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Abstract
The self-supervised learning-based depth and vi-
sual odometry (VO) estimators trained on monoc-
ular videos without ground truth have drawn sig-
nificant attention recently. Prior works use photo-
metric consistency as supervision, which is fragile
under complex realistic environments due to illumi-
nation variations. More importantly, it suffers from
scale inconsistency in the depth and pose estima-
tion results. In this paper, robust geometric losses
are proposed to deal with this problem. Specifi-
cally, we first align the scales of two reconstructed
depth maps estimated from the adjacent image
frames, and then enforce forward-backward rela-
tive pose consistency to formulate scale-consistent
geometric constraints. Finally, a novel training
framework is constructed to implement the pro-
posed losses. Extensive evaluations on KITTI and
Make3D datasets demonstrate that, i) by incorpo-
rating the proposed constraints as supervision, the
depth estimation model can achieve state-of-the-
art (SOTA) performance among the self-supervised
methods, and ii) it is effective to use the proposed
training framework to obtain a uniform global scale
VO model.

1 Introduction
The depth and pose estimation from images is essential for
many applications, such as augmented reality and self-driving
cars in robotics and computer vision. Traditional methods
are mainly hand-crafted features systems. With the progress
of deep learning, depth can be predicted from a single im-
age by Convolutional Neural Network (CNN) in a supervised
paradigm [Eigen et al., 2014], [Laina et al., 2016], [Li et
al., 2018a]. However, these methods are limited by requiring
large amounts of labeled data and it is challenging to collect
ground truth depth especially in outdoor environments. With-
out the need for annotated depth, self-supervised monocular
depth estimation methods from stereo images have been pro-
posed in [Garg et al., 2016] and [Godard et al., 2017]. [Zhou
et al., 2017] shows a promising direction that depth and pose
∗Corresponding Author

Figure 1: Qualitative comparison samples between the baseline
method and our approach on the KITTI Eigen test split. By in-
corporating the proposed scale-consistent geometric loss, the depth
estimation model achieves better results.

estimation models can be jointly trained from single view
video sequences without ground truth. These self-supervised
methods mainly use view synthesis [Zhou et al., 2016] from
adjacent frames as supervision. Previous works [Zhou et
al., 2017], [Wang et al., 2018] utilize photometric error or
gradient-based losses to penalize the differences among these
synthetic views. However, these appearance losses are fragile
in illumination variations environments and lack relevant con-
straints to get global scale consistent visual odometry results
as proposed in [Bian et al., 2019]. In this paper, to tackle
these issues, we leverage more geometric information to for-
mulate supervision beyond using appearance losses. The
proposed method is also based on a self-supervised learn-
ing framework of depth and pose estimation from monocu-
lar videos. Different from the recent work [Bian et al., 2019]
directly using the predicted depth, we first derive the recon-
structed depth maps estimated from consecutive frames and
then use a simple but efficient approach to enforce the depth
scale consistency. Besides depth reconstruction loss, we si-
multaneously consider the forward-backward relative poses
error in our geometric loss function to get more accurate re-
sults. Depth and pose networks are jointly trained by the pro-
posed loss functions and tested separately in the respective
task. Qualitative evaluation on the KITTI Eigen test split is
shown in Fig. 1 and the depth estimation results of the pro-
posed method have significant improvement. Extensive qual-
itative and quantitative evaluation experiments are conducted
in Sec. 4.

Our contributions are summarized as follows: i) we pro-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

963



pose novel scale-consistent geometric constraints by simulta-
neously considering depth reconstruction error and forward-
backward relative poses consistency as supervision; ii) a
novel self-supervised learning framework with the proposed
loss functions is presented to get accurate depth estimation
and scale-consistent visual odometry results; iii) the proposed
models can achieve not only SOTA depth estimation perfor-
mance on KITTI and Make3D datasets but also SOTA pose
estimation results on the KITTI Odometry dataset comparing
with self-supervised methods.

2 Related Work
Traditionally, depth and pose estimation are mostly solved
by hand-crafted features methods, which are the basics of
many SLAM and SfM algorithms. ORB-SLAM [Mur-Artal
et al., 2015] is typically a visual SLAM system that is
based on ORB [Rublee et al., 2011] features. [Schonberger
and Frahm, 2016] revisits SfM algorithms and develops the
COLMAP system. Recently, with the development of deep
learning, CNNs have been successfully applied to estimate
the monocular depth and ego-motion.

2.1 Supervised Methods
[Eigen et al., 2014] firstly introduces deep learning to es-

timate single-view depth in a supervised fashion. Their net-
work can refine the coarse global prediction locally. [Laina et
al., 2016] proposes a fully convolutional residual network to
model the mapping between RGB images and depth maps.
They use the berHu loss and propose a new up-sampling
method. [Li et al., 2018a] tackles monocular depth estima-
tion as a multi-category formulation. They fuse the outputs
from their dilated CNN in a hierarchical way and utilize the
soft-weighted-sum inference to get continuous depth results.

For VO, [Konda and Memisevic, 2015] firstly develops
a deep-learning-based VO system. The approach predicts
changes in velocity and direction by using the softmax layer.
[Wang et al., 2017] formulates VO as a sequence learning
problem. Historical information is introduced to infer cur-
rent relative motions through a recurrent convolutional net-
work. [Xue et al., 2019] presents a VO framework com-
posed of Memory and Refining components. To distill fea-
tures from previous results in the Memory unit, they adopt a
spatial-temporal attention mechanism to model the Refining
component.

These methods are supervised by ground truth and there-
fore have the limitations of demanding enormous labeled data
for training.

2.2 Self-supervised Methods
By leveraging view synthesis [Zhou et al., 2016] as super-
vision, the depth and pose estimators can be jointly learned
in a self-supervised paradigm. [Zhou et al., 2017] proposes
a novel framework for estimating depth and ego-motion us-
ing monocular video sequences. The framework consists of
two separate deep networks that use the photometric error as
a supervisory signal without depth or pose ground truth. Fol-
lowing this work, by considering the consistency of consec-
utive 3D point clouds, [Mahjourian et al., 2018] introduces

an ICP loss for aligning 3D structures to further improve the
depth and pose estimation with combining 2D photometry-
based losses. UnDeepVO [Li et al., 2018b] can infer absolute
scale results from monocular image sequences by utilizing
stereo image pairs as training datasets. DDVO [Wang et al.,
2018] combines the traditional direct visual odometry with
the learning framework to refine the depth estimation results.
However, these methods still suffer from the scale inconsis-
tent problem as proposed in recent work [Bian et al., 2019].
Similarly, [Bian et al., 2019] also considers geometric con-
straints to cope with this issue. Different from their work, we
explicitly align the depth scale and enforce pose consistency
in the proposed constraints.

These self-supervised learning methods have shown a
promising way for single view depth and pose estimation
without ground truth. The details of our loss functions are
described in Sec. 3 and comparisons with SOTA approaches
are shown in Sec. 4.

3 Method
In this section, we first describe the main idea behind self-
supervised monocular depth and pose estimation, and then in-
troduce our framework and loss functions. Finally, we present
the baseline and final learning methods.

3.1 Problem Formulation
To learn depth and pose from monocular videos without
ground truth, following previous methods [Zhou et al.,
2017], [Mahjourian et al., 2018], [Bian et al., 2019], we
use photometric reprojection error as supervision. Given a
pixel coordinate point x = (x, y)T and its estimated depth
d = d(x) predicted from the depth network, we can recon-
struct its 3D point X = (X,Y, Z, 1)T based on the pinhole
camera model by the inverse projection function

π−1(x, d(x)) =

(
(x− cx)d

fx
,

(y − cy)d

fy
, d, 1

)T

(1)

where fx, fy represent focal lengths and cx, cy stand for op-
tical centers. The projection function is performed as

π(X) =

(
Xfx
d

+ cx,
Y fy
d

+ cy

)T

. (2)

Considering two consecutive frames {It−1, It}, we can use
the relative pose T = Tt→t−1 predicted by pose network to
get warping transform function

ω(x,T) = π(Tπ−1(x, d(x))). (3)

With this warping transformation, the synthesized images
It−1(ω(xi,j ,T)) are generated by using a differentiable bi-
linear sampling mechanism [Jaderberg et al., 2015] and pho-
tometric consistency loss is formulated as

Lph =
1

N

∑
i,j

∣∣It−1(ω(xi,j ,T))− It(xi,j)
∣∣ (4)

where N is the number of valid points.
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Figure 2: The main idea of our method. Given three sequential frames {It−1, It, It+1}, each depth map is predicted by depth net with sharing
weights. The concat of image pairs is the input of pose net and its output relative poses Tt→t−1,Tt→t+1 are used to obtain the synthesized
and reconstructed depth map. After aligning the depth scale, the scale-consistent depth reconstruction loss can be formulated as supervision to
train neural networks. By applying the reversed image sequence, we can get the constraint of backward relative poses. With the combination
of our scale-consistent geometric constraint and appearance losses proposed in the previous works, depth and pose networks can be trained
by these self-supervised signals.

3.2 Scale-consistent Geometric Constraints
Besides minimizing photometric inconsistency, in this sec-
tion, we consider decreasing depth maps and pose differences
among consecutive frames as geometric supervision. The de-
tails of our loss functions will be introduced respectively.

Scale-consistent Depth Reconstruction Loss
We use {dt−1, dt} to represent the estimated depth of images
{It−1, It}. Similarly to photometric error, warping function
Eq. 3 is used to get synthesized depth map d

′

t−1. Its equation
is shown as follows:

d
′

t−1 = dt−1(ω(x,T)). (5)

Rather than directly utilizing dt predicted from depth net, the
transformation matrix T is applied to get the reconstructed
depth map d

′

t [Kerl et al., 2013]. The equation is given as

d
′

t = [Tπ−1(x, dt(x))]d (6)

where [·]d represents d component of a 3D point.
Learning depth only from monocular sequences suffers

from scale inconsistent problem [Bian et al., 2019], that is
to say, the estimated depth maps from different images could
have a different scale. Therefore, to penalize the inconsistent
between synthesized and reconstructed depth maps, the scale
inconsistent issue is reconsidered here. In details, we firstly
align the depth scale by using their mean

{
d̄′ t−1, d̄

′
t

}
to nor-

malize depth maps, and then apply a term to penalize the error
between d̄′ t−1 and d̄′ t to keep scale consistent. Finally, our
scale-consistent depth reconstruction loss is written as

Ld =
1

N

∑
i,j

∣∣∣∣∣ d
′i,j

t−1

d̄′ t−1
− d

′i,j

t

d̄′ t

∣∣∣∣∣+
∣∣d̄′ t−1 − d̄′ t∣∣ (7)

where N represents the number of valid points in the depth
map.

Forward-backward Pose Consistency Loss
We use the vectors r and t to represent the rotational and
translational items of the relative pose T. Inspired by [Godard
et al., 2017] which uses mirror consistency between left and
right views, we propose forward-backward pose constraint
to get more accurate results. As Fig. 2 shows, two concat
images are the input of pose network. The relative poses
{Tt→t−1,Tt+1→t,Tt+1→t−1} can be predicted from the
images pairs {{It−1, It} , {It, It+1} , {It−1, It+1}}. If the
estimated relative poses are accurate, the product of Tt→t−1
and Tt+1→t should be equal to Tt+1→t−1 and vice versa.
For simplicity, we use the rotational and translation vectors to
represent the estimated relative poses. Our forward-backward
pose consistency loss is formulated as

Lpo =
∑

m=1,−1
‖rt→t−m + rt+m→t − rt+m→t−m‖1

+ ‖tt→t−m + tt+m→t − tt+m→t−m‖1 (8)

where m represents the forward-backward operation.
Note that the relative poses have been used to get the syn-

thesized and reconstructed depth maps in Eq. 5, 6. So the
scale inconsistent problem does not need to be considered
in pose estimation. The forward-backward relative poses
have been predicted by pose network, therefore the forward-
backward idea can be easily extended to depth reconstruction
loss function. For simplicity, we do not show this operation
in our depth reconstruction loss and our scale-consistent geo-
metric constraint is given as

LSC = λdLd + λpoLpo. (9)
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where empirical parameters λd and λpo have been used in our
formulation and more details can be found in Sec. 4.2.

3.3 Total Training Loss and Framework
Similar to existing work [Godard et al., 2017], [Mahjourian
et al., 2018], [Bian et al., 2019], structural similarity
(SSIM) [Wang et al., 2004] loss has been used in our work to
solve the complex illumination variations problem. Consid-
ering two images patches p1 and p2, SSIM(p1, p2) is defined
as (2µ1µ2+c1)(2σ12+c2)

(µ2
1+µ

2
2+c1)(σ

2
1+σ

2
2+c2)

. The loss function is given as

LSSIM =
1− SSIM(It−1(ω,T),It)

2
. (10)

Following previous methods [Godard et al.,
2017], [Mahjourian et al., 2018], [Bian et al., 2019], it
is assumed that the estimated depth maps should be locally
smooth. An edge-aware term is used to weight the cost by
using depth maps gradients. The depth smoothness loss is
shown as follow:

Lsm =
1

N

∑
i,j

∣∣∣∇dijt ∣∣∣e−|∇Iijt |. (11)

To demonstrate that the proposed constraint can contribute
to the depth and pose estimation, we use photometric consis-
tency loss with additional appearance losses as the baseline
method which is represented by

Lbaseline = λphLph + λSLSSIM + λsmLsm. (12)

Via adding our proposed scale-consistent geometric con-
straint to baseline formulation, the total loss is written as

Ltotal = Lbaseline + LSC. (13)

As shown in Fig. 2, our depth network is based on the Disp-
Net [Zhou et al., 2017] which is an encoder-decoder architec-
ture. We replace the original encoder-decoder convolutional
blocks with residual blocks [He et al., 2016]. The input of this
network is an RGB image and the output is a disparity map
(the inverse of a depth map). For pose network, we adopt
the architecture PoseNet proposed in [Bian et al., 2019]. The
network uses a concat of two images as input then output rota-
tional and translational vectors of the relative pose. In Fig. 2,
we present the main idea of our proposed scale-consistent ge-
ometric constraint. Three sequential images are formulated
as a training sample and their depth maps are predicted re-
spectively. The relative poses from image pairs are utilized
in Eq. 5 and 6. To get backward pose results, the image se-
quences need to be reversed.

4 Experiments
4.1 Datasets
Our models are mainly trained on KITTI datasets [Geiger et
al., 2012]. For monocular depth estimation, we use Eigen
split [Eigen et al., 2014] of Raw data for a fair comparison
with previous methods. The split selects 697 images as test
datasets for monocular depth estimation and the others are
applied for training. The ground truth depth maps of test

datasets are obtained from lidar sensors. The original image
size is 1242×375 and we resize it as 416×128 or 832×256
to formulate training datasets. For pose estimation, we train
our networks on the KITTI Odometry dataset [Geiger et al.,
2012], which contains 11 sequences with public ground truth
poses. The sequences 00-08 are utilized for training and 09-
10 are test sets. The ground truth poses are not used in our
training framework. Note that for the depth or pose evalua-
tion, we separately train our networks on two datasets (Raw
data and Odometry data). Because there are overlapping
scenes in these datasets.

As presented in previous works [Zhou et al., 2017], [Bian
et al., 2019], depth and pose estimation results can be im-
proved by pretraining on Cityscapes [Cordts et al., 2016]
datasets. To compare with SOTA methods, we pre-train net-
works on Cityscapes and finetune on KITTI with the param-
eters in Sec. 4.2.

The Make3D datasets [Saxena et al., 2009] are used to
evaluate the generalization ability of the depth estimation
model. We directly test our models on this set without train-
ing or fine-tuning. The datasets contain 534 single-view im-
ages with ground truth depth maps and 134 images are used
for evaluation.

4.2 Implementation Details
We use PyTorch [Paszke et al., 2019] to implement our frame-
work and train it with a TITAN XP GPU. Adam optimizer is
adopted and parameters are set as β1 = 0.9 and β2 = 0.999.
In Eq. 12 and 13, the combination [λph, λS, λsm, λd, λpo] =
[0.15, 0.85, 0.1, 0.001, 0.1] is used. We utilize three sequen-
tial frames as training samples and batch size is set to 4.
The learning rate is set as 10−4. Our models are trained in
100 epochs and we randomly select 1000 samples in every
epoch. We pre-train the model on Cityscapes and then fine-
tune KITTI datasets. The data is augmented with random
brightness, contrast, and saturation.

4.3 Depth Estimation Results
Our method is evaluated on standard Eigen split [Eigen et al.,
2014] by using the metric proposed in [Eigen et al., 2014].
As shown in Tab. 1, we compare the depth estimation re-
sults with SOTA self-supervised methods. These models are
trained on KITTI or Cityscapes datasets. The evaluation re-
sults of previous works are taken from their public papers.
Two maximum depth range 80m and 50m have been used in
the evaluation and most models are tested at 80m depth range.
Without the utilization of traditional direct visual odome-
try, the proposed method outperforms DDVO [Wang et al.,
2018]. Different from the methods using complex auxiliary
tasks [Yin and Shi, 2018] [Ranjan et al., 2019] or complicated
networks [Vankadari et al., 2019], our approach mainly focus
on leveraging geometric information. It is important to note
that although the models vid2depth [Mahjourian et al., 2018]
and SC-SfMLearner [Bian et al., 2019] have considered the
depth consistency in geometry, our methods not only mitigate
depth scale inconsistency but also take into account relative
pose consistency during the training phase and thus our model
can achieve more accurate depth estimation results.
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Figure 3: Qualitative comparison samples on the KITTI Eigen test split. The ground truth maps are got from sparse laser data by maximum
filtering only for visualization. Comparing with other state-of-art methods, our model can predict more robust depth estimation results (black
holes in previous work) and more details in the scene.

Methods Cap
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Error (lower is better ) Accuracy (higher is better )

SfMLearner [Zhou et al., 2017]

80m

0.198 1.836 6.565 0.275 0.718 0.901 0.960

vid2depth [Mahjourian et al., 2018] 0.159 1.231 5.912 0.243 0.784 0.923 0.970

GeoNet [Yin and Shi, 2018] 0.153 1.328 5.737 0.232 0.802 0.934 0.972

DDVO [Wang et al., 2018] 0.148 1.187 5.496 0.226 0.812 0.938 0.975

UnDepth [Vankadari et al., 2019] 0.127 0.998 5.309 0.226 0.827 0.934 0.971

CC [Ranjan et al., 2019] 0.139 1.032 5.199 0.213 0.827 0.943 0.977

SC-SfMLearner [Bian et al., 2019] 0.128 1.047 5.234 0.208 0.846 0.947 0.976

Ours 0.126 0.902 5.052 0.205 0.851 0.950 0.979

SfMLearner [Zhou et al., 2017]

50m

0.190 1.436 4.975 0.258 0.735 0.915 0.968

vid2depth [Mahjourian et al., 2018] 0.151 0.949 4.383 0.227 0.802 0.935 0.974

UnDepth [Vankadari et al., 2019] 0.121 0.749 4.051 0.214 0.840 0.941 0.975

Ours 0.119 0.681 3.815 0.192 0.866 0.957 0.981

Table 1: Monocular depth estimation results on the KITTI Eigen test split. Two parts of this table show the depth results capped by 80m and
50m. δ represents the ratio of estimated depth and ground truth.

Methods Datasets Resolutions
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Error (lower is better ) Accuracy (higher is better )

Baseline

K 416× 128

0.157 1.235 5.700 0.237 0.789 0.930 0.972

Total w/o Lpo 0.152 1.149 5.519 0.231 0.800 0.930 0.972

Total w/o Ld 0.148 1.116 5.603 0.228 0.803 0.932 0.973

Total 0.148 1.077 5.506 0.228 0.806 0.934 0.973

Total K
832× 256

0.140 1.061 5.309 0.219 0.823 0.940 0.976

Total CS+K 0.126 0.902 5.052 0.205 0.851 0.950 0.979

Table 2: Ablation studies on monocular depth estimation. The results are evaluated on KITTI Eigen split and are capped at 80m. Two types of
image resolutions have been conducted in our experiments. K denotes that our models are only trained on KITTI and CS+K means fine-tuning
networks on KITTI with pre-trained parameters on Cityscapes.
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Methods Abs Rel Sq Rel RMSE RMSE log
SfMLearner

[Zhou et al., 2017] 0.383 5.321 10.47 0.478

DDVO
[Wang et al., 2018] 0.387 4.720 8.09 0.204

SfMLearner
(updated) 0.361 3.680 7.749 0.181

SC-SfMLearner
[Bian et al., 2019] 0.337 3.302 7.162 0.171

Ours 0.320 3.170 7.062 0.163

Table 3: Monocular depth estimation results on the Make3D dataset.
The model trained on Cityscapes and KITTI datasets is directly used
to predict the test set. Except for the first two row results are attained
from the paper, the others are tested with online provided models by
the same metrics.

Methods Metric Seq. 09 Seq. 10

SfMLearner
[Zhou et al., 2017]

terr(%) 17.84 37.91

rerr(◦/100m) 6.78 17.78

Depth-VO-Feat
[Zhan et al., 2018]

terr(%) 11.93 12.45

rerr(◦/100m) 3.91 3.46

SC-SfMLearner
[Bian et al., 2019]

terr(%) 8.24 10.7

rerr(◦/100m) 2.19 4.58

Ours
terr(%) 5.85 10.11

rerr(◦/100m) 1.73 3.89

Table 4: Visual odometry estimation results on the KITTI Odometry
dataset. The models are tested on sequence 09 and 10. terr and rerr
respectively represents average translation and rotation error.

Our model is directly tested on Make3D datasets without
finetuning to verify the generalization ability. In Tab. 3, we
compare our models with the online public SOTA models. In
this unseen environment, the proposed method still has sig-
nificant improvement compared with the other methods.

4.4 Pose Estimation Results
Although depth and pose nets are jointly learned during
training, they are an independent model in the testing
phase. Frame-to-frame pose estimation results without post-
processing have been integrated over sequence 09 and 10 of
the KITTI Odometry dataset. As shown in Tab. 4, we evaluate
average translation and rotation error of (100,200,...,800) me-
ters sub-sequences by using the standard evaluation metrics
proposed in [Geiger et al., 2012]. Fig. 4 shows the qualita-
tive results of trajectories. Our estimated trajectory scale only
needs to be aligned once with ground truth rather than align-
ing every estimated pose results scale as SfMLearner [Zhou
et al., 2017]. Different from Depth-VO-Feat [Zhan et al.,
2018] using a stereo sequence for training, only monocu-
lar videos are utilized in the proposed method. By simul-
taneously considering pose and aligned depth consistency,
our model achieves better pose estimation results than SC-
SfMLearner [Bian et al., 2019].

4.5 Ablation Studies
We present ablation studies to show the importance of our
methods in depth estimation. The experiments are conducted

Figure 4: Visual odometry trajectories on sequence 09 and 10 of
KITTI Odometry split.

on KITTI Eigen split with variations of our models and use
the same metrics mentioned in Sec. 4.3.

Tab. 2 presents the quantitative results and Fig. 1 shows
qualitative comparisons. Our baseline method is similar to
the basic approach of [Bian et al., 2019] and is based on the
loss proposed in Eq. 12. We apply the network architecture
mentioned in Sec. 3.3 to ablation studies. It can be found that,
without any contributions of our methods, the baseline model
performs worst. The combination of depth reconstruction and
pose consistency loss proposed in Eq. 9 makes a significant
improvement. Excluding one of our loss functions decline the
performance of depth estimation. Moreover, we use larger
image resolution 832 × 256 and pre-train our models on the
Cityscapes dataset to get better results.

5 Conclusion
In this paper, we present a self-supervised learning frame-
work of depth and pose estimation with scale-consistent ge-
ometric constraints. Beyond using photometric consistency
as supervision, robust geometric information is utilized and
scale alignment operation is also conducted in the proposed
method. The scale-consistent depth and visual odometry re-
sults can be predicted by our models, which is essential for
many applications such as obstacle avoidance. Comparing
with prior self-supervised learning frameworks, the proposed
monocular depth and pose estimation models obtain SOTA
results on KITTI and Make3D datasets. To the best of our
knowledge, it is the first work to simultaneously use depth
and pose consistency to formulate the self-supervised signal
from monocular video sequences.

Moreover, little current work uses higher-level features as
supervision. It is interesting to fuse semantic knowledge with
the proposed method for future work. Traditional VO sys-
tems have been widely used in many applications, we will try
to incorporate self-supervised learning ideas into traditional
VO or visual SLAM to get more robust and accurate pose
estimation results.
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