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Abstract
Multi-hop reading comprehension across multiple
documents attracts much attention recently. In
this paper, we propose a novel approach to tack-
le this multi-hop reading comprehension problem.
Inspired by human reasoning processing, we con-
struct a path-based reasoning graph from support-
ing documents. This graph can combine both the
idea of the graph-based and path-based approaches,
so it is better for multi-hop reasoning. Meanwhile,
we propose Gated-RGCN to accumulate evidence
on the path-based reasoning graph, which contains
a new question-aware gating mechanism to regulate
the usefulness of information propagating across
documents and add question information during
reasoning. We evaluate our approach on WikiHop
dataset, and our approach achieves state-of-the-art
accuracy against previously published approaches.
Especially, our ensemble model surpasses human
performance by 4.2%.

1 Introduction
Machine reading comprehension has been a popular topic
in the past years, and a variety of models have been pro-
posed to address this problem, such as BIDAF [Seo et al.,
2017], Reinforced mnemonic reader [Hu et al., 2017], and
ReasoNet [Shen et al., 2017]. However, most existing works
focus on finding evidence and answer in a single document.

In fact, in reality, many questions can only be answered
after reasoning across multiple documents. Table 1 shows a
multi-choice style reading comprehension example, which is
from WIKIHOP dataset [Welbl et al., 2018]. In the example,
we can only answer the question ‘what is the place of death
of alexander john ellis?’ after extracting and integrating the
facts ‘Alexander John Ellis is buried in Kensal Green Ceme-
tery’ and ‘Kensal Green Cemetery is located in Kensington’
from multiple documents, which is a more challenging task.

The main challenge is that the evidence is distributed in dif-
ferent documents and there is a lot of noise in the documents.
We need to extract this evidence from multiple documents,
but it is difficult to capture their dependencies for reasoning.

∗corresponding author

Question: place of death, alexander john ellis, ?

Support doc1: Alexander John Ellis, was an English
mathematician ... is buried in Kensal Green Cemetery.
Support doc2: The areas of College Park and Kensal
Green Cemetery are located in the London boroughs of
Hammersmith & Fulham and Kensington & Chelsea, re-
spectively.
......

Candidates: college park, france, Kensington, London

Answer: Kensington

Table 1: An example of multi-hop reading comprehension across
documents.

Many works used graph convolution networks(GCNs) to deal
with this problem, such as Entity-GCN [De Cao et al., 2019],
BAG [Cao et al., 2019] and HDE [Tu et al., 2019]. They
transform documents into an entity graph, and then import
the entity graph into graph convolution networks(GCNs) to
simulate the process of multi-hop reasoning.

However, these GCN-based approaches have some disad-
vantages. Firstly, they generated the entities only from the
question and candidate answers, lacking much key informa-
tion for multi-hop reasoning. For example, as the example in
Table 1, the entity ‘Kensal Green Cemetery’ is an important
clue to answer the question, but the above approaches ignored
this information. Secondly, the traditional GCNs only update
the central node based on the aggregated information of adja-
cent nodes and use this to simulate the process of reasoning.
But the question information is not fully utilized and there is
a lot of irrelevant information during information propagating
across documents in the multi-hop reasoning.

In this paper, we propose a novel approach to solve the
above problem. We introduce a path-based reasoning graph
for multiple documents. Compared to traditional graphs, the
path-based reasoning graph contains multiple reasoning paths
from questions to candidate answers, combining both the idea
of the GCN-based and path-based approaches. Thus, we con-
struct a path-based reasoning graph by extracting reasoning
paths(e.g., Alexander John Ellis → Kensal Green Cemetery
→ Kensington) from supporting documents and then adding
reasoning nodes (e.g., Kensal Green Cemetery) in these path-
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s to the entity graph. And then, we apply a Gated-RGCN to
learn the representation of nodes. Compared to GCNs, Gated-
RGCN utilizes attention and question-aware gating mecha-
nism to regulate the usefulness of information propagating
across documents and add question information during rea-
soning, which is closer to human reasoning processes.

Our contributions can be summarized as follows:

• We propose a path-based reasoning graph, which intro-
duces information about reasoning paths into the graph;

• We propose Gated-RGCN to optimize the convolution
formula of RGCN, which is more suitable for multi-hop
reading comprehension;

• We evaluated our approach on WIKIHOP dataset [Welbl
et al., 2018], and our approach achieves new state-of-
the-art accuracy. Especially, our ensemble model sur-
passes the human performance by 4.2%.

2 Related Work
Recently, there are several categories of approaches that have
been proposed to tackle the problem of multi-hop reading
comprehension across documents, including GCN-based ap-
proaches (Entity-GCN [De Cao et al., 2019], BAG [Cao et
al., 2019], HDE [Tu et al., 2019], MHQA-GRN [Song et
al., 2018], DFGN [Qiu et al., 2019]), memory based ap-
proaches (Coref-GRU [Dhingra et al., 2018], EPAr [Jiang et
al., 2019]), path based approaches (PathNet [Kundu et al.,
2019]), and attention based approaches (CFC [Zhong et al.,
2019], DynSAN [Zhuang and Wang, 2019]).

GCN-based approaches organize supporting documents in-
to a graph, and then employ Graph Neural Networks based
message passing algorithms to perform multi-step reasoning.
For example, Entity-GCN [De Cao et al., 2019] construct-
ed an entity graph from supporting documents, where nodes
are mentions of subject entity and candidates, and edges are
relations between mentions. BAG [Cao et al., 2019] ap-
plied bi-directional attention between the entity graph and the
query after GCN reasoning over the entity graph. HDE [Tu
et al., 2019] constructed a heterogeneous graph where nodes
correspond to candidates, documents, and entities. MHQA-
GRN [Song et al., 2018] constructed a graph where each node
is either an entity mention or a pronoun representing an enti-
ty, and edges fall into three types: same-typed, window-typed
and coreference-typed edge. DFGN [Qiu et al., 2019] pro-
posed a dynamic fusion reasoning block based on graph neu-
ral networks. Our work proposes Gated-RGCN to optimize
the graph convolution operation, it is better for regulating the
usefulness of information propagating across documents and
add question information during reasoning.

Memory-based approaches try to aggregate evidences for
each entity from multiple documents through a memory net-
work. For example, Coref-GRU [Dhingra et al., 2018] aggre-
gated information from multiple mentions of the same entity
by incorporating coreference in the GRU layers. EPAr [Jiang
et al., 2019] used a hierarchical memory network to construct
a ‘reasoning tree’, which contains a set of root-to-leaf rea-
soning chains, and then merged evidences from all chains to
make the final prediction.

PathNet [Kundu et al., 2019] proposed a typical path-based
approach for multi-hop reading comprehension. It extracted
paths from documents for each candidate given a question,
and then predicted the answer by scoring these paths. Our
work introduces the idea of path-based approach on GCN-
based approach which is better for multi-hop reasoning.

CFC [Zhong et al., 2019] and DynSAN [Zhuang and
Wang, 2019] are two typical attention-based approaches.
CFC applied co-attention and self-attention to learn query
aware node representations of candidates, documents and en-
tities. While DynSAN proposed a dynamic self-attention ar-
chitecture to determine what tokens are important for con-
structing intra-passage or cross-passage token level semantic
representations. In our work, we employ an attention mecha-
nism between graphs and the question at each layer of Gated-
RGCN.

Meanwhile, in order to promote the research on multi-
hop QA, several datasets have been designed, including
WikiHop [Welbl et al., 2018], OpenBookQA [Mihaylov et
al., 2018], NarrativeQA [Kociský et al., 2017], MultiR-
C [Khashabi et al., 2018] and HotpotQA [Yang et al., 2018].
For example, WikiHop is a multi-choice style reading com-
prehension data set, where the task is to select the correct ob-
ject entity from candidates when given a query 〈s, r, ?〉 and
a set of supporting documents. While OpenBookQA focuses
on the multi-hop QA which needs a corpus of provided sci-
ence facts (open book) with external broad common knowl-
edge.

In addition, knowledge completion over knowledge graph
(KG) and KG based query answering are also related to our
task, since they both need multi-hop reasoning, i.e., finding
the reasoning path between two entities in KG. For exam-
ple, MINERVA [Das et al., 2017] formulates the multi-hop
reasoning as a sequential decision problem, and uses the RE-
INFORCE algorithm [Williams, 1992] to train an end-to-end
model for multi-hop KG query answering. Meta-KGR [Lv
et al., 2019] also used the reinforcement learning method to
learn a relation-specific multi-hop reasoning agent to search
for reasoning paths and target entities. They further used
meta-learning to perform multi-hop reasoning over few-shot
relations of knowledge graphs.

3 Approach
In this section, we first formulate the task of multi-hop read-
ing comprehension across documents, and then elaborate our
approach in detail.

3.1 Task Formulation
The task of multi-hop reading comprehension across docu-
ments can be formally defined as: given a question q =
(q1, q2, ..., qM ) and a set of supporting documents Sq , the task
is to find the correct answer a from a set of answer candidates
Cq = (c1, c2, ..., cN ), whereM is the number of words in the
question q and N is the number of candidates in Cq .

In the WIKIHOP dataset [Welbl et al., 2018], the ques-
tion q is given in the form of a tuple 〈s, r, ?〉, where s rep-
resents the subject entity, and r represents the relation be-
tween s and the unknown tail entity. In our example, q =
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Question

place of death, 
alexander john ellis, 
?

Answer candidates

college park
France
Kensington
London

Supporting doc1：Alexander 
John Ellis , was an English 
mathematician […] is buried 
in Kensal Green Cemetery.

Supporting doc2：The areas 
of College Park and Kensal 
Green Cemetery are located in 
the London boroughs of 
Hammersmith & Fulham and 
Kensington & Chelsea, 
respectively.
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Figure 1: Overview of our approach

〈alexander john ellis, place of death, ?〉 means where did
alexander john ellis die, and the answer candidates is Cq =
(college park, france,Kensington, London). When giv-
en the supporting documents, e.g., supporting doc1, doc2
in Table 1, we should identify the correct answer a =
Kensington from the candidates by reasoning across these
documents.

As shown in Figure 1, our approach mainly consists of
three components, including graph construction, reasoning
with Gated-RGCN, and output layer. In the following sec-
tions, we will elaborate on each component in detail.

3.2 Graph Construction
We construct an entity graph based on the Entity-
GCN [De Cao et al., 2019], which extracts all mentions of en-
tities inCq∪{s} in Sq as nodes in the graph. Besides, inspired
by the human reasoning processing, reasoning paths from the
subject entity in question to the candidates could be helpful
for reasoning across documents, so we add reasoning entities
in the paths into our entity graph. In our example, the path
alexander john ellis→ Kensal Green Cemetery→ Kensing-
ton from documents indicate that the candidate Kensington
may be the correct answer for the question 〈alexander john
ellis, place of death, ? 〉. Thus, we treat Kensal Green Ceme-
tery as a reasoning entity, and add it into the entity graph.

Formally, for a given question q = 〈s, r, ?〉, we would
like to extract paths from s to ci ∈ Cq from Sq , e.g.,
pi = s → e1 → e2 → ... → el → ci, where ei is a rea-
soning entity. In order to find a path, we first find a document
d1 which contains the mention ms of the subject entity s in
Sq , and then find all the named entities and noun phrases that
appear in the same sentence with ms. In our example, we
find Kensal Green Cemetery and alexander john ellis appear
in the same sentence in supporting doc1, so we extract Kensal
Green Cemetery as one of reasoning entities. Then, we find
another document d2 which contains any of the reasoning en-
tities. In our example, supporting doc2 contains the reason-
ing entity Kensal Green Cemetery. Finally, we check whether

the reasoning entity appears with one of the candidates in the
same sentence. If so, we would add the path to the entity
graph. For example, Kensal Green Cemetery and Kensing-
ton appear in the same sentence in supporting doc2. There-
fore, the path alexander john ellis→ Kensal Green Cemetery
→Kensington can be added to the entity graph.

Since each entity in different documents has different con-
texts, so we use mentions of the subject entity, reasoning en-
tities, and candidate answers as nodes in the entity graph. In
our example, Kensal Green Cemetery appears in two differ-
ent sentences, so we need to add nodes for different positions
Figure 2 shows an example of an entity graph, where ms, mc

andma are mentions of the subject entity s, reasoning entities
Cc, and candidate answers Cq respectively.

Then, we define the following types of edges between pairs
of nodes to encode various structural information in the entity
graph.

1. an edge between a subject node and a reasoning node if
they appear in the same sentence in a document, e.g., esc
in Figure 2.

2. an edge between two nodes if they are reasoning nodes
and are adjacent nodes on the same path, e.g., ecc in Fig-
ure 2.

3. an edge between a reasoning node and a candidate node
if they appear in the same sentence in a document, e.g.,
eca in Figure 2.

4. an edge between two nodes if they are mentions of the
same candidate, e.g., eaa in Figure 2.

5. an edge between two nodes if they appear in the same
document.

6. nodes that do not meet previous conditions are connect-
ed.

3.3 Reasoning with Gated-RGCN
We first use pretrained word embeddings GLoVe [Pennington
et al., 2014] to represent each node in the entity graph, and
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Figure 2: The entity graph for supporting documents (ellipses),
where nodes are mentions of the subject entity (ms), reasoning en-
tities (mc), and candidates (ma). Nodes with same color indicate
they refer to the same entity. Meanwhile, nodes are connected by
six types of edges, which are elaborated in Section 3.2.

then use ELMo [Peters et al., 2018] to model contextual in-
formation for each node in different documents. These two
vectors are concatenated, and then encoded through 1-layer
linear network. Thus, the features for all nodes can be de-
noted as fn ∈ RT×d, where T is the number of nodes in the
graph, and d is the dimension of the node feature.

After graph initialization, we employ a Gated Relation-
al Graph Convolutional Network (Gated-RGCN) to realize
multi-hop reasoning. First, we use R-GCN to aggregate mes-
sages from its direct neighbors. Specifically, at lth layer, the
aggregated message zli for node i can be obtained via

zli =
∑
j∈Ni

∑
r∈Rij

1

|Ni|
W l

rh
l
j

whereNi is the neighbors of node i, Rij is the set of relations
between i and j, W l

r ∈ Rd×d is a relation-specific weight
matrix, | · | indicates the size ofNi, and hlj is the hidden state
of node j at lth layer. Then, the update message uli for node
i can be obtained by combining the aggregated message with
its original node information:

uli =W l
0h

l
i + zli

where W l
0 ∈ Rd×d is a general weight.

In Entity-GCN [De Cao et al., 2019], HDE [Tu et al., 2019]
and BAG [Cao et al., 2019], a gating mechanism is applied
on the update vector uli and the hidden state of node i for
updating the hidden state of node i at the next layer.

wl
i = σ(fg([u

l
i;h

l
i])) (1)

hl+1
i = wl

i � tanh(uli) + (1− wl
i)� hli (2)

where σ is the sigmoid function, [uli;h
l
i] is the concatenation

of uli and hli, fg is implemented with a single-layer multi-
layer perceptron (MLP), tanh(·) is a non-linear activation
function, and � denotes element-wise multiplication.

This gating mechanism regulates how much of the up-
date message propagates to the next step, so it can prevent

overwriting past information. However, the traditional GCN
method only updates the central node based on the aggregated
information of adjacent nodes, but there is a lot of irrelevant
information during information propagating.

When humans do reasoning problems, they always choose
the supports information based on the query information.
Inspired by human reasoning processing, we add another
question-aware gate to optimize graph convolution proce-
dure, which is suitable for multi-hop reading comprehension.
This gating mechanism can regulate the aggregated message
according to the question, and introduce the question infor-
mation into the update message simultaneously.

First, we represent the question q using a bidirection-
al LSTM (BiLSTM) network [Hochreiter and Schmidhuber,
1997], where GLoVe is used as word embeddings.

p = BiLSTM(q), p ∈ RM×d

Then, the final question representation can be obtained by a
weighted sum of these vectors.

wij = σ(WT
q [uli; pj ] + bq)

αij =
exp(wij)∑M
k=1 exp(wik)

qli =
M∑
j=1

αijpj

Finally, uli could be updated via:

βl
i = σ(WT

s [qli;u
l
i] + bs)

uli = βl
i � tanh(qli) + (1− βl

i)� uli

With this new uli, we use Equation 1 and 2 to obtain hl+1
i ,

which is the hidden state of node i at the (l + 1)th layer.
We stack the networks for L layers where all parameters

are shared, and finally obtain hL = {hLi }Ti=1 for the entity
graph.

3.4 Output Layer
Similar to BAG [Cao et al., 2019], we apply a bi-directional
attention between the entity graph and the question. The sim-
ilarity matrix S ∈ RT×M is first calculated via

S = avg−1fa([h
L; p;hL � p])

where avg−1 is the average operation in last dimension, and
fa is a single-layer MLP. Then, the node-to-question attention
gn2q and question-to-node attention gq2n are calculated via

gn2q = softmaxcol(S) · p
gq2n = dup(softmax(maxcol(S)))

T · hL

where softmaxcol and maxcol denote performing softmax
and max function across columns respectively, dup is the
function to duplicate the result softmax(maxcol(S)) ∈
R1×M for T times into shape RT×M .

The output of the bi-directional attention layer is
[hL; gn2q;h

L � gn2q;h
L � gq2n], which is then fed to a 2-

layer fully connected feed-forward network with tanh as the
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activation function in each layer. Finally, the softmax func-
tion is applied among the output, which can generate the pre-
diction result for each node in the graph. Each candidate may
correspond to several nodes, since it may appear in multiple
documents. We use the maximal probability of these nodes as
the result of the candidate, and use cross-entropy as the loss
function.

4 Experiments
4.1 Dataset and Experimental Settings
We use WIKIHOP [Welbl et al., 2018] to validate the effec-
tiveness of our proposed approach, which is a multi-choice
style reading comprehension data set. The dataset contain-
s about 43K/5K/2.5K samples in training, development, and
test set respectively. The test set is not public and can only be
evaluated online blindly.

In our implementation, we use NLTK [Bird, 2006] to to-
kenize the supporting documents, question, and candidates
into word sequences, and then find mentions of subject enti-
ty and candidates in supporting documents through the exact
matching strategy. In order to extract reasoning entities, we
use Stanford CoreNLP [Manning et al., 2014] to perform en-
tity recognition on the supporting documents.

We use the standard 1024-dimension ELMo and 300-
dimension pre-trained GLoVe (trained from 840B Web crawl
data) as word embeddings. The dimensions of hidden states
in BiLSTM and GCN are set as d = 256, and the number of
nodes and the query length is truncated as 600 and 25 respec-
tively. We stack L = 4 layers of the Gated-RGCN blocks.
During training, we set the mini-batch size as 16, and use
Adam [Kingma and Ba, 2015] with learning rate 0.0002 for
learning the parameters.

4.2 Main Results
We compare our approach with several previously published
models, and present our results in Table 2. The performance
of multiple choice QA is evaluated by the accuracy of choos-
ing the correct answer. Table 2 shows the performance of
approaches both on development and test set respectively. As
shown in the table, we can see that our approach achieves
the state-of-the-art accuracy on both development and test
set against all types of approaches, including GCN-based ap-
proaches (Entity-GCN [De Cao et al., 2019], BAG [Cao et
al., 2019], HDE [Tu et al., 2019], MHQA-GRN [Song et al.,
2018]), memory-based approaches (Coref-GRU [Dhingra et
al., 2018], EPAr [Jiang et al., 2019]), path-based approach-
es (PathNet [Kundu et al., 2019]), and attention-based ap-
proaches (CFC [Zhong et al., 2019], DynSAN [Zhuang and
Wang, 2019]).

For ensemble models, our approach also achieves state-of-
the-art performance, which surpasses the reported human per-
formance [Welbl et al., 2018] by about 4.2%.

4.3 Ablations Studies
We conduct an ablation study to evaluate the contribution of
each model component, and show the results in Table 3.

In (a), we delete all reasoning entities, so our graph de-
generates to the entity graph in [De Cao et al., 2019]. The

Single Models Dev Test
BIDAF [Seo et al., 2017] 49.7 42.9
Coref-GRU [Dhingra et al., 2018] 56.0 59.3
MHQA-GRN [Song et al., 2018] 62.5 65.4
Entity-GCN [De Cao et al., 2019] 64.8 67.6
PathNet† [Kundu et al., 2019] 67.1 -
BAG [Cao et al., 2019] 66.5 69.0
EPAr [Jiang et al., 2019] 67.2 69.1
CFC [Zhong et al., 2019] 66.4 70.6
HDE [Tu et al., 2019] 68.1 70.9
DynSAN [Zhuang and Wang, 2019] 70.1 71.4

Proposed 70.8 72.5

Ensemble Models
Entity-GCN [De Cao et al., 2019] 68.5 71.2
DynSAN‡ [Zhuang and Wang, 2019] - 73.8
HDE‡ [Tu et al., 2019] - 74.3

Proposed 74.0 78.3
Human - 74.1

Table 2: The performance of different models on WIKIHOP dataset.
”-” indicates missing results, † indicates that the missing results are
not reported in their papers, ‡ indicates that the results are not re-
ported in their papers but available on WIKIHOP leaderboard, and ]

indicates that the models are unpublished but only available on the
leaderboard.

Model Dev 4
Full model 70.8 -

(a) w/o reasoning entities 69.1 -1.7
(b) w/o question 70.2 -0.6
(c) w/o attention in question encoding 68.8 -2.0
(d) w/o edge types 69.0 -1.8
(e) reduce edge types 69.5 -1.3

Table 3: Ablation results on the WIKIHOP dev set.

accuracy on the development set drops to 69.1%, but it is
still higher than the accuracy of Entity-GCN [De Cao et al.,
2019]. This proves the effectiveness of reasoning entities and
the Gated-RGCN mechanism. In (b), we do not bring in the
question in the reasoning. While in (c), we only use BiLSTM
to encode the question, but do not adopt the attention mech-
anism in BiLSTM. From (b) and (c), we can see that ques-
tion is useful for reasoning. In (d), we treat all edge types
equally, so Gated-RGCN is replaced by Gated-GCN in rea-
soning, which reduces 1.8% accuracy absolutely. In (e), we
only define the edge types as in BAG [Cao et al., 2019], and
the accuracy drops to 69.5%. From (d) and (e), we learn that
different types of edges is also critical in the reasoning.

4.4 Analysis

In this section, we conduct a series of experiments with dif-
ferent setting in our approach.
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Figure 3: The results of our approach on the WIKIHOP dev dataset with different experimental settings.

Different number of Gated-RGCN Layers. We evaluate
our approach with different number of GCN layers (L), and
the result is shown in Figure 3(a). From the figure, we can
see that the accuracy increases gradually and then drops final-
ly, which proves the effectivity of Gated-RGCN. It is expect-
ed that the accuracy drops finally, because more hops would
bring in noise. As for why 4-hops is the best, this may be
because many samples are 1-hop problems, and the length of
path in these samples is exactly 4.

Different number of supporting documents. We split the
development set into subsets according to the number of sup-
porting documents, and then evaluate our approach on each
subset. The results are shown in Figure 3(b). From the figure,
we can see that more documents may bring in more irrelevant
information, which is harmful to the multi-hop QA. Howev-
er, even on a number greater than 16, our model achieved an
accuracy of 69.5%, which is better than the overall effect of
most models.

Different word embeddings. Table 4 shows the results of
our approach when using different word embeddings. From
the table, we can see that only using ELMo or GLoVe in
our approach will cause a severe drop, and replacing ELMo
with BERT [Devlin et al., 2019] delivers a competitive result.
Meanwhile, we can see that for the GCN-based approach, the
initialization of nodes is extremely critical, because this type
of approach has greatly compressed the information when
constructing the graph.

Embeddings Dev
ELMo 66.1
GLoVe 64.5
Bert+GLoVe 70.78
ELMo+GLoVe 70.81

Table 4: The results with different word embeddings on the WIKI-
HOP dev set.

5 Conclusion
In this paper, we propose a novel approach for multi-hop
reading comprehension across documents. Our approach

extends the entity graph by introducing reasoning entities,
which can form the reasoning path from question to candi-
dates. In addition, our approach incorporates the question
in the multi-hop reasoning through a new gate mechanism
to regulate how much useful information propagating from
neighbors to the node. Experiments show that our approach
achieves state-of-the-art accuracy both for single and ensem-
ble models.

Our future work would focus on the interpretability of the
multi-hop reading comprehension across documents. In ad-
dition, we would like to build the entity graph with reason-
ing entities dynamically during the reasoning, and apply our
model on other datasets.
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