¢.
Specifically, for each financial network G\, (V,, E;, A,)
from G at time p, we first compute the average matrix matrix
QP associated with the CTQW evolved on G,,. For each ¢-th
vertex v; € Vp, the i-th row of QP gives the time-averaged
probability distribution P; for the CTQW to visit vertices

v1,...,vn5 € V (|V,]| = N) starting from v;, i.e.,
P; :{'Pi(’Ul),...,731'(1)]'),...,737;(’01\[)}. (7
where P;(v;) = Q7 ; is the time-averaged probability of the

CTQW visiting v; from v;. The quantum based Shannon en-
tropy [Bai er al., 2016] of vertex v; can be defined as

Hs(vi) =— Y Pi(v;)log P(v;). (8)

v; €V)p

As aresult, the entropy characteristic vector of G, associated
with the entropies over all its vertices can be defined as

E, = {Hs(v1),...,Hs(v;),...,Hs(vn)}",  (9)

where Hg(v;) is the quantum Shannon entropy of the i-th
vertex v; of G, associated with the time-averaged probability
distribution residing on the i-th row of Q,,.

We move a time interval of w time steps over all the time-
varying networks of the financial system S to construct a
time-varying quantum entropy time series for each network
Gy at time p. In this work, we set the value of w as 28.
Specifically, for each network G,, we compute its quantum
entropy time series S; associated with its time window as

Sp = {Ep7w+l‘Et7p+2‘ |Es||Ep}, (10)

where each column E of S, is the entropy characteristic vec-
tor of each network G € G at time s and is defined by
Eq.(9). s € {p—w+1,p—w+2,...,p}. Obviously, the quan-
tum entropy time series S, of G, encapsulates a family of w
time-varying entropy characteristic vectors from Gp_,,41 at
time p —w + 1 to G}, at time ¢.

3.2 The Quantum-inspired Entropic Kernel

We develop a new kernel for analyzing time-varying finan-
cial networks based on the classical dynamic time warping
framework. For a pair of time-varying networks G, € G
and G, € G at time p and ¢ respectively, we commence by
computing their associated quantum entropy time series as

Sp = {Ep—wt1|Ep—wi2|. .- |Ep}

and
Sq = {Eq—w+1|Eq—w+2‘ s |Eq}a
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Figure 1: Color Path of Financial Networks Over All Trading Days.

based on the definition in Section 3.1. The proposed Quantum
Inspired Entropic Kernel kqrk between G, and G is

Z e_Dp,q(T")7

TeA(w,w)
(11)

where kga is the dynamic time warping inspired Global
Alignment Kernel (GAK) defined in Eq.(5), 7 is the warp-
ing alignment between the entropy time series of G, and G,
A(w, w) is all possible alignments and Dy, o(7) refers to the
alignment cost obtained via Eq.(6). Note that, the proposed k-
ernel kqgx is positive definite. This is because kqgx is based
on the positive definite kernel kg4 .

kqex(Gp,Gy) = kaa(Sy, Sy) =

Remarks. Although the proposed kernel kqek is related to
the general principles of the GAK kernel. The proposed ker-
nel kqgx still possesses two theoretical differences with the
GAK kernel. First, the original GAK kernel is only develope-
d for vectorial time series and thus cannot capture structural
relationships between time series. By contrast, the proposed
kernel kqrx is explicitly proposed for time-varying financial
networks that encapsulate physical interactions between pairs
of time series. Second, unlike the GAK kernel, the proposed
kernel kqrx is defined based on the quantum entropy time
series that is developed through the average mixing matrix of
the CTQW. As we have stated in Section 2.1, the CTQW can

accommodate the complete weighted graph and better distin-
guish different network structures in terms of the low frequen-
cy components of its Laplacian spectrum. Thus, the proposed
kernel kqrk can not only reflect the physical interactions be-
tween the original vectorial financial time series, but also cap-
ture richer structure information than the GAK kernel associ-
ated with the original time series. On the other hand, as we
have stated, the state-of-the-art graph kernels mentioned in
Section 1 and Section 2.2 cannot directly accommodate com-
plete weighted graphs. Thus, it is difficult to directly perform
these graph kernels on the complete weighted financial net-
works, unless one transforms these networks into sparse ver-
sions. By contrast, the proposed kernel kqrk can encapsu-
late the whole structural information residing on all weighted
edges. In summary, the proposed kernel kqrx bridges the
gap between state-of-the-art graph kernels and the clas-
sical dynamic time warping framework for time-varying
networks, providing an effective way to analyze multiple co-
evolving financial time series.

Time Complexity. For a pair of networks each having n
vertices, computing the kernel kqrk associated with a time
interval of w steps requires time complexity O(n3 +w?). Be-
cause, computing the entropy time series relies on the spectral
decomposition of CTQWs, thus has time complexity O(n?).
Computing all possible alignments between the entropy time
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Figure 2: The 3D kPCA Embeddings of Different Kernels for Dot-com Bubble Burst.

series over w time steps has time complexity O(w?). Thus,
kqek has a polynomial time complexity O(n® + w?).

4 Experiments of Time Series Analysis

We establish a NYSE dataset that consists of a series of time-
varying financial networks based on the New York Stock Ex-
change (NYSE) database [Silva et al., 2015; Ye et al., 2015].
The NYSE database encapsulates 347 stocks and their as-
sociated daily prices over 6004 trading days from January
1986 to February 2011, i.e., the market system has 347
co-evolving time series in terms of the daily stock prices.
The prices are all corrected from the Yahoo financial dataset
(http://finance.yahoo.com). To extract the network represen-
tations, we use a time window of 28 days and move this win-
dow along time to obtain a sequence (from day 29 to day
6004) in which each temporal window contains a time se-
ries of the daily return stock prices over a period of 28 days.
To represent trades between different stocks as a network, for
each window we compute the Euclidean distance between the
time series of each pair of stocks as their connection (edge)
weight, following the same setting in [Bai ef al., 2020]. It has
been empirically shown that the financial networks associated
with the Euclidean distance are more effective than those as-
sociated with the Pearson correlation. Clearly, this operation
yields a time-varying financial network with a fixed number
of 347 vertices and varying edge weights for each of the 5976

trading days. Each network is a complete weighted graph.

4.1 Kernel Embeddings from kPCA

We evaluate the performance of the proposed Quantum-
inspired Entropic Kernel (QEK) on time-varying networks
of the NYSE dataset. Specifically, we analyze whether the
proposed QEK kernel can distinguish the structural changes
of the network evolution with time. Furthermore, we also
compare the proposed QEK kernel with three state-of-the-
art kernel methods, that is, the dynamic time warping in-
spired Global Alignment Kernel (GAK) for original vectori-
al time series [Cuturi, 2011] and two graph kernels for time-
varying financial networks. The graph kernels for compar-
isons include the Weisfeiler-Lehman Subtree Kernel (WL-
SK) [Shervashidze et al., 2009], and the Discrete-time Quan-
tum Walk Kernel (DTQK) [Bai et al., 2020]. For the GAK
kernel, we also utilize a time window of 28 days for each trad-
ing day. For the WLSK kernel, since it can only accommo-
date undirected and unweighted graphs, we transform each o-
riginal network into a minimum spanning tree and ignore the
weights on the preserved edges, following the same setting in
the work [Bai et al., 2020]. Since the DTQK kernel can ac-
commodate edge weights, we straightforwardly perform this
kernel on the original financial networks. We perform kernel
Principle Component Analysis (kPCA) [Witten er al., 2011]
on the kernel matrices associated with different kernels, and
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[ Methods ][ QEK GAK ][ WLSK [ DTQK |

embed the financial networks or the original time series in- Ditance Swess [ 10997 | 29677 [ 57055 [ 4717 ]

to a vectorial pattern space. We visualize the embedding re-
sults using the first three principal components in Fig.1(a),
Fig.1(b), Fig.1(c), and Fig.1(d) respectively.

Table 1: The Distance Stress of the Network Embeddings

Fig.1 exhibits the paths of the time-varying financial net-
works (or the original vectorial time series) in different ker-
nel spaces, and the color bar of each subfigure indicates the
date in the time series. We observe that the embeddings from
the proposed QEK kernel exhibit a better manifold structure.
Moreover, only the proposed QEK kernel generates a clear
time-varying trajectory and the neighboring networks with
time are close together in the embedding principal space. By
contrast, the alternative methods hardly result in a trajectory
and their embeddings tend to distribute as clusters. To further
demonstrate the effectiveness of the QEK kernel, we compare
the distance stress (DS) of the network embeddings from d-
ifferent kernels. Specifically, the DS is defined as

DS = S llwe—aey |?
Yo llze — e |12

where t = 2,3, ..., n, z; is the network embedding vector at
time ¢, and x4, is the nearest network embedding vector of x;
in the pattern space. For each embedding vector x; at time
t, if the nearest embedding vector is always the embedding
vector at last time step (i.e., z;_1), the value of DS will be 1.
In other words, the DS value nearer to 1 indicates the better

12)

performance of the embeddings to form a clear time-varying
trajectory. The DS value of each kernel is shown in Table 1.
Clearly, only the DS value of the proposed QEK kernel is
nearer to 1, indicating the better performance of preserving
the ordinal arrangement of the time-varying networks.

To take our study one step further, we explore the embed-
dings during different periods of three well-known financial
events, i.e., the Black Monday period (from 15th Jun 1987
to 17th Feb 1988), the Dot-com Bubble period (from 3rd
Jan 1995 to 31st Dec 2001), and the Enron Incident period
(from 16th Oct 2001 to 11th Mar 2002). For differen ker-
nels, Fig.2 corresponds to the Dot-com Bubble period and
Fig.3 to the Enron Incident period. Due to the limit space,
we do not exhibit the embeddings for Black Monday. How-
ever, we will observe the similar phenomenon with Fig.2 and
Fig.3. These figures indicate that the Black Monday (I7th
Oct, 1987), the Dot-com Bubble Burst (13rd Mar, 2000) and
the Enron Incident period are all crucial financial events, sig-
nificantly influencing the structural time-varying evolution of
the financial networks or the original vectorial financial time
series. Excluding the GAK kernel, the embedding points of
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Figure 4: Kernel Matrix Visualizations.

Methods QEK GAK WLSK DTQK
Black Monday 0.9050 0.6673 0.5667 0.6506
Dotcom Bubble 0.6473 0.8882 0.5279 0.7903
Enron Incident 0.8504 0.4992 0.5001 0.7042
Average Rand 0.8009 0.6849 0.5315 0.7150

Table 2: The Rand Index for K-means Clustering on the Embedding
Points of 100 Trading Days around Each Financial Crisis.

the remaining kernels before and after these events are well
separated into distinct clusters, and the points corresponding
to the crucial events are midway between the clusters.

To place our analysis of the kernel embedding clusters on
a more quantitative footing, for each kernel we select the k-
ernel embedding points of 100 trading days around each fi-
nancial crisis, i.e., we select embedding points of 50 trading
days before and after each crisis date respectively. We apply
the K-means method to the kernel embeddings of 100 trading
days for each kernel to explore whether the clusters can be
correctly separated in terms of the trading days before and af-
ter each financial crisis. We calculate the Rand Index for the
resulting clusters and the Rand indicating each kernel is listed
in Table 2. The results indicate that the embedding points as-
sociated with the proposed QEK kernel can produce the best
clusters, i.e., the embedding points before and after the finan-
cial crisis are separated better than other kernels.

4.2 Evaluations of the Kernel Matrix

Based on the earlier evaluation, we find that the DTQK kernel
is the most competitive kernel with the proposed QEK kernel.
To further reveal the effectiveness of the proposed QEK ker-
nel, we visualize the kernel matrices of both the kernels.

Due to the limited space, we only compute the kernel ma-
trices between the networks belonging to the Dot-com Bubble
period, and the period encapsulate 100 trading days. In fact,
we will observe similar phenomenons if we compute the ker-
nel matrices for other financial event periods. Specifically, the
kernel matrices are visualized in Fig.4, where both the x-axis
and y-axis represent the time steps. Note that, to compare the
two kernels in the same scaled Hilbert space, we consider the
normalized version of both the kernels as

k(Gp, Gy)

bl G o) = G GGG

13)

where k,, is the normalized kernel, and k is either the
EDTWK or the WLSK kernel. As a result, the kernel val-
ues are all bounded between O to 1, and the colour bar beside
each subfigure indicates the kernel value of the kernel matrix.
Fig.4 indicates that the kernel values tend to decrease when
the elements of the kernel matrix are far away from the matrix
trace. This is because such elements are computed between
time-varying networks having long time spans and there are
more structure changes when the network evolves with a long
time variation. Thus, both the QEK and DTQK kernels reflect
structural evolutions of financial networks with time. How-
ever, on the other hand, the kernel value of the DTQK kernel
tends to drop down more quickly when the element is a little
far from the trace. By contrast, the kernel value of the QEK
kernel tend to decrease more slowly when the element gets
farer away from the trace. This observation explains why on-
ly the proposed QEK kernel can form a clear trajectory with
time variation and generate better clusters before and after
financial crisis, i.e., the proposed QEK kernel can better dis-
tinguish and understand the structural changes of the network
structures evolving with a long time period.

5 Conclusion

In this paper, we have developed a new Quantum-inspired
Entropic Kernel for time-varying complex networks. The
proposed kernel bridges the gap between graph kernels and
the classical dynamic time warping framework for time se-
ries analysis. Experimental analysis of NYSE financial time
series demonstrates the effectiveness of the new kernel.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China (Grant no. 61976235 and 61602535), the
Program for Innovation Research in Central University of Fi-
nance and Economics, the Youth Talent Development Sup-
port Program by Central University of Finance and Eco-
nomics (No. QYP1908) and the Foundation of State Key
Laboratory of Cognitive Intelligence (Grant No. COGOSC-
20190002), iFLYTEK, China. Corresponding Author: Lixin
Cui (cuilixin@cufe.edu.cn). The fourth author Yuhang Jiao
mainly participated partial discussions for this work.

4459



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on Al in FinTech

References

[Bai and Hancock, 2014] Lu Bai and Edwin R. Hancock.
Depth-based complexity traces of graphs. Pattern Recog-
nition, 47(3):1172-1186, 2014.

[Bai et al., 2014] Lu Bai, Luca Rossi, Horst Bunke, and Ed-
win R. Hancock. Attributed graph kernels using the
jensen-tsallis g-differences. In Proceedings of ECML-
PKDD, pages 99-114, 2014.

[Bai et al., 2015a] Lu Bai, Luca Rossi, Andrea Torsello,
and Edwin R. Hancock. @A quantum jensen-shannon
graph kernel for unattributed graphs. Pattern Recognition,
48(2):344-355, 2015.

[Bai et al., 2015b] Lu Bai, Zhihong Zhang, Chaoyan Wang,
Xiao Bai, and Edwin R. Hancock. A graph kernel based
on the jensen-shannon representation alignment. In Pro-
ceedings of IJCAI pages 3322-3328, 2015.

[Bai et al., 2016] Lu Bai, Luca Rossi, Lixin Cui, and Ed-
win R. Hancock. A novel entropy-based graph signature
from the average mixing matrix. In Proceedings of ICPR,
pages 1339-1344, 2016.

[Bai et al., 2018] Lu Bai, Lixin Cui, Luca Rossi, Lixiang Xu,
Xiao Bai, and Edwin Hancock. Local-global nested graph
kernels using nested complexity traces. Pattern Recogni-
tion Letters, 2018.

[Bai et al., 2020] Lu Bai, Luca Rossi, Lixin Cui, Jian Cheng,
and Edwin R. Hancock. A quantum-inspired similari-
ty measure for the analysis of complete weighted graphs.
IEEE Trans. Cybern., 50(3):1264-1277, 2020.

[Borgwardt and Kriegel, 2005] Karsten M. Borgwardt and
Hans-Peter Kriegel. Shortest-path kernels on graphs. In
Proceedings of the IEEE International Conference on Da-
ta Mining, pages 74-81, 2005.

[Bullmore and Sporns, 2009] Ed Bullmore and Olaf Sporn-
s. Complex brain networks: Graph theoretical analysis of
structural and functional systems. Nature Reviews Neuro-
science, 10(3):186-198, 2009.

[Cui et al., 2018] Lixin Cui, Lu Bai, Luca Rossi, Zhihong
Zhang, Yuhang Jiao, and Edwin R. Hancock. A prelim-
inary survey of analyzing dynamic time-varying financial
networks using graph kernels. In Proceedings of S+SSPR,
pages 237-247, 2018.

[Cuturi, 2011] Marco Cuturi. Fast global alignment kernels.
In Proceedings of ICML, pages 929-936, 2011.

[Farhi and Gutmann, 1998] E. Farhi and S. Gutmann. Quan-
tum computation and decision trees. Physical Review A,
58:915, 1998.

[Godsil, 2013] Chris Godsil. Average mixing of continuous
quantum walks. Journal of Combinatorial Theory, Series
A, 120(7):1649-1662, 2013.

[Haussler, 1999] David Haussler. Convolution kernels on
discrete structures. In Technical Report UCS-CRL-99-10,
Santa Cruz, CA, USA, 1999.

4460

[Jain, 2019] Brijnesh J. Jain. Making the dynamic time
warping distance warping-invariant. Pattern Recognition,
94:35-52, 2019.

[Johansson ef al., 2014] Fredrik D. Johansson, Vinay Jetha-
va, Devdatt P. Dubhashi, and Chiranjib Bhattacharyya.
Global graph kernels using geometric embeddings. In Pro-
ceedings of ICML, pages 694-702, 2014.

[Kashima et al., 2003] Hisashi Kashima, Koji Tsuda, and
Akihiro Inokuchi. Marginalized kernels between labeled
graphs. In Proceedings of ICML, pages 321-328, 2003.

[Mikalsen ef al., 2018] Karl @yvind Mikalsen, Filippo Mari-
a Bianchi, Cristina Soguero-Ruiz, and Robert Jenssen.
Time series cluster kernel for learning similarities between

multivariate time series with missing data. Pattern Recog-
nition, 76:569-581, 2018.

[Nicolis et al., 2005] G. Nicolis, A. G. Cantu, and C. Nicolis.
Dynamical aspects of interaction networks. International
Journal of Bifurcation and Chaos, 15:3467, 2005.

[Shervashidze et al., 2009] N. Shervashidze, S.V.N. Vish-
wanathan, K. Mehlhorn T. Petri, and K. M. Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. Jour-
nal of Machine Learning Research, 5:488-495, 2009.

[Shimada et al., 2008] Y. Shimada, T. Kimura, and
T. Ikeguchi. Analysis of chaotic dynamics using
measures of the complex network theory. In Proceedings
of ICANN, pages 61-70, 2008.

[Silva et al., 2015] Filipi N. Silva, Cesar H. Comin,
Thomas K. Peron, Francisco A. Rodrigues, Cheng Ye,
Richard C. Wilson, Edwin R. Hancock, and Luciano
da F. Costa. Modular dynamics of financial market
networks. arXiv preprint arXiv:1501.05040, 2015.

[Witten et al., 2011] Ian H. Witten, Eibe Frank, and Mark A.
Hall. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2011.

[Xu et al., 2018] Lixiang Xu, Xiaoyi Jiang, Lu Bai, Jin Xiao,
and Bin Luo. A hybrid reproducing graph kernel based
on information entropy. Pattern Recognition, 73:89-98,
2018.

[Ye er al., 2015] Cheng Ye, César H. Comin, Thomas K.
Peron, Filipi N. Silva, Francisco A. Rodrigues, Luciano
da F. Costa, Andrea Torsello, and Edwin R. Hancock.
Thermodynamic characterization of networks using graph
polynomials. Physical Review E, 92(3):032810, 2015.

[Zhang and Small, 2006] J. Zhang and M. Small. Complex
network from pseudoperiodic time series: Topology ver-
sus dynamics. Physical Review Letters, 96:238701, 2006.



