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Abstract

Label Distribution Learning (LDL) is a novel learn-
ing paradigm, aim of which is to minimize the dis-
tance between the model output and the ground-
truth label distribution. We notice that, in real-word
applications, the learned label distribution model is
generally treated as a classification model, with the
label corresponding to the highest model output as
the predicted label, which unfortunately prompts an
inconsistency between the training phrase and the
test phrase. To solve the inconsistency, we propose
in this paper a new Label Distribution Learning
algorithm for Classification (LDL4C). Firstly, in-
stead of KL-divergence, absolute loss is applied as
the measure for LDL4C. Secondly, samples are re-
weighted with information entropy. Thirdly, large
margin classifier is adapted to boost discrimina-
tion precision. We then reveal that theoretically
LDLAC seeks a balance between generalization and
discrimination. Finally, we compare LDL4C with
existing LDL algorithms on 17 real-word datasets,
and experimental results demonstrate the effective-
ness of LDLA4C in classification.

1 Introduction

Learning with ambiguity, especially label ambiguity [Gao et
al., 2017], has become one of the hot topics among the ma-
chine learning communities. Traditional supervised learn-
ing paradigms include single-label learning (SLL) and multi-
label learning (MLL) [Zhang and Zhou, 2014], which label
each instance with one or multiple labels. MLL assumes that
each instance is associated with multiple labels, which com-
pared with SLL takes the label ambiguity into consideration
somewhat. Essentially, both SLL and MLL consider the rela-
tion between instance and label to be binary, i.e., whether or
not the label is relevant with the instance. However, there are
a variety of real-world tasks that instances are involved with
labels with different importance degree, e.g., image annota-
tion [Zhou and Zhang, 2006], emotion recognition [Zhou et
al., 2015], age estimation [Geng et al., 2013]. Consequently,
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a soft label instead of a hard one seems to be a reasonable so-
lution. Inspired by this, recently a novel learning paradigm,
called Label Distribution Learning (LDL) [Geng, 2016], is
proposed. LDL tackles label ambiguity with the definition
of label description degree. Formally speaking, given an in-
stance x, LDL assigns each y € ) a real value d¥ (label
description degree), which indicates the importance of y to
x. To make the definition proper, [Geng, 2016] suggests that
dy €10,1]and 3 .y d% = 1, and the real value function d is
called the label distribution function. Since LDL extends the
supervision from binary to label distribution, which is more
applicable for real-world scenarios.

Due to the utility of dealing with ambiguity explicitly, LDL
has been extensively applied in varieties of real-world prob-
lems. According to the source of label distribution, applica-
tions can be mainly classified into three classes. The first one
includes emotion recognition [Zhou er al., 2015], pre-release
rating prediction on movies [Geng and Hou, 2015], et. al,
where the label distribution is from the data. Applications
of the second class include head pose estimation [Huo and
Geng, 20171, crowd counting [Zhang et al., 2015], et. al,
label distribution of which are generated by pre-knowledge.
Representative applications of the third one include beauty
sensing [Ren and Geng, 2017], label enhancement [Xu et al.,
2018], where the label distribution is learned from the data.
Notice that the aforementioned applications of LDL fall into
the scope of classification, and we find that a learned LDL
model is generally treated as a classification model, with the
label corresponding to the highest model output as the pre-
diction, which unfortunately draws an inconsistency between
the aim of the training phrase and the goal of test phrase of
LDL. In the training phrase, the aim of LDL is to minimize
the distance between the model output and the ground-truth
label distribution, while in the test phrase, the object is to
minimize the 0/1 error.

We tackle the inconsistency in this paper. In order to al-
leviate the inconsistency, we come up with three improve-
ments, i.e., absolute loss, re-weighting with entropy informa-
tion, and large margin. The proposal of applying absolute
loss and introducing large margin are inspired by theory ar-
guments, and re-weighting samples with information entropy
is based on observing the gap between the metric of LDL
and that of the corresponding classification model. Since
improvements are mainly originated from well-established
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theory tools, we are able to provide theoretical analysis of
the proposed method. Consequently, the proposed algorithm
LDLAC is well-designed and theoretically sound.

The main contributions of this paper are summarized as
followings,

1) We propose three key components for improving clas-
sification performance for LDL, i.e, absolute loss, re-
weighting samples with information entropy, and large
margin.

2) We establish upper bounds for 0/1 error and error proba-
bility of the proposed algorithms. Theoretical and empir-
ical studies show that LDLAC enjoys generalization and
discrimination.

The rest of the paper is organized as follows. Firstly, re-
lated works are briefly reviewed. Secondly details of the pro-
posed method are presented. Then we give the theoretical
analysis of the proposed method. Next experimental results
are reported. Finally, we conclude the paper.

2 Related Work

Existing studies on LDL are primarily concentrated on de-
signing new algorithms for LDL, and many algorithms have
already been designed for LDL. [Geng, 2016] suggests three
strategies for designing LDL algorithms. The first one is
Problem Transformation (PT), which generates SL dataset
according to the label distribution and then learns the trans-
formed dataset with SL algorithms. Algorithms of the first
strategy include PT-SVM and PT-Bayes, which apply SVM
and Bayes classifier respectively. The second one is Algo-
rithm Adaptation (AA), algorithms of which adapt existing
learning algorithms to deal with label distribution straightly.
Two representative algorithms are AA-kNN and AA-BP. For
AA-ENN, mean of label distribution of k nearest neighbors is
calculated as the predicted label distribution, and for AA-BP,
one-hidden-layer neural network with multi-output is adapted
to minimize the sum-squared loss of output of the network
compared with the ground-truth label distribution. The last
one is Specialized Algorithm (SA). This category of algo-
rithms take characteristics of LDL into consideration. Two
representative approaches of SA are IIS-LDL and BFGS-
LDL, which apply the maximum entropy model to learn the
label distribution. Besides, [Geng and Hou, 2015] treats LDL
as a regression problem, and proposes LDL-SVR, which em-
braces SVR to deal with the label distribution. Furthermore,
[Shen et al., 2017] proposes LDLF, which extends random
forest to learn label distribution. In addition, [Gao et al.,
2017] provides the first deep LDL model DLDL. Notice that
compared with the classic LDL algorithms, LDLF and DLDL
support end-to-end training, which are suitable for computer
vision tasks. Notice that none of aforementioned algorithms
ever consider the inconsistency as we previously discussed.
There are few work on inconsistency between the train-
ing and the test phrase of LDL. [Gao er al., 2018] firstly
recognizes the inconsistency in the application of age esti-
mation, and designs a lightweight network to jointly learn
the age distribution and the ground-truth age to bridge the
gap. However the method is only suitable for real-valued la-
bel space and no theory guarantee is provided. Besides, one
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recent work [Wang and Geng, 2019] provides a theoretical
analysis of the relation between the risk of LDL (absolute
loss) and error probability of the corresponding classification
function, discovering that LDL with absolute loss dominates
classification. However, the major motivation of the paper is
to understanding LDL theoretically, and no algorithm design
to improve classification precision is provided.

3 The Proposed Method

3.1 Preliminary

Let X be the input space, and Y = {y1,¥2,.-.,Ym} be the
label space. Denote the instance by x. The label distribu-
tion function d € RY*Y is defined as d : X x ) — R,
satisfying the constraints d2 > 0 and Zyey ¥ = 1, where
d¥ = d(x,y) for convenience of notations. Given a training
set 5 = {(x1,[di, .- dr]), - (R, [dE2 - AR ]S
the goal of LDL is to learn the unknown function d, and the
object of LDLAC is to make a prediction.

3.2 Classification via LDL

In real-world applications we generally regard a learned LDL
model as a classification mode. Formally speaking, denote
the learned LDL function by h and the corresponding classi-

fication function by B, for a given instance x, then we have
h(x) = arg max hY
(x) gmax h,

i.e, the prediction is the label with the highest output. Intu-
itively if A is near the ground-truth label distribution function
d, then the corresponding classification function h is close to
the Bayes classification (we assume d is the conditional prob-
ability distribution function), thereby LDL is definitely re-
lated with classification. The mathematical tool which quan-
tifies the relation between LDL and classification is the plug-
in decision theorem [Devroye et al., 1996]. Let h* be the
Bayes classification function, i.e.,

h*(x) = argmax d¥
(x) gmax dy,

then we have

Theorem 1. [Devroye ef al., 1996; Wang and Geng, 2019]
The error probability difference between h and h* satisfies

> |ny — dy]

yey

P(h(x) # y) — B(h"(x) # y) < Ex

The theorem says that if & is close to d in terms of absolute
loss, then error probability of h is close to that of h*. Theo-
retically LDL with absolute loss is directly relevant with clas-
sification. Also absolute loss is tighter than KL-divergence,
since |p — q| < 24/KL(p,q), for p,q € R™ [Cover and
Thomas, 2012]. Accordingly we propose to use absolute loss
in LDL for classification, instead of KL-divergence. Similar
with [Geng, 2016], we use maximum entropy model to learn
the label distribution. Maximum entropy mode is defined as

. 1
W = exp(w; - ). M
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Figure 1: An example to illustrate the gap between absolute loss for
LDL and error probability for classification. The red bar represents
the ground-truth label distribution, and the green one represents the
learned label distribution.

where Z = 3 exp(w;-x) is the normalization factor. Abso-
lute loss is applied as the measure for LDL, and consequently
the problem can be formulated as

manZ‘hy] —d¥ §Z\|Wj\|2, 2)

=1 j=1 Jj=1

where W = [wy, Wa, ..., Wp,] is the set of parameters.

3.3 Re-weighting with Information Entropy

After taking a second look at the Theorem (1), we will find
out that model (2) actually optimizes the upper bound for er-
ror probability. This really brings a gap between absolute
loss for LDL and 0/1 loss for classification. Fig. 1 is an il-
lustrative example to demonstrate the gap, where ¢; denotes
absolute loss and fep denotes error probability defined as Eq.
(15). As we can see from the figure, (b) is superior to (a)
from the perspective of absolute loss. However (b) is infe-
rior to (a) in terms of error probability. For (a), ys has the
highest label distribution both for d and h, thus prediction
of h coincides with that of the Bayes classification function
h*. For (b), y3 has the highest label distribution for d and y,
has the highest label distribution for h, thus the corresponding
classification result is different with that of the Bayes classifi-
cation. Essentially for label distribution which is multimodal
(like (b) of Fig.1), the corresponding classification function is
much more sensitive to the loss of LDL. While, for label dis-
tribution which is unimodal (like (a) of Fig.1), there is more
room to manoeuvre. Information entropy seems to be a rea-
sonable tool to quantize this sensitiveness, since a multimodal
distribution generally brings higher information entropy com-
pared with a unimodal one. Precisely, for the label distribu-
tion with higher information entropy (i.e., multimodal), the
corresponding classification model is much more sensitive to
the LDL loss, and vice verse. In other words, samples with
high information entropy deserves more attention, which re-
minds us to re-weight samples with information entropy. Re-
weighted with information entropy will penalize large loss
for samples with high information entropy, and leave more
room for samples with low information entropy. Recall the
definition of entropy information , for x,

~Y dindy.

yey

Accordingly the problems is then formulated as
: Yj Y 112
nvlanE Z\h —d] + gzlnwju LB
1= 1= 1=

3.4 LDL with Large Margin

To further boost the classification precision, we borrow the
margin theory. Formally speaking, let the model output cor-
responding to the Bayes prediction has a large margin over
other labels, which pushes the corresponding classification
model consistent with the Bayes classification model. Let
be the Bayes prediction for x;, i.e., y7 = h*(x;). Then we

assume a margin p between hy. and maxye(y—y*} M., and
the problem can be formulated as

OIS SRR WS
i=1 Jj=1

Jj=1
s.t. : h:"? — max h¥Y >p—&,
oye{y-yry Pt
fi > 0, Vi € [n],

“

where C, Cs are the balance coefficients for margin loss and
regularization respectively. Large margin turns out to be a
reasonable assumption since the ultimate goal of LDLAC is
to pursuit the Bayes classifier. Overall, model (4) seeks a
balance between LDL and large margin classifier.

3.5 Optimization
To start, for x, define

a= h,y; — max hY, 5)

ye{V-y;}
and p-margin loss as £ () = max{0, 1—%}. By introducing
margin loss, model (4) can be re-formed as
. n m v ” n 02 m )
D B D[t — dsit| O3 () + 7 D Iwll
1= J= 1= J=

(0)
which can be optimized efficiently by gradient-based method
(€7 is differential). We optimize the target function by BFGS
[Nocedal and Wright, 2006]. Define ¢ as the step function,

1 ifz>0,
¢(x) = { 0 otherwise,

and denote the target function by 7', gradient of which is ob-
tained through

or , Oh
— = Ey,sign(hy, — dv,
oy = 5 Pt~

n Omas,cqy ) L)) oW
O1Z¢(P*Oéi) ( yE{kal} — — Wkl .
i=1

Moreover, gradient of & is got through

Ohy’ 1. exp(wi - X) exp(w; -x) \° <
owe | VTR exp(wi - xi) >~ exp(w; - x) "

-l- Cowy+
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4 Theoretical Results

In this section, we will demonstrate that, theoretically LDL4C
seeks a trade-off between generalization and discrimination,
where generalization is due to the LDL process, and discrim-
ination is credited to the large margin classifier.

4.1 Generalization

Here by generalization we mean that the error probability of
LDLAC converges to that of the Bayes classifier, by develop-
ing an upper bound for error probability of LDL4C. The basic
steps are providing an upper bound for risk of LDL4C (with
absolute loss) firstly, and then converting the risk bound into
error probability bound by Theorem 1.

Notice that maximum entropy model, i.e., Eq. (1) can be
regarded as function combination of softmax function and
multi-output linear regression function. Formally, let SF be
the softmax function, F be a family of functions for multi-
output linear regression. Denote the family of functions
for the maximum entropy model by H, then H = {x —
SFo f(x) : f € F}. To bound the risk of LDLAC, it suf-
fices to derive an upper bound on the Rademacher complexity
[Bartlett and Mendelson, 2003] of the model.

Theorem 2. Define F as F = {x > [wi-X,..., Wy, -x|T:
||w;|| < 1}. Rademacher complexity of {1 o H satisfies
2v/2m? max; e, ||xi
Rl oH) < V2 e |l ||2 %

vn

Proof. Firstly, according to [Wang and Geng, 20191, ¢, 0SF is
shown to be 2m-Lipschitz. And according to [Maurer, 20161,
with ¢; o SF being 2m-Lipschitz, then

Rl oH) <2v2m Y Ry (F;oS), (8)

Jj=1

where F; = {x — w; - x : ||w,|| < 1}. Moreover, accord-
ing to [Kakade et al., 2009], Rademacher complexity of F;
satisfies

5 maxie [y [|Xil|2

Rn(F;) < 9
Finally substitute Eq. (9) into Eq. (8), and we finish the proof
for Theorem (2). O

Then data-dependent error probability for LDLAC is as fol-
lowing,

Theorem 3. Define H = {x +— max,cy h¥ : h € H}. Then

for any § > 0, with probability at least 1 — 6, for any heH,
such that

m

x) #y) < ZZIhi’é
4+/2m? maxie[n]||xi||2

log2/6
N + 6/ 5.

(10)

P(h(x) # y) — P(h* &3 |+
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Proof. Firstly, according to [Bartlett and Mendelson, 2003;
Mohri et al., 2012], and 3 |d§, — h¥| < 2 (triangle inequal-
ity), data-dependent risk bound for LDLAC is as

imy’ d¥ | <ZZ|h
j=1

4\/§m maX;ein) ||XZ||2 46 10g2/5
Vn V. 2n

Secondly combine Theorem (1) and Eq. (3), which completes
the proof for the theorem. O

Y

4.2 Discrimination

In this part, we will borrow margin theory to demonstrate that
LDLAC enjoys discrimination. By discrimination, we mean
the ability to output the same prediction as the Bayes pre-
diction. According to [Bartlett and Mendelson, 2003], with
margin loss, we have

Theorem 4. Define H as H = {(x,y*) — h(x,y*) —
maxyery—y+} h(X,y) : h € H}. Fix p > 0. Then, for any
& > 0, with probability at least 1 — 0, for all h € H, such that

log2/6
2n

E[0°(0)] < anfp(ozq;)+27én(€po7:l)+3 . (12)

Since (7 satisfies 1/p-Lipschitzness, we have 7%”(6" o
) < ;Rn(H). And according to [Mohri er al., 2012],

n(H) < 2mR,, (I, (H)), where T1; (H) is defined as
I (H) ={x+— h(x,y) :y € Y, h € H}.
Since 11p(x)2y+} < £°(a), thus we have

H
R

AmR, (T (H log 3
E [1heo4+] pr ai) (p () 4 5 o
And R,,(I1; (H)) can be bounded as
.\ —1
R, (I, () < =) (13)

vn ’
where v = 2max;¢, to

Theorem 5. Fix p > 0. Then for any § > 0, with probability
at least 1 — 6, for all h € H such that

zép ;)

m = Dmyexp(y) _ 4 log 3
pvn 2n

(14)

E [1no2y]

5 Experiments

5.1 Experimental Configuration

Real-word datasets. The experiments are extensively con-
ducted on seventeen datasets totally, among which fifteen are
from [Geng, 20161, and M?B is from [Nguyen et al., 2012],
and SCUT-FBP is from [Xie et al., 2015]. Note that M?B
and SCUT-FBP are transformed to label distribution as [Ren
and Geng, 2017]. Datasets are from a variety of fields, and
statistics about the datasets are listed as Table 1.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Dataset #Examples  # Features  # Labels
SJAFFE 213 243 6
M?B 1240 250 5
SCUT-FBP 1500 300 5
Natural Scene 2000 294 9
Yeast-alpha 2465 24 18
Yeast-cdc 2465 24 15
Yeast-cold 2465 24 4
Yeast-diau 2465 24 7
Yeast-dtt 2465 24 4
Yeast-elu 2465 24 14
Yeast-heat 2465 24 6
Yeast-spo 2465 24 6
Yeast-spo5 2465 24 3
Yeast-spoem 2465 24 2
SBU_3DFE 2500 243 6
Movie 7755 1869 5
Human Gene 17892 36 68

Table 1: Statistics of 17 real-world datasets used in the experiments.

Comparing algorithms. We compare LDL4C with six
popular LDL algorithms, i.e., PT-Bayes, PT-SVM, AA-
BP, AA-kNN, LDL-SVR [Geng and Hou, 2015], BFGS-
LDL, and two state-of-the-art LDL algorithms, i.e., Struc-
tRF [Chen et al., 2018] and LDL-SCL [Zheng et al., 2018].
For LDLA4C, the balance parameter C; and Cs are selected
from {0.001,0.01,0.1,1,10,100} and p is chosen from
{0.001,0.01,0.1} by cross validation. Moreover for AA-
BP, the number of hidden-layer neurons is set to 64, and for
AA-ENN, the number of nearest neighbors £ is selected from
{3,5,7,9,11}. Furthermore, for BFGS-LDL, we follow the
same settings with [Geng, 2016]. Besides, the insensitive
parameter € is set to 0.1 as suggested by [Geng and Hou,
2015], and rbf kernel is used for both PT-SVM and LDL-
SVR. For StructRF, depth is set to 20 and number of trees
is set to 50, and sampling ratio is set to 0.8 as suggested by
[Chen et al., 2018]. In addition, for LDL-SCL, A\; = 0.001,
Ay = 0.001, A3 = 0.001 and number of clusters m = 6
as given in [Zheng er al., 2018]. Finally, all algorithms are
examined on 17 datasets with 10-fold cross validation, and
average performance is reported.

Evaluation metrics. We test algorithms in terms of two
measures, 0/1 loss and error probability. For 0/1 loss, we
regard the label with the highest label distribution as the
ground-truth label. Given an instance x with prediction y,
the error probability is defined as

Cep(x,y) =1 —di. s)

5.2 Experimental Results

Firstly, to validate the three key components (i.e., absolute
loss, re-weighting with information entropy, and large mar-
gin) for boosting classification precision, we add each of
the components into BEFGS-LDL and compare 0/1 loss with
BFGS-LDL. The performance is reported in Table 2. Due to
the page limitation, we only report part of the results. Here
“LDL” is short for BFGS-LDL. “LDL+/¢;” represents BFGS-
LDL with absolute loss, and “LDL+RW” represents BFGS-
LDL with information entropy re-weighting, and “LDL+LM”
stands for BFGS-LDL with large margin. As we can see from
the table, armed with three key components, the correspond-
ing LDL model can achieve better classification performance
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Dataset LDL LDL+41 LDL+RW LDL+LM
SJAFFE 437 417 394 426
M?B 486 486 482 485
SCUT-FBP 467 470 465 467
Natural Scene .597 420 421 425
Yeast-alpha 891 787 787 787
Yeast-cdc .823 .820 821 821
Yeast-cold .580 576 576 576
Yeast-diau .694 665 .668 .669
Yeast-dtt .629 .630 627 627
Yeast-heat 702 .676 675 677
Yeast-spo .548 547 547 547
Yeast-spoem 435 .400 416 422
Movie 416 416 410 414

Table 2: Experimental results of comparing BFGS-LDL with BFGS-
LDL + { 41, RW, LM } in terms of 0/1 loss. The best results are
highlighted in bold face.

compared with the original BFGS-LDL model.  Secondly
we conduct extensive experiments of LDL4C and comparing
methods on 17 real-world datasets in terms of 0/1 loss and
error probability, and the experimental results are presented
as in Table 3 and Table 4 respectively. The pairwise t-test
at 0.05 significance level is conducted, with the best perfor-
mance marked in bold face. From the tables, we can get that:

e In terms of 0/1 loss, LDL4C rank 1st among 13 datasets,
and is significantly superior to other comparing methods
in 70% cases, which validates the ability of LDL4C for
performing classification.

e In terms of error probability, LDL4AC ranks 1st among
12 datasets, and achieves significant better performance
in 46% cases, which discloses that LDL4C has better
generalization.

6 Conclusions

This paper tackles the inconsistency between the training and
test phrase of LDL when applied in applications. In the train-
ing phrase of LDL, aim of which is to learn the given la-
bel distribution, i.e., minimizing (maximizing) distance (sim-
ilarity) between the model output and the given label distri-
bution. However, for applications of LDL, a learned LDL
model is generally treated as a classification model, with the
label corresponding to the highest output as the prediction.
The proposed algorithm LDLA4C alleviates the inconsistency
with three key improvements. The first one is inspired by the
plug-in decision Theorem 1, which states that absolute loss
is directly related with classification error, thereby absolute
loss is applied as the loss function for LDL4C. The second
one stems from noticing the gap between absolute loss and
the classification error, which suggests re-weighting samples
with information entropy to pay more attention to multimodal
distribution. The last one is due to margin theory, which in-
troduces a margin between hY and max,e(y_y+) h¥ to en-
force the corresponding classification model approaching the
Bayes decision rule. Furthermore, we explore the effective-
ness of LDLAC theoretically and empirically. Theoretically,
LDLAC enjoy both generalization and discrimination, and
empirically extensive comparing experiments clearly mani-
fest the advantage of LDL4C in classification.
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Dataset PT-Bayes PT-SVM AA-BP AA-kENN LDL-SVR StructRF LDL-SCL BFGS-LDL LDL4C

SJAFFE 783+£.016e  .785+.003e .807£.003e  .483+.012e¢  .6861.004e  .569+.011e 789+.002e¢  437£.018 .394+.010
M?2B .6454+.003e  .5524.003e A487+.001 .4844.001 495+.002 4834.002 498+.001 486+.002 .481+.001
SCUT-FBP .893+.002e¢  .517£.001 4634.001 .457+£.001 467+.001 467+.001 .5024.001e  .467£.000 4654.001
Natural Scene  .8014.002e  .6494.000e .667+.001e  521+.00le  .568+.00le¢  .520+.001e .696+.001e  .597+.002e  .420+£.001
Yeast-alpha 945+.000e  .9404-.000e .8864.000e  .882+.000e  .925+.000e  .882+.001e .9034+.000e  .891+.000e  .787+£.001
Yeast-cdc .935+£.000e  .926+.000e .825+.001 .830+.001e  .8584+.000e  .8244.001 .8254.000 .8234.001 .818+.001
Yeast-cold .730£.000e  .733+.001e .5804.001 570+£.0010  .609+.000e  .585+.001e .586+.001e  .580£.001 .5754.001
Yeast-diau .866+£.000e  .848+.001e 711£.001e  .688+.000e  .6944.001e  .678+.000 703+.001e  .694+.00le  .665=£.000
Yeast-dtt 743+.001e  .740£.001e .6414.001 .637+.001 .6514+.001e  .6224.001 .6364.001 .6294.001 .627+.001
Yeast-elu .930+.000e  .9244-.000e 9174.000e  .867+.00le  .892+.000e  .875+.000e .9034+.000e  .899+.000e  .803-£.000
Yeast-heat .8244+.001e  .8274.000e .7074+.001e  .6924.001 .7104+.001e  .680+.001 7174+.001e  .703+.00le  .675+.001
Yeast-spo .826+.001e  .817£.001e .5484.000 .565+.001e  .6161+.000e  .566+.001e .5844.000e  .548+.000 .547+.000
Yeast-spo5 .667£.001e  .6374.000e .5434.001 .5424.000 .5594.001 .524-+£.001 .622+£.0000  .559+.001e .5344.001
Yeast-spoem 4824.000e  .479+.001e 4414+.001e  .410£.001 .4094.000 .401-+£.002 4394.002e¢  435+.002¢  .401£.000
SBU_3DFE .818+.001e  .810+.001e .675+.001e  .616+.00le  .633£.002e¢  .516+.0010 5144+.001o0  .5824.001 .5694.001
Movie .8194+.000e  .677+.000 e  .4234+.001e  .4274+.000e  .415+.000e  .410+.000 A4544.000e  .416+.000e  .409+.000
Human Gene .986£.000e  .981+.000e 951£.001e  .966+.000e  .9774.0008  .965+.000e .976+.000e  .955+.000e  .927+£.000

Table 3: Experimental results (mean = std.) of LDL4C and comparing algorithms in terms of 0/1 loss on 17 real-word datasets. In addition,
o/o indicates whether LDLAC is statistically superior/inferior to the comparing algorithms.

Dataset PT-Bayes PT-SVM AA-BP AA-kKNN LDL-SVR StructRF LDL-SCL BFGS-LDL LDL4C

SJAFFE .808043e-4e  .830514e-4e  .8188+2e-4e  .7693+6e-4e  .7951kle-4e  .7766+5e-4e  .8309+2e-4e  .7583+6e-4 7573+4e-4
M2B .6438+9e-40  .5441+4e-4 .5436+4e-4 .5424+4e-4 .5465+3e-4 .5427+6e-4 .5494+4e-4 .5419+6e-4 .5358+6e-4
SCUT-FBP .8905+6e-40  .541442e-4 .541042e-4 .537943e-4 .542042e-4 .5486+3¢-40  .5494+4e-4 .542642e-4 541442e-4
Natural Scene ~ .8013+9e-4e 6478+ 1e-4 .6620+3e-40 .6658+2e-40 6400+ 1e-4 .6200+2e-40 .6648+2e-40 .6471+2e-4 .6450+3e-4
Yeast-alpha 9444+0e-40  .9442+0e-40  .9427+0e-4 .9428+0e-4 9435+0e-4e0  .942940e-4e  .942940c-4e  .9426+0e-4 9426+0e-4
Yeast-cdc 9329+0e-40  .9320+0e-40  .9287+0e-4 .9290+0e-4 9298+0e-40  .9288+40e-4 .9289+0e-40  .9287+0e-4 9287+ 0e-4
Yeast-cold 7465+0e-40  .7402+0e-40  .7297+0e-4 7297+0e-4 735040e-40  .7291+0e-4 730440e-40  .729740e-4 .7296+0e-4
Yeast-diau .852440e-40  .8478+0c-40  .8432+40e-4 .8424+0e-4 .843240e-4 8424+ 0e-4 .842740e-4 .8428+4-0e-4 .8428+0e-4
Yeast-dtt 7489+0e-40  .7486+0c-4e  .7421+0e-4e  .741540e-4 7429+0e-40  .743040c-4e  .741840e-4 741640e-4 .7412+0e-4
Yeast-elu 9285+0e-40  .9277+0e-40  .9261+0e-4 .9261+0e-4 9266+0e-40  .9260+0e-4 .9262+0e-4 .9261+0e-4 .9260+0e-4
Yeast-heat .8299+0e-40  .8309+0e-4 .8238+0e-4 .8237+0e-4 .825040e-4 .8234+0e-4 .825040e-40  .8234+40e-4 .8233+0e-4
Yeast-spo .832440c-4e0  .8165+0c-4e¢  .8101+0e-4 .8109+0e-4 .8137+0e-40  .8105+0e-4 .811540e-4 .810140e-4 .8000+0e-4
Yeast-spo5 .6601+0e-40  .655140e-4 .651140e-4 .647340e-4 .6487+0e-4 .6430+0e-40  .6533+0e-4 .652740e-4 .6526+0e-4
Yeast-spoem .4909+4-0e-4 4756+ 1e-4 AT T+ 1e-4 4689+0e-4 472040e-4 4670+ 1e-4 4713+ 1e-4 4705+40e-4 .4700+0e-4
SBU_3DFE 7991+1e-4e  .8093+1le-4e  .8041tle-d4e  .7875+0e-4e  .7937+0e-4e  .7745+0e-4 776940e-40  .7746+0e-4 7734+0e-4
Movie .817940e-4e  .6815+0e-40  .6760+0e-4e  .6781+0e-4e  .6760+0e-4e  .6745+0e-4 .6844+0e-40  .6755+0e-40  .6743+0e-4
Human Gene .9848+0e-4e0 .9834+0e-40 .9824+0e-40 .9831+0e-40 9822+40e-40 9626+0e-40 .9822+0e-40 9816+-0e-4 9816+0e-4

Table 4: Experimental results (mean =+ std.) of LDL4C and comparing algorithms in terms of error probability on 17 real-word datasets.In
addition, e/o indicates whether LDLAC is statistically superior/inferior to the comparing algorithms.

Acknowledgments

This research was supported by the National Key Research
& Development Plan of China (No. 2017YFB1002801), the
National Science Foundation of China (61622203), the Col-
laborative Innovation Center of Novel Software Technology
and Industrialization, and the Collaborative Innovation Cen-
ter of Wireless Communications Technology.

A Proof for Eq. (13)

Proof. Recall the definition of Rademacher complexity

N 1 exp(X; - W
R(I1(H)) =E, | — sup M ;
7wy, W > exp(w; - xq)
_1 -~ g;
=E, | — su —_
7 _n wy ,PN p Zj e(Wj—wy)-x;
1 )
<E, |~ sup e(Wi™Wy)%i 5
" Wy’wz,j;ﬁy
1 n
< ~E, | sup e(WimWy)%i g ,
ity n WyWi =1

where 01,09,...,0, are n independent random variables
with P(o; = —1) = Plo; = 1) = 1/2, and W =
[W1,Wa, ..., Wy,] with ||[w;|| < 1, and the third inequality is
according to the 1-Lipschitzness of function 1/x for > 1.
And for each j # y,

n n
g; P . O;\W; — Wy )X;
E, SHPE:;e(wJ w)Xi | <R, SuPE:M
g 5= v =1 n
Y
(&
SLa
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where the first inequality is according to the e*-Lipschitzness
of function e” for x < a, and the second one is according to
[Kakade et al., 2009] by noticing that ||w; —w,|| < 2, which
concludes the proof for Eq. (13). O
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