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Abstract

Despite recent progress in computer vision, fine-
grained interpretation of satellite images remains
challenging because of a lack of labeled training
data. To overcome this limitation, we construct
a novel dataset called WikiSatNet by pairing geo-
referenced Wikipedia articles with satellite imagery
of their corresponding locations. We then propose
two strategies to learn representations of satellite
images by predicting properties of the correspond-
ing articles from the images. Leveraging this new
multi-modal dataset, we can drastically reduce the
quantity of human-annotated labels and time re-
quired for downstream tasks. On the recently re-
leased fMoW dataset, our pre-training strategies
can boost the performance of a model pre-trained
on ImageNet by up to 4.5% in F1 score.

1 Introduction

Deep learning has been the driving force behind many re-
cent improvements in computer vision tasks, including im-
age classification, image segmentation, object detection and
tracking, etc. [Russakovsky er al., 2015; Lin et al., 2014;
Han et al., 2018]. These deep models, however, require train-
ing on high quality, large-scale datasets, and building these
datasets is typically very costly. Satellite images are particu-
larly difficult and expensive to label because of humans’ un-
familiarity with aerial perspectives [Christie et al., 2018].

One effective way to reduce the amount of training data
needed is to perform pre-training on an existing, previously
annotated dataset, such as ImageNet [Deng et al., 2009], and
transfer the learned weights to the domain of interest [Raina
etal.,2007; Dai et al., 2009]. However, the success of this ap-
proach diminishes if the underlying distributions and/or com-
positions of the pre-training and target datasets are not suffi-
ciently similar. Such a problem is exceptionally pronounced
in the satellite imagery space, as the entire frame of reference
and perspective of an aerial image is altered compared to a
natural image. This has the unfortunate effect of rendering
natural image datasets, such as ImageNet, less useful as pre-
training mechanisms for downstream computer vision tasks
in the satellite domain [Pan et al., 2010; Kaiser et al., 2017;
Jean et al., 2018; Oshri et al., 2018].
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Because direct annotation is expensive, researchers have
considered many creative ways to provide supervision with-
out explicit labels. These include unsupervised [Kingma et
al., 20141, label-free [Ren et al., 2018; Stewart and Ermon,
2017], and weakly supervised learning methods [Ratner et
al., 2017]. A particularly effective strategy is to leverage
co-occurrence statistics in a dataset, e.g., predict the next
frame in a video, a missing word in a sentence [Mikolov et
al., 2013], or predict relationships between entities such as
images and text co-occurring together. For example, lever-
aging images and their hashtags on Instagram, Mahajan e?
al. build a large scale image recognition dataset consisting
of more than 3 billion images across 17,000 weak labels ob-
tained from textual hashtags and their WordNet [Miller, 1995]
synsets. After pre-training on this extremely large dataset,
they report almost 5% improvement over the same model
trained from scratch on ImageNet.

Because satellite images are geolocated, i.e., they corre-
spond to specific locations (and times), they can be paired
with other geolocated datasets (e.g., OpenStreetMap [Kaiser
et al., 2017]), exploiting spatial co-occurrence statistics as
a source of supervision. Following this strategy, we con-
struct a novel multi-modal dataset by pairing geo-referenced
Wikipedia articles with their corresponding satellite images.
By treating an article as an information-rich label, we obtain
highly detailed physical and qualitative context for each im-
age. For example, the first sentence of the John. F. Kennedy
International Airport article contains excerpts such as “JFK
is the primary international airport serving New York City”.
Wikipedia articles additionally contain demographic, envi-
ronmental, and social information in structured form [Shee-
han et al., 2019]. To the best of our knowledge, this is the
first time that Wikipedia has been used in conjunction with
satellite images, and with 888,696 article-image entries, our
approach yields the largest satellite image dataset to date.

In this paper, we demonstrate the effectiveness of pairing
Wikipedia articles to satellite images for pre-training CNNs
for satellite image recognition. We propose two pre-training
methods to learn deep representations. First, similar to [Ma-
hajan et al., 2018], we weakly label satellite images with cu-
rated summarization tags extracted from the article via an au-
tomated process. We then train a deep convolutional network
to predict these weak labels directly from the images, learning
useful representations in the process. In the second approach,
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Figure 1: Left: Scatter plot of the distribution of geo-tagged Wikipedia articles together with some images (right) matched to the articles
shown as green dots on the left plot. The title of the Wikipedia articles are written under each image.

we propose a novel joint architecture where we first obtain
a textual embedding of each article using document summa-
rization techniques from NLP [Le and Mikolov, 2014] and
then train a deep convolutional network to produce an em-
bedding for each image that is “similar” to the textual one.
The first approach is a crude way of getting a single weak la-
bel for each article whereas the second learns representations
without weak labels. The pre-trained networks are then eval-
uated on a downstream hand-labeled dataset, as in [Jean et
al., 2018], where we obtain 4.5% higher accuracy compared
to networks pre-trained on ImageNet, the standard approach
for computer vision tasks.

2 Pairing Rich Crowdsourced Annotations
from Wikipedia to Satellite Images

Wikipedia is a large-scale, crowdsourced database spanning
302 languages with over 47 million articles [Wikipedia,
2018]. Of these 47 million articles, about 11% are con-
tained in the English version. Out of these approximately
5 million articles, we found that roughly 1 million, or nearly
20%, are geolocated, meaning there is a latitude and longi-
tude ¢; = {clo?, clo"} associated with the article’s text y;.
Our key idea is to use the article’s coordinates to acquire a
satellite image of its location from space (see Fig. 1).

There is often a strong correlation between the article’s
text, y;, and the visual content of the corresponding image,
z;. Indeed, we can think of the article as an extremely de-
tailed “caption” for the satellite image, providing an often
comprehensive textual representation of the satellite image,
or an information-rich label. This label often contains struc-
tured data in the form of tables, called infoboxes, as well as
raw text, allowing for the extraction of information about the
physical state and features of the entity (e.g., elevation, age,
climate, population).

2.1 Collecting Wikipedia Articles

this subsection can be cut or moved to appendix. Try:
“The first step towards our goal was to acquire an En-
glish Wikipedia data dump of articles — in the future, we
plan to explore supplementing the dataset with non-English
Wikipedia articles as well.” The initial step for accomplish-
ing our defined goal involved the acquisition of an English

3621

Wikipedia data dump of articles', though, in the future, we
plan to explore non-English Wikipedias to supplement the
dataset. A Wikipedia article dump is stored as one large XML
file containing all standard articles as well as numerous tech-
nical article stubs (e.g., internal communication pages, page
redirects, etc.). In order to analyze each relevant article in-
dividually, we first parsed the XML file into its constituent
articles, netting roughly 5 million standard, titled articles. To
isolate those that In general, which should be set off by a
comma; often you can use that instead. were geolocated, we
then iterated through these 5 million articles and used regu-
lar expressions to find strings matching one of the archetypal
coordinate patterns, such as:

(1) coord|lat|lon|display = title
@) ford € {N,S,E,W}
coord|deg|min|sec|d|deg|min|sec|d|display = title

This resulted in the acquisition of 1.02 million articles pos-
sessing coordinates.

2.2 Acquiring Matching Satellite Imagery

For a given article’s coordinate ¢;, there are many sensors
that can provide imagery, with different tradeoffs in terms of
spatial and temporal resolution, wavelengths, and costs. In
this paper we acquire high resolution images from Digital-
Globe satellites. The images have a ground sampling dis-
tance (GSD) of 0.3-0.5m. These are among the highest res-
olution images available commercially, and were also used
in the recently released functional map of the world (fMoW)
dataset [Christie ef al., 2018]. Note that one could also use
the same strategy to build a similar multi-modal dataset us-
ing lower-resolution (10 meter), publicly available Landsat
and Sentinel-2 images. For a given coordinate c;, there are
usually multiple images available, captured at different times.
We acquired the latest image available. Another important
design choice is the size of the acquired images. In this study,
we use 1000x 1000 pixels images covering approximately an
area of 900m?2. In aerial images, objects occupy drastically
different numbers of pixels, as shown in Fig. 1. Based on
preliminary manual examination, we found that 1000x 1000
pixels images can typically cover most of the relevant objects.

"https://dumps.wikimedia.org/enwiki/
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Finally, we prioritized collecting RGB images and only ac-
quired grayscale images if an RGB image was not available.
We did not perform any filtering to remove cloudy images, as
our goal is to learn robust representations on a noisy dataset.
Our resulting WikiSatNet multi-modal dataset is a set of
tuples D = {(017 L1, y1)7 (027 T2, y2)u T (CN7 TN, yN)}
where each tuple (¢;, z;, y;) represents a location (¢;), corre-
sponding DigitalGlobe image (z;) and Wikipedia article text
(y;). WikiSatNet contains N = 888, 696 article-image pairs.
To the best of our knowledge, this is the largest dataset to
date consisting of satellite images and about 2 times larger
than the recently released large scale fMoW dataset. Note that
our procedure is highly scalable and fully automated. It could
be used to generate even larger datasets by considering other
Wikipedia languages and other sensors in addition to Digital-
Globe. In the next section, we propose two novel methods
to pre-train a convolutional neural network (CNN) to extract
information about images z; using information from y;.

3 Learning Visual Representations Using
Wikipedia Textual Information

Exemplifying the diverse application possibilities highlighted
in the previous sections, we construct a general Wikipedia
article-satellite image framework for pre-training CNNs. We
then explore whether we can learn to interpret satellite images
using knowledge extracted from Wikipedia articles via two
approaches: weakly-supervised [Ratner ef al., 2017] labelling
and a novel textual embedding method that attempts to match
textual and visual embeddings.

3.1 Weakly Supervised Learning

We first propose learning visual features using a data-
programming pipeline [Ratner er al., 2017] to label our
dataset. We begin by extracting a weak label w(y;) for
each article y; in our dataset. In our context, a weak la-
bel is a noisy, machine-generated classification of an arti-
cle from a set of pre-defined labels. Because of space con-
straints, we only provide a high-level description of the ap-
proach, and will add more details by purchasing extra pages
in the final version. As a first step, we manually compile a
list of 97 potential categories that an article could fall under
(e.g., city, lake, event, etc.) and use regular expressions
to search for the terms throughout specific areas of the arti-
cle’s text where article meta-data is contained. We then rank
the categories which are matched to the article in a manually-
constructed hierarchical fashion from specific to general (e.g.,
building — town — county, etc.) and choose the one
which comes first to label the article. Because many of these
category labels are very detailed, we then merge certain simi-
lar categories together to create more general labels. We also
discard articles that are assigned labels which cannot be de-
termined from a satellite image (e.g., person, event, etc.).
Weak labels represented by less than 100 samples are also
removed, reducing the final set of labels to 55.

Given the final set of weak labels and corresponding im-
ages, we train a classifier to predict w(y;) from z;. The clas-
sifier is composed of a convolutional neural network f, :
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Figure 2: Some of the extracted weak labels representing flipped la-
bel noise. Corresponding Wikipedia article titles are written above
the images. Though the words stadium, airport, and water are men-
tioned 19, 6, and 23 times in the articles, our weak label extraction
pipeline generates wrong labels. Using image to text matching helps
alleviate this flipped label noise.
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Figure 3: Visually similar examples where the extracted weak labels
cause adversarial label noise. Here the CNN is penalized for errors
even when the predicted label is visually similar to assigned weak
label. In contrast, our document summarization model projects the
embeddings of the articles of these images to a similar space to avoid

penalizing the CNN when predicting a similar label.

X + RM that embeds images into an M dimensional fea-
ture space, followed by fully connected and softmax layers
as shown in Fig. 4a. In this study, we parameterize f, us-
ing the DenseNet121 [Huang et al., 2017] architecture which
was previously shown to perform well across a range of tasks.
The classifier is trained using the cross entropy loss function.
The features learned by the embedding f,, on this large-scale
pre-training task can then be transferred to downstream tasks,
e.g., object detection or land cover classification.

Extracting weak labels is a noisy process that leads to a sig-
nificant number of flipped labels as shown in Fig. 2. Addition-
ally, the process leads to adversarial label noise because of
visually similar labels such as city, country, populated place,
building, town etc., as shown in Fig. 3. One can apply a sim-
ple merging step to place such visually similar labels into a
general category, e.g., populated place. However, it leads to
a class imbalance problem where almost 40% of the dataset
is dominated by populated places. Exploring the trade-off be-
tween adversarial label noise and class imbalance problems is
a very time-consuming process due to the nature of working
with a large-scale dataset. For this reason, in the next section,
we propose a novel method to learn deep representations us-
ing multi-modal data without manual pre-processing.

3.2 Image to Text Matching Learning

In this section, we propose a novel method to learn deep
convolutional features without using hand-crafted labeling
functions. This not only substantially reduces human ef-
fort, but also tackles the adversarial label noise by soft-
ening the loss function for the images that can fall into
multiple visually similar categories. Our method relies on



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

! Global P I
Global | jn| |x I : CNN Pooling [ “|¥[ |~
CNN Pooling [ [°[ |2 v v
55 Finetune Weights 1024300 Loss
2 Nelson Mandela Brids 1024 Loss on Human Labeled £y g===:  [Function|
J ekon andew ridee Function Dataset & =
Weak ~ D = -->E=I J
Label |5
Extraction ocoven | & =
oc2Vec ; L] i
(b)

Figure 4: The workflow of the proposed weakly supervised learning method (a): (1) Extract labels from articles using our labeling pipeline.
(2) Match articles with images of their coordinates. (3) Pre-train on a large-scale dataset using 55 weak labels. (4) Transfer learned weights
to a down-stream task. In (b) we show the workflow of the image to text matching learning. Our method enforces the CNN to learn features

similar to raw textual features learned by Doc2Vec.

the idea of image to text matching [Lei Ba et al, 2015;
Wang et al., 2018]. 1In this direction, we propose a novel
network shown in Fig. 4b with two branches: a visual and
a textual one. We design a loss function that encourages the
CNN (visual branch) to produce image embeddings that are
close to a suitable vector representation of the corresponding
article’s text (textual branch).

The proposed architecture uses satellite images, X, and
Wikipedia articles, ), as input. In the fextual branch, we learn
a function f; : J — RX to project an article, y;, to a textual
embedding space z! € R¥ using a document summarization
model from natural language processing (NLP):

t

zi = fe(yi). (1
In the visual branch, we use a function f,, : X — RM pa-
rameterized using a convolutional neural network to extract
features from an image as

z) = fu(x;) 2
where ¢ represents the index of the image paired to article
y;. We parameterize f, using the DenseNet121 architecture
[Huang et al., 2017] as in the weak supervision method. Next,
we use a function f,, : Z¥ — R to map z? to the same di-
mension as the textual feature vector z!. The function f,, is
parameterized using a fully connected layer with ReLLU acti-
vations. The final feature vectors, z; and zf € RX are then
compared with a loss function that enforces similarity.

Pre-training the Doc2Vec Model

Our image to text matching method uses textual descriptors
Z% to learn deep visual representations. In our study, we
use the Doc2Vec network [Le and Mikolov, 2014] which can
summarize variable length articles in a unified framework.
Doc2Vec is a document summarization method that can take
a variable length piece of text, y;, and map y; € )Y to a
paragraph vector z! = f;(y;) € RX in a fixed-length vec-
tor space, where K is specified by the user. Documents that
possess similar meanings are mapped to nearby points in the
embedding space, allowing a comparison between any two
documents. In contrast to fixed length vector representations
using Bag-of-Words, Doc2Vec can capture the orderings and
semantics of the words, which is highly beneficial for our un-
supervised learning task. For example, learning a textual em-
bedding space where we can closely map article categories
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such as country, city, town etc. is desired considering that
their corresponding visual data contain similar structures (see
Fig. 5). Another advantage of the Doc2Vec model is that it
is an unsupervised learning model. This allows us to learn
Wikipedia-specific descriptors by training it on the full ge-
olocated Wikipedia article corpus.

Cosine Similarity Loss Function

After learning feature vectors, z; and zf € RX, from the
two branch network, we apply a loss function to measure the
similarity of the two vectors. We propose using the cosine
similarity metric, which measures the angle, 6;, between two
vectors as

T ;) = cos(8:) = fv(xi)Tft(yi)
D(wi,yi) (6:) RN

Wikipedia has varying lengths of articles, which makes the
cosine similarity ideal since it measures the similarity be-
tween the direction rather than the magnitude of two vectors.

3)

Training on WikiSatNet

In our pre-training experiments, we use similar hyper-
parameters in both weak supervision and image to text match-
ing to train the DenseNet121 for optimizing the weights for
fv- We initialize weights randomly, however, we observed
faster convergence when initializing with pre-trained weights.
After experimentation, we set the learning rate and batch size
to 0.0001 and 64, respectively, and the Adam optimizer is
used to train the model [Kingma and Ba, 2014]. Finally, we
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Figure 5: Visualization of PCA components of the randomly chosen
articles learned by Doc2Vec. Notice that visually similar objects
such as city, town are closely mapped while different objects are
projected far away. The article titles are shown on the right.
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Figure 6: The cosine similarities between the CNN embeddings and
the Doc2Vec embedding are computed and overlaid on the images.
The CNN learns to embed AT&T Stadium’s image closer to the its
corresponding article.

resize the 1000x 1000 pixels images to 224 x224 pixels im-
ages to compare with publicly available datasets.

In the initial steps of image to text training, we observe
an angle of approximately 90° (D(z;,y;) ~ 0) between z!
and z;. This is consistent with the fact that random vec-
tors in high dimensional spaces are likely to be orthogonal
to each other. After several epochs, the angle decreases to
about 45° (D(z;, y;) ~ 0.5) and stops decreasing further. We
believe that this is partially due to articles that do not con-
tain any visual cue, e.g culture and person, and also cloudy
images, which amount to roughly 5% of the dataset. We did
not observe over-fitting in our experiments. While we are
not able to achieve zero loss, we qualitatively find that our
approaches learn meaningful representations. To verify this,
after pre-training the CNN on WikiSatNet using the image to
text matching, we visualize the cosine similarities between
2! and 2! as shown in Fig. 6. In the same figure, we keep
z; fixed and use embeddings from images at different loca-
tions. The CNN learns to project embedding z; closer to its
corresponding article embedding z!. Our implementation to
perform image to text matching and weak supervision can be
found in our repository?. Additionally, we plan on releas-
ing a fraction of the high resolution images used in WikiSat-
Net. This will encourage further research into jointly utilizing
Wikipedia and satellite images.

4 Transfer Learning Experiments

After pre-training CNNs on WikiSatNet using the proposed
methods, we test them on three target tasks: (1) single image
classification on the fMoW dataset, (2) temporal view clas-
sification using multiple images over an area on the fMoW
dataset, and (3) land cover classification. In these tasks, we
compare our pre-training strategies to the following base-
lines: (1) pre-training on ImageNet [Russakovsky et al.,
2015], (2) pre-training on CIFAR10, and (3) training from
scratch. Our goal is to evaluate whether we learn satellite-
specific representations that outperform the ones obtained us-
ing out-of-domain benchmarks with human labels.

Fine-tuning

There are two classical approaches in fine-tuning a deep net-
work on the target task: (1) training all layers, and (2) freez-
ing all the layers other than the final classification layer. In

*https://github.com/ermongroup/PretrainingWikiSatNet
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our experiments, we present results from both strategies. The
learning rates for the weakly supervised and image to text
matching model are set to le-4 and le-5 after experimenta-
tion. On the other hand, for the ImageNet model the learning
rate is set to le-4, while it is set to 1e-3 for the CIFAR10 and
trained from scratch models. These were the best perform-
ing hyper-parameters in our experiments. Finally, resized
224224 pixel RGB images are used as input to the model
as in the pre-training task. We follow the same approach for
the models pre-trained on CIFAR10 and ImageNet.

4.1 Experimenting on the fMoW Dataset

To quantify the quality of the representations learned in the
pre-training step, we first use a recently released large-scale
satellite image recognition dataset named fMoW [Christie
et al., 2018]. The fMoW dataset consists of both multi-
spectral and RGB images and contains 83,412 unique train-
ing bounding boxes from large satellite images represent-
ing 62 different objects. The validation and test sets con-
tain 14,241 and 16,948 bounding boxes and are left un-
changed in our experiments. It also comes with temporal
views from the same scenes, making classification of some
classes such as construction site and flooded road easier.
Christie et al. proposes a multi-modal architecture that uses
a DenseNetl61 pre-trained on ImageNet and an LSTM to
learn from images and their corresponding meta-data. Their
DenseNet161 model has a number of parameters similar to
the DenseNet121 model we use in our experiments. Since
our pre-training framework learns from visual data, it can be
easily applied to any CNN model to boost performance and
reduce the number of labeled samples needed for a target task.

Reasoning on Single Images

In the first task, we perform experiments on the fMoW dataset
for the task of classifying individual images using features ex-
tracted by the visual branch f,(-). We experiment with 2000,
10000, 50000, 100000, 200000, and 350000 training images.
As shown in Fig. 7, our pre-training strategies outperform the
other pre-training strategies by large margins in top-1 and top-
5 classification accuracy when using small amounts of labeled
data. For example, when using 2000 labeled images, both
our training strategies outperform ImageNet and CIFAR10
by 10% and 30%, respectively. As expected, this number
goes down to about 5% and 20% when increasing the num-
ber of labeled images to 50000. Interestingly, at this point,
the model trained from scratch starts to outperform the model
pre-trained on CIFAR10. When using the full training set,
our proposed pre-training strategies outperform ImageNet by
about 2% and outperform the model trained from scratch by
about 10%. These results demonstrate that our proposed ap-
proach produces features that are highly beneficial in down-
stream tasks involving satellite images, even when large num-
bers of human labeled samples are available. When fine-
tuning only the final layer, the proposed pre-training methods
outperform ImageNet pre-training by about 13%( Table 1).

Reasoning on Temporal Views

In this section, we evaluate our representations on the task of
temporal view classification across 62 classes from the fMoW
dataset. This way, we can understand if our pre-training
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Figure 7: The top-1 and 5 classification accuracies of the proposed

pre-training and baseline strategies on fMoW’s test set when fine-

tuning all layers on fMoW’s training set. Monte-Carlo experiments
were conducted when sampling a subset of the full training set.

WikiSatNet  WikiSatNet
Model CIFARIO  ImageNet Weak Labels  Image2Text
Top-1 Acc.
ead 15 13.98 (%) 37.73(%) 5073 (%) 5102 (%)
Top-lAce. 5570 () 68.61 (%) 70.62(%) 7072 (%)

(Fine-tuned f,,)

Table 1: Top-1 accuracies on the fMoW test set for pre-trained mod-
els. All the models are fine-tuned on the full fMoW training set.
Fixed f, represents the fine-tuning method where the pre-trained
weights are fixed whereas the second method fine-tunes all layers.

methods also boost performance on tasks that use temporal
data as input. Christie et al. trains the network on single
labeled images and at test time averages the softmax predic-
tions of the network on different images from the same area
to assign the label with the maximum average score. We fol-
low their training and test methods and at test time average
predictions from 7" images over the same area, again using
features extracted from f, (-) as input. Different from the pre-
vious section, we now report results in F1-scores to compare
our models to the ones proposed by [Christie er al., 2018].

WikiSatNet  WikiSatNet

Model CIFAR10 ImageNet Weak Labels  Image2Text
F1 Score

(Single View) 55.34 64.71 (%) 66.17 (%) 67.12 (%)

Fl Score 6045  6873(%) 7131 (%)  73.02(%)

(Temporal Views)

Table 2: F1 scores of different pre-training methods on fMoW'’s test
set when fine-tuning all the layers on fMoW’s training set.

We first compare our pre-training methods to ImageNet
and CIFARI10 pre-training in Table 2. The proposed pre-
training methods outperform the ImageNet pre-trained model
by up to 4.5% in F1 Score when performing reasoning on
temporal views. Among the proposed methods, the image
to text matching approach outperforms the weak supervision
with handcrafted labels method by about 1.7% in F1 Score.
On the other hand, Christie et al. proposes five different mod-
els for the fMoW classification task. Three of them use meta-
data and images jointly, whereas the remaining two only em-
ploy an ImageNet pre-trained DenseNet on images. Their vi-

sual data-only models are named CNN-I-1 and CNN-I, where
the former is a single view model and the latter performs tem-
poral reasoning. We can improve these models with our pre-
training strategy by about 4.5% in F1 score while perform-
ing similarly to their top performing model, LSTM-IM, which
uses meta-data and visual data jointly to perform temporal
reasoning. Although this is outside the scope of this paper,
our models can replace the DenseNet model, pre-trained on
ImageNet, used in LSTM-IM to improve its results as well.

4.2 Experiments on Land Cover Classification

Additionally, we perform classification across 66 land cover
classes using remote sensing images with 0.6m GSD ob-
tained by the USDA’s National Agriculture Imagery Program
(NAIP). We focus on the images from the California’s Central
Valley near the city of Fresno for the year 2016. The corre-
sponding land cover map, named the Cropland Data Layer
(CDL), is collected by the USDA for the continental United
States [NAIP, 2016]. The CDL is provided at 30m GSD, and
we upsample them to match 0.6m GSD to use as ground truth.
The final dataset consists of 100000 training and 50000 val-
idation and test images. We only fine-tune the classification
layer while keeping f, fixed.

WikiSatNet  WikiSatNet
Model CIFAR10 ImageNet Weak Labels  Image2Text
Top 1 Acc. 42.01 40.11 (%)  46.16 (%) 47.65 (%)
Top 5 Acc. 74.73 80.15 (%)  88.66 (%) 88.77 (%)

Table 3: Performance of different pre-training methods on the land
cover classification task.

As shown in Table 3, our pre-training strategies lead to
substantially higher performance than the ImageNet and CI-
FAR10 features. This demonstrates the robustness and wide
range of applications our pre-training strategies possess.

5 Conclusion

In this study, we proposed a novel combination of satellite
images and crowdsourced annotations from geo-referenced
Wikipedia articles. Our approach yields a large scale, multi-
modal dataset combining rich visual and textual information
for millions of locations all over the world — including ad-
ditional languages beyond English will likely improve cover-
age even more. Leveraging paired multi-modal data, we pro-
posed two different pre-training methods: (1) learning with
weak labels, and (2) learning without weak labels using im-
age to text matching. Both pre-training strategies lead to im-
proved results on the recently released fMoW dataset consist-
ing of large numbers of labeled samples. Our image to text
matching model outperformed one pre-trained on ImageNet
by 4.5% when using around 350000 labeled samples; this in-
crease is substantially higher when there are fewer labels.
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