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Abstract
To improve the processing efficiency of jobs in dis-
tributed computing, the concept of coflow is pro-
posed. A coflow is a collection of flows that are
semantically correlated in a multi-stage computa-
tion task. A job consists of multiple coflows and
can be usually formulated as a Directed-Acyclic
Graph (DAG). A proper scheduling of coflows can
significantly reduce the completion time of jobs
in distributed computing. However, this schedul-
ing problem is proved to be NP-hard. Different
from existing schemes that use hand-crafted heuris-
tic algorithms to solve this problem, in this paper,
we propose a Deep Reinforcement Learning (DRL)
framework named DeepWeave to generate coflow
scheduling policies. To improve the inter-coflow
scheduling ability in the job DAG, DeepWeave em-
ploys a Graph Neural Network (GNN) to process
the DAG information. DeepWeave learns from the
history workload trace to train the neural networks
of the DRL agent and encodes the scheduling pol-
icy in the neural networks, which make coflow
scheduling decisions without expert knowledge or a
pre-assumed model. The proposed scheme is evalu-
ated with a simulator using real-life traces. Simula-
tion results show that DeepWeave completes jobs at
least 1.7× faster than the state-of-the-art solutions.

1 Introduction
As the demand of data processing increases, cluster
computing-based computing (e.g., big data and cloud com-
puting [Xu and Tang, 2015]) has been widely adopted in
recent years since it can achieve a high parallel computa-
tion performance under a relatively low Capital Expenditure
(CAPEX). Many cluster computing applications (e.g., Spark
and MapReduce) are deployed in data centers and abstracted
with the job model, which is composed of several successive
computation stages and communication stages among the
computation stages. The execution of each computation stage
can only start when the intermediate data from the previous
stage are completely transmitted. This working procedure can
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be modeled as a job Directed-Acyclic Graph (DAG), where
computation stages and communication stages are modeled
as nodes and edges, respectively. In a job DAG, one commu-
nication stage involves a set of flows, which interweave with
each other from two groups of machines and share a com-
mon job goal. A set of such flows is called a coflow [Chowd-
hury and Stoica, 2012]. Existing works [Chowdhury et al.,
2011] point out that in Data Center Networks (DCNs), the
coflow transmission (i.e., the sequence-dependent transmis-
sion of intermediate data from one computation element to
another) consumes at least 50% processing time of a whole
job. Thus, a good coflow scheduling could significantly re-
duce the Job Completion Time (JCT) [Wang et al., 2018b].

However, designing a good coflow scheduling scheme is
non-trivial. Efficiently scheduling coflows in DCNs is chal-
lenging because various coflow characteristics should be con-
sidered, including properties of a coflow (e.g., flow size and
the number of parallel flows) and among coflows (e.g., the
relationship of different coflows in a job DAG). An optimal
coflow scheduling has been proved to be NP-hard [Chowd-
hury et al., 2014; Wang et al., 2019; Qiu et al., 2015]. Ex-
isting works simplify the problem and use heuristic solu-
tions to minimize the transmission time of coflows [Chowd-
hury et al., 2014; Zhao et al., 2015; Chen et al., 2016; Li et
al., 2016; Chowdhury and Stoica, 2015; Dogar et al., 2014;
Huang et al., 2015; Zhang et al., 2016; Gao et al., 2016;
Wang et al., 2019; 2018a]. However, these works have the
following two limitations:

1. Most existing works only concentrate on minimizing the
transmission time of coflows in a single communication
stage and do not provide a deep dive into the job-specific
communication requirement [Chowdhury et al., 2014;
Chen et al., 2016; Li et al., 2016; Zhang et al., 2016;
Gao et al., 2016; Wang et al., 2018a; 2019; Tan et al.,
2019]. Thus, the execution sequence of coflows in dif-
ferent communication stages of the job DAG may not be
considered, and these job-agnostic scheduling methods
cannot bring an optimal JCT.

2. Hand-crafted heuristic solutions simplify the problem
with some relaxations and only ensure an rough ap-
proximation to the optimal solution of the NP-hard
problem [Chowdhury et al., 2014; Zhao et al., 2015;
Chen et al., 2016; Li et al., 2016; Chowdhury and
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Figure 1: An example of coflow.

Stoica, 2015; Dogar et al., 2014; Huang et al., 2015;
Zhang et al., 2016; Gao et al., 2016; Wang et al., 2019;
2018a] . For example, the non-preemptive schedul-
ing algorithm [Wang et al., 2019] only ensures a 2-
approximate optimal solution and leaves a large gap to
the optimal solution.

In this paper, we propose DeepWeave, a learning-based
method to efficiently schedule coflows. DeepWeave uses the
framework of Deep Reinforcement Learning (DRL) to learn
from the history trace and train the neural networks. Deep-
Weave consists of two cascaded sets of neural networks and
a policy converter module, and it encodes the scheduling pol-
icy in the neural networks, which can make coflow schedul-
ing decisions without expert knowledge and a pre-assumed
model. DeepWeave works at both the intra-coflow scheduling
and inter-coflow scheduling. Specifically, to better process
the job DAG information and ensure the generalization ability
of the neural networks under unpredictable input DAGs, we
propose to use Graph Neural Network (GNN) for processing
input data. DRL agent uses the policy in the trained neural
networks to generate a priority scheduling list for different
coflows. Based on the list, flows in each coflow is further
scheduled in a fine-grained fashion. Simulation results show
that DeepWeave completes jobs at least 1.7× faster than the
state-of-the-art solutions.

The contributions in this paper can be summarized as fol-
lows:

1. Our paper is the first work that proposes a machine
learning-based coflow scheduling architecture to accel-
erate JCT.

2. We use a DRL as the learning-based framework to train
the neural networks and explore the coflow scheduling
policy without human experience.

3. We design a GNN-based neural network structure to pro-
cess input job DAGs. The structure generalizes well to
different DAG sizes and shapes after training.

4. We evaluate DeepWeave’s performance using real-life
traces and generated traces. Simulation results show
DeepWeave outperforms state-of-the-art solutions in
terms of JCT.

The rest of this paper is organized as follows: Section 2
formulates the problem of this paper. Section 3 details the
proposed DeepWeave. Section 4 evaluates the performance
of DeepWeave. Section 5 concludes this paper.
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Figure 2: An example of job DAG.

2 Problem Formulation
Coflows usually exist in the multi-stage computation task
in DCNs. In coflow scheduling, a DCN can be logically
viewed as a giant non-blocking switch fabric [Chowdhury et
al., 2014; Chowdhury and Stoica, 2015] that connects dif-
ferent computation machines. Each port of the fabric has
the same capacity, and congestion only occurs at ports since
flows in the same port compete for bandwidth. Following
existing works, we use this DCN model for our study. Fig-
ure 1 is a typical example of coflow [Chowdhury and Stoica,
2015]. The DCN is modeled as a non-blocking switch fabric
and interconnects different groups of machines. In this figure,
the fabric has three input ports, and each input port has three
queues. There are three coflows: C1, C2, and C3. At time
slot 0, C1 arrives at port 1, and C2 arrives at ports 1 and 2.
C1 and C2 contend for port 1. At time slot 1, C3 arrives at
port 2.

We model a job in DCN as a job DAG G = (V,E, T ),
where V = {v1, v2, ...v|V |} is the set of nodes, which de-
notes a computation stage of the job, E = {e1, e2, ...e|E|} is
the set of edges, which denotes a communication stage1 of the
job, and T denotes a global deadline of the job. Each commu-
nication stage is a coflow between two computation stages. A
job DAG is processed in pipeline following the dependencies
among its different stages, and its processing has to be com-
pleted within deadline time T . Figure 2 shows an example
of job DAG including seven nodes and six edges. There are
two types of coflow dependency relationships in a job DAG
[Chowdhury and Stoica, 2015]: Starts-After and Finishes-
Before. In a Starts-After relationship, ea cannot start until eb
finishes (denoted as ea 7→ eb); in a Finishes-Before relation-
ship, ea cannot finish until eb finishes (denoted as ea → eb).

Within a job DAG, computation stages are usually exe-
cuted in parallel, and thus coflows are generated in paral-
lel from different computation stages and compete with each
other at the ports of the fabric. The computation time of
the computation stages can be regarded as constant, and the
scheduling of coflows is the main factor of the overall JCT.

Consider that in a job DAG, there are N coflows
{e1, e2, ...e|N |}. The switch fabric has M ingress ports and

1In this paper, we use communication stages and coflows inter-
changanbly.
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Figure 3: The DRL framework used in DeepWeave.

M egress ports, and a coflow can be denoted as a group of
flows: ei = {fm,ni |1 ≤ m ≤ M, 1 ≤ n ≤ M}, where fm,ni
denotes a flow from port m to port n in coflow ei. fs

m,n
i de-

notes the size of flow fm,ni normalized to the capacity of the
port. If there are no flows in coflow ei from port m to port
n, fsm,ni = 0. Since each port has the same capacity, the
transmission time of a flow is proportional to the flow size at
each port. Without loss of generality, we use the size of each
flow to denote the transmission time in the following. We also
use Ci to denote the transmission time of coflow ei in the job
DAG, and Ci = End(ei) − Start(ei), where End(ei) and
Start(ei) denote the end time and start time of ei, respec-
tively. Under these definitions, the aim of coflow scheduling
is to minimize the average transmission time of the whole job

(i.e.,
N∑
i

Ci) under dependency constraints (i.e., Start(ei) ≥

End(ex|ex 7→ ei) and End(ei) ≤ End(ex|ex → ei)).

3 Design of DeepWeave
In this section, we introduce the design of DeepWeave. First,
we overview the architecture of DeepWeave. Second, we ex-
plain DeepWeave’s DRL framework in the training. Third,
we introduce the processing mechanism of the neural net-
works in DeepWeave. Finally, we introduce Policy Converter
that translates the output values of the DRL agent into con-
crete coflow scheduling policies.

3.1 Overview of DeepWeave
DeepWeave is designed based on the framework of DRL to
generate coflow scheduling policies for the network. Figure 3
shows a coflow scheduling agent, which is composed of a
group of neural networks (detailed in Sections 3.2 and 3.3)
and a policy converter (detailed in Section 3.4). During the
working process, DeepWeave collects the job DAG informa-
tion and converts the information to a feature map as the input
of GNN, which calculates the features of the job DAG and
passes the calculated information to Policy Network. Then,
Policy Network generates a priority list as the output, which
is used as an input in Policy Converter. Finally, Policy Con-
verter translates the priority list into coflow scheduling ac-
tions, which are used to schedule coflows and flows in the
coflows.

3.2 DRL Framework for Training
DeepWeave trains its neural networks through the frame-
work of DRL and uses a tuple that contains three elements

〈S,A,R〉 to describe the interaction. In the tuple, S is the
state space, which stands for the status observation of the
environment (i.e., job DAG in DeepWeave); A is the action
space, which stands for the space of the output actions of the
RL agents; R is the reward space, which evaluates the qual-
ity of the action. The DRL agent of DeepWeave gets trained
through the interaction with the network environment step by
step. At each step, the agent collects an observation s ∈ S
from the environment and generates an action a ∈ A to sched-
ule coflows in the environment through a certain calculation
process, which can be abstracted as a policy. The quality of
a certain schedule action a ∈ A is evaluated by an evaluation
function with a reward r ∈ R to describe the quality. Based
on the reward r ∈ R, the policy is polished towards a better
performance. Specifically, the interfaces in DeepWeave are
defined as follows:

• State: flows in each coflow and the shape of a job DAG.

• Action: priority list that denotes the scheduling priority
of edges in a job DAG.

• Reward: the completion time of a job DAG.

The training process of the DRL agent is carried out in
episodes, and each episode consists of multiple interaction
steps. In each episode, the target of the training is to maxi-
mize the cumulated reward Repi =

∑T
t=0 r(t), where T de-

notes the total number of interaction steps in this episode.
We use µ to represent the policy of the DRL agent. At each
step t, the agent gets an observation st from the environment
and generates action at based on at = µ(st). As mentioned
above, in DRL, the policy is generated by neural networks.
Therefore, at = µ(st) can be more accurately represented
as at = µθ(st), where θ denotes the parameters (e.g., the
weights and biases among different neurons) of the neural
networks. When an episode completes, the cumulated reward
Repi can be used to evaluate the policy in this episode.

In DeepWeave, we use a policy gradient method to update
the neural networks based on Repi towards a better policy. In
the policy gradient method, a gradient descent is calculated
to update the neural network parameters as follows [Sutton et
al., 2000]:

θ′ = θ + α

T∑
t=1

∇θ log µθ(st, at)Qt,

where α denotes the learning rate that controls the update
speed of θ during each episode, andQt denotes a quality eval-
uation of the policy in the current episode. Specifically, we

make Qt =
T∑
t′=t

rt′ − bt as a biased form, where bt is used

as a baseline value to limit the variance of the policy gradi-
ent [Greensmith et al., 2004]. In this way, the parameters
of the neural networks get updated after each episode, so the
expected performance of this DRL agent in the next episode
should be better. Since in several initial episodes, the neu-
ral network parameters are close to random values, and the
policy is not good, we can use a method similar to the one
used in Decima [Mao et al., 2019] to accelerate the training
by shortening the episode length.
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Algorithm 1 Training process of DeepWeave

Input: job DAG, job completion time;
Output: coflow scheduling priority;

1: Initialize all neural networks;
2: for iteration = 1 to MAX_NUM do
3: Episode length l = linit;
4: Run agent i = 1 to N and get:

(si1, a
i
1, r

i
1, ..., s

i
l, a

i
l, r

i
l) ∼ µθ;

5: ∆θ = 0;
6: for t = 1 to l do
7: for agent i = 1 to N do
8: Rit =

∑l
t′=t r

i
t′ ;

9: end for
10: Compute baseline value bt = 1

N

∑N
j=1R

j
t ;

11: for agent i = 1 to N do
12: ∆θ = ∆θ +∇θ log µθ(s

i
t, a

i
t)(R

i
t − bt);

13: end for
14: end for
15: l = l + ε;
16: θ = θ + α∆θ;
17: end for

The logic of the whole training process is shown in Algo-
rithm 1. To accelerate the training process, we implement N
parallel agents. The training objective of Algorithm 1 is to let
the parameters of the neural networks evolve so as to gener-
ate a good coflow scheduling policy. Lines 3-4 run a series of
experiment episodes for the DRL agent, and line 5 resets the
updated value of the neural networks to zero in each iteration.
Lines 6-14 calculate the updated value for the neural networks
based on the cumulated reward, among which lines 7-10 cal-
culate the baseline value bk to reduce the bias of the training,
and lines 11-12 set the changes of the neural network param-
eters for each agent. Line 15 regulates the episode length. In
our training, the learning rate α is set to 1 × 10−3, and the
gradient descent is used for neural network parameter update
with Adam optimizer [Kingma and Ba, 2014].

3.3 Neural Network Implementation
The neural networks in DeepWeave consist of two stages:
GNN processing and Policy Network processing, as illus-
trated in Figure 4. In this subsection, we detail the two stages.

GNN processes the information of the job DAG. Com-
pared to other popular neural networks, such as convolutional
neural network, GNN is more appropriate to process graph-
like structured data [Zhou et al., 2018]. Besides, GNN is
proved to have a better knowledge transfer ability [Rusek
et al., 2019]. For example, when the size of the input data
is slightly different from the training history, GNN can still
make precise inferences. In coflow scheduling, the training
process can hardly cover all job DAG shapes, so the knowl-
edge transfer ability is critical.

In the GNN, both node attributes and job attribute are cal-
culated. First, the information (e.g., the computation cost) of
vi is abstracted as the node’s feature xi in the graph. Then, at-
tribute attri of node vi is calculated based on attributes of vi’s
descendant nodes. The attribute information is transmitted

GNN Calculation
On the Job DAG

[
]

Output
Layer

Weight

Value

... Policy
Converter...

......

...

Policy Network

Summary

Figure 4: The working mechanism of the neural networks.

from node vi’s descendant nodes (denoted as des(vi)) one by
one to vi through a sequence of message passing steps [Mao
et al., 2019]. During these message passing steps, each node
calculates its attribute value by attri = F (xi, {attru|vu ∈
des(vi)}). In practice, the function F (·) can be implemented
with neural networks. We implement two neural networks in
DeepWeave for F (·) as follows:

attri = f [
∑

vu∈des(vi)

g(attru)] + xi

where f(·) and g(·) are two small feedforward neural net-
works with two hidden layers. This function enables a non-
linear transformation of the corresponding input information.
In this way, the message passing process can transmit com-
plicated information from a node’s descendant nodes to the
node. Besides, [Mao et al., 2019] points out that one neu-
ral network cannot compute the critical path of a DAG [Kel-
ley Jr, 1961]. Each node attribute is presented as one ab-
stract value. The attribute values are sorted, and the order of
each node is recorded based on their values before the val-
ues leave the GNN. After the calculation of node attributes,
there is also a job-level information summary y. In Deep-
Weave, another set of neural networks is used for calculating
y, where y = fjob({attri, xi|vi ∈ V }).

After the GNN calculation process, the sequence of the
job-level information and node attributes are sent to the stage
of Policy Network. The Policy Network is implemented us-
ing a feedforward neural network with one hidden layer. The
feedforward neural network calculates the job-level infor-
mation and node attributes and generates priority list P =
(p1, p2, ..., p|V |) as the output, where pi(1 ≤ i ≤ |V |) corre-
sponds to the priority value of node vi in the execution of the
job, and a higher pi stands for a higher priority. Note that the
Policy Network cannot change its size as GNN does. In our
design, the size of the input layer equals the maximum num-
ber of vertices that may appear in the experiment. For small
DAGs, the sorted values from node attributes are padded with
zeros before they are used as the input of the Policy Network.

3.4 Policy Converter
Policy Converter translates the output value of Policy Net-
work into concrete coflow scheduling policies. As men-
tioned before, the Policy Network generates priority list P =
(p1, p2, ..., p|V |) for each node in the job DAG. Since a job
DAG only has one edge originating from one certain node,
we assign the priority of edge e (i.e., a coflow) with the pri-
ority value of its source node. Assume that we have priority
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Algorithm 2 Scheduling policy of coflows and flows in
coflows at ingress ports

Input: priority list P ;
Output: flow scheduling priority;

1: while P 6= ∅ do
2: Select coflow ei with the maximum pi ∈ P ;
3: Select the flow fm∗,n∗i with the largest size in ei;
4: Assign fm∗,n∗i with the highest priority in the

remaining source of ingress port m∗;
5: Get End(fm∗,n∗i );
6: for ingress port m = 1 to M do
7: if fm,n∗i 6= 0 then
8: Add fm,n∗i in ingress port m with the

minimum|End(fm,n∗i )− End(fm∗,n∗i )|;
9: end if

10: end for
11: Remove pi from P ;
12: end while

list P = {p1, p2,, ..., p|E|} that denotes the priority of each
coflow. The scheduling problem is to schedule flows at each
port based on the priority of the coflow they belong to. The
scheduling process includes scheduling at ingress ports and
scheduling at egress ports, and the two schedulings s are sim-
ilar. For simplicity, we only show the scheduling process at
ingress ports.

Algorithm 2 details the translation from the priority list to
the concrete scheduling process at ingress ports. In Algo-
rithm 2, coflows are scheduled according to their priorities
in P . Line 2 selects the coflow with the highest priority to
schedule. Lines 3-4 minimize the end time of the coflow by
first scheduling the flow with the largest size in the selected
coflow. Line 5 gets the end time of the flow and uses this
flow’s end time as the end time for this coflow. Lines 6-10
schedule other flows on port n∗. Line 11 removes the sched-
uled coflow from priority list.

4 Experiment and Evaluation
4.1 Simulation Environment
In this section, we evaluate the performance of DeepWeave.
For the simulation environment, we implement a coflow
scheduling simulator with Python 3.6. During the training,
at each step, the simulator tells the DRL agent about the state
information, then the action from the DRL agent is translated
into flow scheduling operations to schedule the flows in the
simulator. Finally, the simulator calculates the job completion
time, which is used to calculate the reward value. A group
of previous works [Huang et al., 2016; Zhang et al., 2016;
Li et al., 2016; Wang et al., 2019; Tan et al., 2019] used
the real-life traces of Facebook [Chowdhury et al., 2014] to
train and test the coflow scheduling schemes. Specifically,
the training and test data are separately chosen, and they are
different from each other. However, the Facebook trace is a
collection of single-stage jobs, which do not contain the infor-
mation of correlations among different coflows. In this paper,
we use TPC-DS [tpc, 2019] to evaluate the performance of
different schemes in job DAGs. We use Shark [Xin et al.,
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2013] to generate queries and set the single wave to each
stage in the job DAG. The DRL algorithm is implemented
on TensorFlow based on Python 3.6. The simulation runs on
a desktop computer equipped with an Intel i7700 CPU, GTX
1080Ti Graphics card, and 32G DDR4 RAM. The DRL agent
is trained for 60000 iterations in our experiment.

We evaluate the performance of DeepWeave with the fol-
lowing schemes:

1. Varys [Chowdhury et al., 2014] uses a Smallest-
Effective-Bottleneck-First (SEBF) heuristic algorithm to
greedily schedule a coflow based on its bottleneck flow’s
completion time.

2. Approximate [Shafiee and Ghaderi, 2018] tries to
solve a convex optimization problem and provides a
polynomial-time deterministic algorithm with an ap-
proximation factor of 5 to the optimal solution.

3. Sincronia [Agarwal et al., 2018] uses a greedy mech-
anism to schedule coflows based on a priority list of
coflows and can achieve an approximation factor of 4
to the optimal solution.

4. IAOA (Information-Agnostic Online Algorithm) [Wang
et al., 2019] formulates a weighted coflow completion
time minimization problem and proposes a heuristic so-
lution with an approximation factor of 2 to the optimal
solution. However, IAOA does not consider the correla-
tions of coflows in job DAGs.

4.2 Simulation Results
Job Completion Time
First, we select a group of TPC-DS queries that consist of
DAGs with different shapes. Specifically, the critical path
lengths of these DAGs vary from 4 to 7, and each DAG con-
tains 5 queries. Figure 5 shows the average JCTs of differ-
ent schemes normalized to the JCT of DeepWeave. In this
figure, all comparison schemes’ JCTs are larger than Deep-
Weave’s in all the tested DAGs. DeepWeave outperforms
the best comparison scheme at least 1.7×. When the crit-
ical path length in the DAG increases to 7, all comparison
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schemes’ JCTs are at least twice longer than DeepWeave’s.
As the DAG’s length grows from 4 to 7, Varys and Sincronia
have relatively stable performance. In contrast, Approximate
and IAOA’s performance degrade significantly as the DAG’s
length increases since do not take the correlations of different
coflows into full consideration.

Deadline Missing Rate
From the job level’s perspective, the ultimate goal of coflow
scheduling is to minimize the completion time of jobs. To this
end, we use GGen [Cordeiro et al., 2010] to generate DAGs
with various shapes. We use the Fan-in/Fan-out method in
GGen and set the number of vertices in the DAGs from 4 (22)
to 64 (26). For DAG shape (i.e., the number of nodes), we
generate 20 DAGs and fine-tune the deadline of each DAG to
differentiate the performance of different schemes. We use
the CustomTraceProducer in CoflowSim [Cof, 2014] to gen-
erate coflows for the DAGs and assume that the non-blocking
fabric has 50 ingress ports and 50 egress ports. We use the
deadline missing rate of job DAGs as the performance met-
ric. The simulation result is shown in Figure 6. In this fig-
ure, DeepWeave has the lowest deadline missing rate among
all the schemes, while Approximate has the highest deadline
missing rate. This result is in accordance with the simulation
results of Figure 5.

Impact of Different Parameters
DeepWeave uses two types of neural networks: a GNN and a
Policy Network. The neural networks in DeepWeave is fine-
tuned to get a good performance. Changing the neural net-
work components may lead to a degradation of the perfor-
mance. Figure 7 shows the impact of changing neural net-
works on JCT, which is normalized to JCT of DeepWeave.
In this figure, 2-layer-PN denotes using a Policy Network
with two hidden layers, 3-layer-PN denotes using a Policy
Network with three hidden layers, no-summary denotes the
GNN implementation without the summary node, 1-layer-
GNN denotes the functions in GNN with one hidden layer,
and 3-layer-GNN denotes the functions in GNN with three
hidden layers. In the figure, we can see that the neural net-
work change leads to performance degradation. Specifically,
1-layer-GNN performs worst because one hidden layer is not
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Figure 7: Normalized JCT under different neural networks (normal-
ized to DeepWeave) The result of DeepWeave is one in all cases.

enough to extract enough information for job DAGs. On the
other hand, 3-layer-GNN does not outperform the 2-layer-
GNN (i.e., the one used in DeepWeave) due to the overfitting
of the neural networks.

5 Conclusion
In this paper, we present DeepWeave to automatically gener-
ate coflow scheduling policies in job DAGs based on DRL.
DeepWeave employs GNN to handle the input job DAG and
provides a high generalization ability of the DRL framework
on different job DAGs. After training, DeepWeave can gen-
erate efficient coflow scheduling policies without human ex-
pertise. The main challenge of applying DRL in the gener-
ation of coflow scheduling policy comes from the design of
the neural network structure and the fine-tuning of the param-
eters. This work proves the effectiveness of machine learning
in designing flow scheduling policies. In the future, we will
enrich our work to achieve a more powerful coflow schedul-
ing system on real applications.
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