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Abstract
The convergence of many reinforcement learning
(RL) algorithms with linear function approxima-
tion has been investigated extensively but most
proofs assume that these methods converge to a
unique solution. In this paper, we provide a com-
plete characterization of non-uniqueness issues for
a large class of reinforcement learning algorithms,
simultaneously unifying many counter-examples
to convergence in a theoretical framework. We
achieve this by proving a new condition on fea-
tures that can determine whether the convergence
assumptions are valid or non-uniqueness holds. We
consider a general class of RL methods, which we
call natural algorithms, whose solutions are char-
acterized as the fixed point of a projected Bellman
equation. Our main result proves that natural al-
gorithms converge to the correct solution if and
only if all the value functions in the approxima-
tion space satisfy a certain shape. This implies that
natural algorithms are, in general, inherently prone
to converge to the wrong solution for most feature
choices even if the value function can be repre-
sented exactly. Given our results, we show that
state aggregation-based features are a safe choice
for natural algorithms and also provide a condition
for finding convergent algorithms under other fea-
ture constructions.

1 Introduction
A longstanding goal in reinforcement learning (RL) has been
to find algorithms with linear function approximation that re-
liably converge to the fixed point of the Bellman equations.
As such the convergence of different RL methods that display
such characteristics have been researched extensively. The
TD(λ) algorithm converges in an on-policy learning setting
to the fixed point of a projected λ-weighted Bellman equa-
tion [Tsitsiklis and Van Roy, 1997]. The Residual Gradient
algorithm is shown to minimise the Bellman error but suffers
from double sampling [Baird, 1995]. More recently, some
temporal difference-based methods have been shown to con-
verge with off-policy learning. The GTD2 and TDC algo-
rithms are shown to converge to the TD(0) solution under

an off-policy learning setting [Sutton et al., 2009]. These al-
gorithms have also been extended to their bootstrapped ver-
sion GTD(λ) and shown to converge to the TD(λ) solution
[Maei, 2011]. However, a core tenet in almost all of these
convergence results is the assumption that these RL methods
converge to a unique solution; for example in the proof of
GTD2’s convergence, the matrix quantities A and C are as-
sumed to be non-singular, allowing for uniqueness of solution
[Sutton et al., 2009, Theorem 1].

In addition to the convergence results, pertinent counter-
examples have been documented in the literature that high-
light how the choice of features is crucial to convergence of
RL methods [Gordon, 1995; Tsitsiklis and Van Roy, 1996;
Baird, 1995; Bertsekas, 1995; Boyan and Moore, 1995].
Bertsekas showed that TD(λ) with function approximation
may converge to a parameter vector which generates a poor
estimate of the value function (in terms of Euclidean dis-
tance) [Bertsekas, 1995]. Tsitsiklis and Van Roy provided a
counter-example showing that RL methods may diverge even
when the value function is representable by the chosen fea-
tures [Tsitsiklis and Van Roy, 1996]. More recently, Sut-
ton and Barto present a counter-example where methods that
minimise the Bellman error may fail to learn the correct pa-
rameter value [Sutton and Barto, 2018, Example 11.4].

In this paper, we provide a complete characterization of
non-uniqueness and the potential to converge to the wrong
solution for a large class of RL algorithms we call natural al-
gorithms. A natural algorithm is any method that can be char-
acterized as solving for the unique fixed point (when it exists)
of a projected Bellman equation. We consider all oblique pro-
jections and a Bellman equation based on the TD(λ) Bellman
operator presented in [Tsitsiklis and Van Roy, 1997]. Under
this definition, the natural algorithms include a large spec-
trum of algorithms: on one end of the spectrum, the natural
algorithms include bootstrapped methods such as TD(λ) and
GTD(λ) since they are characterized by an orthogonal pro-
jection, and on the other end the natural algorithms include
Bellman-error based methods which are characterized by the
identity projection. We consider an RL setting with a contin-
uous state space S and finite action spaceA; note that a finite
state space is a special case of our setup. Furthermore, we
consider the infinite horizon problem for our results.

Our main contribution is to prove that natural algorithms,
even under the setting where the value function can be rep-
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resented exactly by the features, are inherently prone to non-
uniqueness and will converge to the wrong solution for most
feature choices. Our main result is as follows:

Theorem 5.1. Natural algorithms converge if and only if all
non-zero linear combination of the features achieve their ex-
treme values on a sub-region of the state space that has non-
zero measure under the stationary distribution.

Importantly, given our characterisation, we provide some
guidelines for choosing features and algorithms to avoid non-
uniqueness. We show that state aggregation based features
are a safe choice. We also provide a sufficient condition for
algorithms to converge under other feature constructions.

This paper is organized as follows. In Section 2, we intro-
duce some background and notation. In Section 3, we present
the theory behind projected equation methods and the charac-
teristic equation to projected Bellman equations. In Section 4,
we present a detailed look at the counter-example presented
by Sutton and Barto that demonstrates the non-uniqueness is-
sues which plague Bellman-error methods [Sutton and Barto,
2018]. In Section 5, we present our main results and discuss
their implications, including positive feature construction ex-
amples. In Section 6, we present our framework for analyzing
convergence. Finally, in Section 7, we present the idea behind
the proof of Theorem 5.1. For brevity, most proofs and sup-
porting results have been omitted. However, the supporting
results and omitted proofs can be found in the extended ver-
sion of the paper [Hutter et al., 2019].

2 Background and Notation

We now reiterate some background RL concepts, mathemati-
cal concepts and notation used throughout this paper.

2.1 RL in Continuous State Space

We consider an agent-environment setup [Sutton and Barto,
2018] where an agent follows a stationary policy π and in-
teracts with a Markov Decision Process (MDP). We assume
a continuous state space S that is compact and measurable
and a finite action space A. For simplicity, we will assume
that S = R in all our examples. The expected reward func-
tion is a function R : S → R and represents the expected
reward to be received for a given state following π. At a
state s ∈ S , we assume that there is a transition density
function T : S × S → [0, 1] whilst following π. Combined
with an initial state s0, the state sequence can be viewed as
a time-homogeneous Markov process with transition kernel
defined by T (B|x) =

∫
B
T (y|x)dy , ∀B ∈ B(S) , x ∈ S

where B(S) is the Borel sigma-algebra. We consider the in-
finite horizon problem and thus the value function at state
s ∈ S is defined as the total discounted expected return:
V (s) = E[

∑∞
t=0 γ

tR(st)|s0 = s], where γ ∈ [0, 1) is the
discount factor. By standard MDP theory, the value function
satisfies the Bellman equation given by

V (s) = R(s) + γ

∫
S
T (s′|s)V (s)ds′ ,

for any state s ∈ S . The Bellman operator T : RS → RS is
an affine linear operator on RS and is defined accordingly as

(T V ) (s) = R(s) + γ

∫
S
T (s′|s)V (s′)ds′ .

If we define PT to be an operator such that (PT f)(s) :=∫
S T (s′|s)f(s′)ds′, we can express the Bellman operator

compactly as T V := R + γPTV for any V ∈ RS . The
Bellman equation can then be expressed as the fixed point
equation V = T V .

For an agent following a policy π and interacting with an
MDP, the state sequence can be viewed as a Markov process
with transition density function T . Throughout this paper
we assume that the state Markov process admits a station-
ary measure µ. Under these assumptions, the value function
space inherits extra geometric structure via an inner product
defined with respect to µ. For any f, g ∈ RS ,

〈f, g〉µ :=

∫
S
f(s)g(s)µ(s)ds .

Showing that 〈·, ·〉µ is an inner product is routine. We define
the norm on the associated inner product space by ‖·‖µ =√
〈·, ·〉µ. The set of functions in the value function space

with finite ‖·‖µ-norm is given by L2(S, µ) := {V ∈ RS :

‖V ‖µ < ∞}. Under our assumptions, it can be shown that
the value function associated with the Markov process lives
in L2(S, µ). Furthermore, our approximations V̂ of V also
evolve in this space. For any two functions V, Ṽ ∈ L2(S, µ)

we say that V is µ-orthogonal to Ṽ , denoted by V ⊥µ Ṽ , if
and only if 〈V, Ṽ 〉µ = 0.

2.2 Linear Function Approximation
When using linear function approximation, the value func-
tion V is approximated by a linear combination of the fea-
tures chosen from a finite-dimensional subspace of L2(S, µ).
Formally, the approximate value function V̂ can be written
as a linear combination V̂ (s, w) =

∑k
i=0 φi(s)wi, ∀s ∈

S where w = (w1, w2, . . . , wk)> ∈ Rk is a parameter
vector and Φ = {φ1, . . . , φk} is the set of features from
S to R such that span(Φ) is a finite-dimensional subspace
of L2(S, µ). To simplify notation, let us define φ(s) =

(φ1(s), φ2(s), . . . , φk(s))>. The approximation V̂ can then
be represented compactly as an Euclidean inner product
V̂ (s, w) = 〈φ(s), w〉 = φ>(s)w. We now define a prop-
erty of linear combination of features that will be crucial in
characterizing non-uniqueness.

Definition 2.1 (Flat Extrema). Let ϕ be any linear combina-
tion of the features Φ, i.e. ϕ ∈ span(Φ), such that ϕ 6≡ 0,
ϕmax := maxs∈S ϕ(s) and ϕmin := mins∈S ϕ(s). Let
Nα := {s : ϕ(s) ≥ αϕmax} for α ∈ [0, 1]. Then we say
that ϕ has a flat maximum if µ[N1] :=

∫
N1
µ(s)ds > 0. Con-

versely, we say that ϕ has a non-flat maximum if µ[N1] = 0.
Similarly, we defineN−α := {s : ϕ(s) ≤ αϕmin} and say that
ϕ has a flat minimum if µ[N−1 ] > 0 and a non-flat minimum
if µ[N−1 ] = 0.
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Figure 1: A sketch of two functions showing the flat/non-flat ex-
trema property. The function f has a non-flat maximum since it
achieves its maximum at a point, whereas g clearly has a flat maxi-
mum.

Any linear combination of features that have flat extrema
achieve their maximum (and minimum) values in regions of
the state space with non-zero measure under the stationary
distribution µ. Conversely, linear combinations that have
non-flat extrema achieve their maximum (and minimum) val-
ues in regions of the state space with measure zero. This
corresponds to sub-regions of the state space that are never
visited. Figure 1 gives an idea of what functions with a flat or
non-flat maximum may look like.

2.3 The TD(λ) Operator
Tsitsiklis and Van Roy define the TD(λ) operator T (λ) in
[Tsitsiklis and Van Roy, 1997] which we will adapt for our
setting and derive a more compact form of the Bellman equa-
tion. For λ ∈ [0, 1), the TD(λ) operator T (λ) : L2(S, µ) →
L2(S, µ) is given by

(T (λ)V )(s) :=(1− λ)
∞∑
m=0

λm

· E

 m∑
t=0

γtR(st) + γm+1V (st+1)

∣∣∣∣s0 = s


where V ∈ L2(S, µ) and s ∈ S . As Tsitsiklis and Van Roy
show, the TD(λ) operator can also be expressed as

T (λ)V = (1− λ)
∞∑
m=0

λm

 m∑
t=0

(γPT )tR+ (γPT )m+1V


[Tsitsiklis and Van Roy, 1997, Lemma 3]. We express this
operator in a more compact form as

T (λ)V = R(λ) + γP
(λ)
T V , (1)

where

R(λ) := (1− λ)
∞∑
m=0

λm
m∑
t=0

(γPT )tR ,

P
(λ)
T := (1− λ)

∞∑
m=0

(λγ)m(PT )m+1 .

The P (λ)
T operator can be seen as being a geometric aver-

age over the powers of PT . We define a λ-weighted discount
factorG that corresponds to the discounting performed by the
P

(λ)
T operator:

G :=
(1− λ)γ

1− λγ
. (2)

ClearlyG is bounded in [0, 1). It is also important to note that
for λ = 0 we recover the original discount factor of γ.

As we will see later, our class of natural algorithms con-
sists of methods that look to converge to the fixed point of a
projected Bellman equation

V̂ = ΠT (λ)V̂ (3)

where Π is a projection operator.

3 Projected Equation Methods
We now introduce the theory of projected equation methods
and present the characteristic equation of projected Bellman
equations. We note that Bertsekas similarly covers projected
Bellman equation methods [Bertsekas, 2011]. However, we
find it useful to reiterate the concepts here as it pertains to a
continuous state space and our setup.

3.1 Oblique Projection Operators
We consider the set of possible projection operators that can
be applied to the Bellman equations to find an approximate
solution. The projection operators that can project in any
direction are collectively known as oblique projections. An
oblique projection operator Π : L2(S, µ) → L2(S, µ) can
be characterised as projecting onto im(Π), the image of Π,
and orthogonally to im(Π∗) where Π∗ is the adjoint operator
of Π. The purpose of looking at projection operators is to
find learnable, finite-dimensional representations of the value
function. Thus, we will focus on oblique projection operators
with finite-dimensional image. For bounded projection oper-
ators with finite-dimensional image, the image of the adjoint
has the same dimension.
Proposition 3.1 (Finite-Dimensional Projections). Let Π :
L2(S, µ) → L2(S, µ) be a bounded linear operator with
finite-dimensional image and let Π∗ be its adjoint. Then the
image of Π∗ has the same dimension as the image of Π.

Proposition 3.1 allows us to characterise the oblique pro-
jection operators in terms of two finite-dimensional sub-
spaces. We will generalise slightly beyond bounded projec-
tion operators by considering the case where the image of the
adjoint is still finite-dimensional but may not be of the same
dimension as the original projection operator. As we discuss
in the next sub-section, this will allow us to express the so-
lution to projected Bellman equations as a system of linear
equations. We define the set of projection operators that we
are interested in as follows.
Definition 3.2 (Finite Rank Projection Operators). Let
Φ = {φ1, ..., φk} and Ψ = {ψ1, ..., ψn}. Let Π :
L2(S, µ)→ L2(S, µ) be an oblique projection operator such
that im(Π) = span(Φ) and im(Π∗) = span(Ψ). Then Π can
be characterised by the two sets (Φ,Ψ).
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When conducting our analysis, we always assume the fol-
lowing.
Assumption 1. Let Ψ = {ψ1, . . . , ψn} be a basis for
im(Π∗). Also, assume that ‖ψ‖1,µ :=

∫
S ψi(s)µ(s)ds = 1

for all i.
Note that Assumption 1 results in no loss of generality.

Such a basis always exists for finite-dimensional spaces. Fur-
thermore requiring ‖ψi‖1,µ = 1 is not restrictive. Since
ψi ∈ im(Π∗) and im(Π∗) ⊂ L2(S, µ), we must have that
‖ψi‖µ < ∞, implying that‖ψi‖1,µ is also bounded and can
be normalized. In the next sub-section we present the natural
algorithms and how the solution to projected Bellman equa-
tions is characterised.

3.2 Natural Algorithms and the Solution to
Projected Bellman Equations

We now look to determine the approximate value function
V̂ = φ>w ∈ span(Φ) found as the fixed point of a projected
Bellman equation. For this task, it is natural to consider a
finite rank projection operator Π characterised by (Φ,Ψ) to
find V̂ as the fixed point of V̂ = ΠT (λ)V̂ . Since the basis
functions are known, the only task left is to find an expression
for the parameter vector w. The following proposition states
that w is the solution to a system of linear equations.
Proposition 3.3 (Characteristic Equation for Projected Bell-
man Equations). Let Π be a finite rank projection operator
characterised by (Φ,Ψ). Suppose a unique solution exists
and let V̂ ∈ span(Φ), given by V̂ = φ>w, be the unique
fixed point of the projected Bellman equation

V̂ = ΠT (λ)V̂ .

Let A ∈ Rn×k, B ∈ Rn×k, and b ∈ Rn be defined by

Aij := 〈ψi, φj〉µ , Bij := 〈ψi, P (λ)
T φj〉µ , bi := 〈ψi, R〉µ

respectively for i = 1, 2, . . . , n and j = 1, 2, . . . , k. Then the
parameter vectorw = (w1, . . . , wk)> is given as the solution
to the system of linear equations

(A− γB)w = b.

Proposition 3.3 suggests that any algorithm that converges
to the fixed point of a projected Bellman equation in the limit
has its solution characterised by the three matrix-vector quan-
tities A,B, and b. We denote this class of algorithms as nat-
ural algorithms.
Definition 3.4 (Natural Algorithms). Let Π be a finite rank
projection operator. If an algorithm converges to the fixed
point V̂ = φ>w of a projected Bellman equation

V̂ = ΠT (λ)V̂ ,

then the algorithm is a natural algorithm.
Some examples of natural algorithms are the TD(λ),

GTD(λ) and Residual Gradient algorithms. This can be
seen since both the TD(λ) and GTD(λ) algorithms con-
verge to the TD(λ) solution and the Residual Gradient al-
gorithm was shown explicitly to solve an obliquely projected
Bellman equation [Tsitsiklis and Van Roy, 1997; Maei, 2011;
Scherrer, 2010].
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Figure 2: A counter-example by Sutton and Barto. In the following
the MDPs are referred to as MDP 1 (the two state MDP) and MDP
2 (the three state MDP) respectively.

4 A Counter-Example to Uniqueness
To motivate our results, we first present a counter-example
highlighting some of the non-uniqueness issues that natural
algorithms can face. Sutton and Barto provide a counter-
example that highlights where Bellman-error based methods
do not converge and experience non-uniqueness [Sutton and
Barto, 2018, Example 11.4]. The counter-example consid-
ers the two Markov decision processes depicted in Figure 2.
The edges indicate a state transition and the labels indicate
the reward received. When two edges leave a single state,
we assume the transition occur with equal probability. The
transition matrices of MDP 1 and MDP 2 are then given by

T1 =

[
0 1
1
2

1
2

]
, T2 =

0 1
2

1
2

1 0 0
0 1

2
1
2

 .

The stationary distributions are given by µ1 = ( 1
3 ,

2
3 )> and

µ2 = ( 1
3 ,

1
3 ,

1
3 )> for MDP 1 and MDP 2 respectively. A sim-

ple linear function approximation mechanism is used with a
two component parameter vector w = (w1, w2)>. In MDP
1, the value function can be represented exactly by V̂ (1) =

w1, V̂ (2) = w2. In MDP 2, we assume that states 2 and 3
share a parameter value, giving V̂ (1) = w1, V̂ (2) = V̂ (3) =
w2. To any RL algorithm using this feature construction, the
two MDPs appear indistinguishable as the feature-reward se-
quence generated under the stationary distribution occur with
the same probabilities. Furthermore the Bellman error, given
byEBE :=

∥∥(I − γT )Φŵ −R
∥∥2
µ

, is not a unique function of
the data sample. For a parameter value ŵ = 0, the Bellman
error is 0 in MDP 1 whilst it is 2

3 in MDP 2. This suggests that
even though an algorithm minimizing the Bellman error may
converge, it may converge to the wrong parameter vector.

In light of this example, we explicitly define a stronger no-
tion of convergence to the correct solution. The next assump-
tion asserts that there is a true environment and that the value
function can be represented.
Assumption 2. Let R∗, T ∗ be the true environment and as-
sume that there exists a parameter vector w∗ such that the
value function V ∗ can be represented as V ∗(s) = φ>(s)w∗.

We now define convergence as follows.
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S1 S2 S3 S4 S5 S6 S7

R ϕ(s) = φ>(s)w

Figure 3: A state aggregation scheme which partitions the state
space into non-zero measure subsets. The function ϕ clearly has
flat extrema.

Definition 4.1. (Convergence) An algorithm is said to con-
verge if it converges to w∗ or, equivalently, V ∗.

5 Main Results
We now present our main results and discuss their implica-
tions. Our main theorem directly characterises convergence
in terms of a property on the features.
Theorem 5.1 (Flatness Condition on Features). Natural al-
gorithms converge if and only if all linear combinations of the
features Φ have flat extrema.

It is important to note that Theorem 5.1 holds for all finite
rank projections onto span(Φ). The factor determining con-
vergence is the choice of features. Theorem 5.1 provides a
restrictive condition on the possible feature choices available
for natural algorithms with linear function approximation to
converge. Not only are the usual assumptions of linear in-
dependence in the features necessary; it is required that all
linear combinations of the features have flat extrema.

An immediate consequence of Theorem 5.1 is that state
aggregation methods are always safe feature construction
choices. If states are aggregated such that each subset has
non-zero measure under the stationary measure, all value
functions in the span of these features have flat extrema.
An example of this is a partitioning-based state aggregation
scheme, shown in Figure 3, that visibly has flat extrema. If
there exist aggregated states with measure zero, these states
would be unobserved under the stationary measure and would
not impact the representation. This result is summarised in
the following corollary.
Corollary 5.2 (State Aggregation). State aggregation is a
safe feature construction choice for natural algorithms.

Though state aggregation is a sufficient choice for natural
algorithms to avoid convergence issues, algorithms with other
feature constructions have been shown to converge [Tsitsiklis
and Van Roy, 1996]. We present a condition in the next sub-
section to help determine and construct convergent natural
algorithms.

5.1 A Projection Perspective
Under Assumption 1, the inner product between ψi and any
function ϕ ∈ span(Φ) can be seen as the projection of ϕ onto
ψi. Our next result presents a condition on these projections

ϕ(s)

ψi(s)

S

R

Figure 4: An example where ψi is only non-zero on the sub-region
of the state space where ϕ achieves its maximum value. Thus the
projection achieves a value of 〈ψi, ϕ〉µ = ϕmax.

which can aid in determining convergent algorithms with fea-
ture constructions other than state aggregation.
Theorem 5.3 (Convergent Natural Algorithms). All natural
algorithms converge if and only if there exists an i such that
for all ϕ ∈ span(Φ)

〈ψi, ϕ〉µ ≥ Gϕmax or 〈ψi, ϕ〉µ ≤ Gϕmin ,

where G is defined in (2).
Theorem 5.3 guarantees a natural algorithm’s convergence

if it can project the extremal regions of any approximate
value function. A simple case is when 〈ψi, ϕ〉µ = ϕmax or
〈ψi, ϕ〉µ = ϕmin. This occurs precisely when ϕ has flat ex-
trema and ψi projects ϕ on the sub-regions of the state space
where ϕ achieves its extremes. An example of this is shown
in Figure 4.
Example 1. We now provide an explicit example of how
Theorem 5.3 can help construct convergent natural algo-
rithms. Consider the piece-wise linear features displayed in
Figure 5. Any linear combination of these features also re-
sults in piece-wise linear functions that have flat maxima.
Then any natural algorithm which has the functions ψi pos-
itive on the regions of the state space where the features
achieve their flat maxima will satisfy Theorem 5.3. Effec-
tively, such an algorithm disregards any information about
the regions of the state space that are not in the flat maxima
of the features. Such an algorithm can be determined without
knowledge of the value function since it only depends on the
features, which are chosen apriori.
Example 2. An example of a convergent natural algorithm
that projects on the states that achieve the maximum value is
the modified value iteration approach presented by Tsitsiklis
and Van Roy [Tsitsiklis and Van Roy, 1996]. At the outset, K
representative states s1, . . . , sK ∈ S are chosen and their fea-
ture vectors φ(s1), . . . , φ(sK) are constructed. The remain-
ing states are then chosen from within the convex hull of the
feature vectors of the representative states. In this manner,
the feature construction ensures that the maximum value of
all approximate value functions are centred on the represen-
tative states. The modified value iteration then solves for the
fixed point of

V̂ = ΦΦ†T (V̂ ) ,
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Figure 5: An example displaying piece-wise linear features (φ1, φ2)
and the projection components (ψ1, ψ2). Natural algorithms of this
form are guaranteed to converge.

where Φ† is the left inverse of Φ. In this construction,
the projection operator is given by ΦΦ†. Since the non-
representative states are composed from the representative
states, the algorithm proceeds by computing only on the rep-
resentative states. Thus, this method effectively takes a pro-
jection on the points of the state space that achieve the maxi-
mum value.

6 Framework of Analysis
In this section we establish the framework we use for
analysing convergence and non-uniqueness for natural al-
gorithms. We call our framework the Bellman template.
We specifically look to capture two phenomena of non-
uniqueness that were displayed in Sutton and Barto’s counter-
example: how natural algorithms may converge to the wrong
solution even when the value function is representable and
how different MDP environments with different optimal pa-
rameter vectors appear indistinguishable under projection.
We formally define the Bellman template as follows.

Definition 6.1 (Bellman Template). Let Π be a finite rank
projection characterised by (Φ,Ψ). Let w ∈ Rk, R : S → R
such that ‖R‖∞ < ∞, and T : S × S → [0, 1] such that∫
S T (s′|s)ds′ = 1. The following constraints on (w,R, T )

are collectively defined as the Bellman template:

• (w,R, T ) satisfy the Bellman equation

V̂ = R+ γP
(λ)
T V̂ , (4)

where V̂ (s) = φ>(s)w.

• Let A ∈ Rn×k, B ∈ Rn×k and b ∈ Rn. R and T satisfy

〈ψi, φj〉µ = Aij , 〈ψi, P (λ)
T φj〉µ = Bij , 〈ψi, R〉µ = bij

for i = 1, . . . , n and j = 1, . . . , k respectively and w
satisfies

(A− γB)w = b .

We say that a triple (w,R, T ) is a solution to the Bellman
template if it satisfies these constraints.

A Bellman template solution represents an MDP environ-
ment (through the expected reward function R and the tran-
sition density function T ) and its value function under the
stationary policy (through the parameter vector w). The first
constraint in the Bellman template restricts our attention to
the case where the value function is exactly representable by
the chosen features Φ. The second constraint provides a con-
dition to capture when different solutions to the Bellman tem-
plate appear indistinguishable under projection. In particular,
we consider when different solutions (w,R, T ) produce the
same quantities A,B, and b that characterize solutions. It
may seem strange that non-uniqueness could present an issue
since a solution to a projected Bellman equation is uniquely
determined by A,B and b. The crucial difference however is
that we now let the environment variables, R and T , vary.

We define the condition of ambiguity, which represents
non-uniqueness, as follows.

Definition 6.2 (Ambiguity). Ambiguity holds if the Bellman
template has more than one (w,R, T ) solution that have dif-
ferent parameters w.

Under ambiguity, different MDP environments with differ-
ent optimal value functions appear the same to natural algo-
rithms under projection. Therefore, natural algorithms fail to
converge under ambiguity.

7 Theorem 5.1 Proof Idea
For brevity, we only present the key ideas behind the proof
of Theorem 5.1 here. The full proof however can be found in
the extended version of the paper [Hutter et al., 2019]. We
first present a supporting result that characterises ambiguity.

Theorem 7.1. Let 0 6≡ ϕ ∈ span(Φ) and ϕmin := min
s∈S

ϕ(s)

and ϕmax := max
s∈S

ϕ(s). Ambiguity holds if and only if there

exists an f : S → [ϕmin, ϕmax] such that∫
s∈S

χi(s)ϕ(s)ds = G

∫
s∈S

χi(s)f(s)ds . (5)

for all i = 1, . . . , n, where χi(s) = ψi(s)µ(s) and G is
defined in (2).

The idea behind the proof of Theorem 5.1 is to construct
a function f that satisfies Theorem 7.1. We show that such a
function f exists if and only if there exists a non-zero linear
combination of the features that has non-flat extrema. Then
by the equivalence given in Theorem 7.1, ambiguity holds
meaning natural algorithms will fail to converge. Taking the
contrapositive then gives Theorem 5.1.

To construct a suitable function, first consider the function
f̃ := 1

Gϕ. Clearly f̃ satisfies (5). For ϕmax < 0, f̃ satisfies
the upper bound on the range as f̃(s) ≤ ϕmax for all s ∈ S .
Similarly, in the case where ϕmin > 0, f̃ satisfies the lower
bound on the range. However when ϕmax > 0, f̃ exceeds
the upper bound. Again in similar fashion, when ϕmin < 0, f̃
exceeds the lower bound. We now look to construct a function
from f̃ that does not exceed the bounds in these cases whilst
still satisfying (5). We will focus on the ϕmax > 0 case,
noting that ϕmin < 0 is treated the same way. We consider
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Figure 6: An impression of our construction of f in Theorem 5.1
that satisfies the upper bound. The function g can be viewed as
spreading out δ over the χi functions such that f does not exceed
the upper bound.

capping f̃ at Gϕmax and spreading the ‘cut’ pinnacle across
the basis functions χi in a way that satisfies (5). Consider

f̄(s) :=
1

G
ϕ(s)− δ(s) ,

where δ(s) := max{0, 1
Gϕ(s)−Gϕmax} is the cut pinnacle.

Now define f := f̄ + g, where g is some function. We look
to find g as the pinnacle δ projected onto the basis functions
χi in such a way that (5) is satisfied. It can be shown that (5)
is equivalent to∫

S
χi(s)δ(s)ds =

∫
S
χi(s)g(s)ds

for all i = 1, . . . , n. Thus there are n constraints for g to
satisfy. To get a gauge on whether spreading δ in this fash-
ion may be possible, consider the following. The height of
the portion of 1

Gϕ that exceeds ϕmax is of order O(1 − G).
Also, if ϕ has a non-flat maximum and G is sufficiently close
to 1, this portion has ‘mass’ o(1 − G) since µ[NG] goes to
0 as G goes to 1. As g spreads the mass of δ over χi in-
dependently from G, it is of order o(1 − G). Thus for G
sufficiently close to 1, g(s) < δ(s). Thus it seems plausible
that f = f̄ + g = 1

Gϕ − δ + g would not surpass the up-
per bound of ϕmax. We employ an analogous construction to
find a function f− that satisfies the lower bound for the case
where ϕmin < 0. Finally, we are able to combine the dif-
ferent functions we construct to satisfy the range conditions
for each case in Theorem 7.1 and ultimately show our result.
Figure 6 provides a sketch of the construction we employ in
this proof.

8 Conclusion
We have established that natural algorithms are inherently
prone to fail without careful consideration of the choice of
features. In particular, natural algorithms converge if and

only if the features chosen only allow for linear combinations
with flat extrema. We also presented a condition from a pro-
jection perspective that can help determine the convergence
of natural algorithms as well. Given our results, we justify
that state aggregation features are sufficient for all natural
algorithms to converge. We also provide a condition under
which natural algorithms with other feature constructions can
converge if they project upon the extreme regions of the fea-
tures. In doing so, we show how a convergent natural algo-
rithm can be constructed from our result as well as arguing
for the convergence of the modified value iteration approach
presented in [Tsitsiklis and Van Roy, 1996].

It is important to note that our results begin where the as-
sumptions in previous convergence proofs do not hold. As an
example, TD(λ) is known to converge on-policy but counter-
examples exist for the off-policy case [Tsitsiklis and Van Roy,
1997]. In our analysis, the off-policy case is subsumed by the
projection operators we consider as we do not restrict them to
be non-expansions with respect to the‖·‖µ-norm. Thus, our
result also implies the divergence of Q-learning.

We note that the natural algorithm class, while extensive,
does not cover all known RL algorithms with linear function
approximation. In particular the ETD algorithm, introduced
in [Sutton et al., 2016], does not fall within our natural al-
gorithm class. The ETD algorithm includes an extra interest
function i that alters the visiting probabilities of states, mean-
ing we are no longer working with the stationary distribution
µ.

An important factor in determining whether our results will
hold in practice is the choice of discount factor. Throughout
our analysis, the discount factor plays an important role in
defining the extrema regions. As the discount factor moves
away from one and towards zero, it becomes less likely that
the non-flat extrema property will occur. Thus the discount
factor determines the degree to which feature choices that de-
viate from flat extrema allow natural algorithms to converge.
Also, our analysis centres on a strict notion of convergence
to the true value function. Investigating whether our analysis
can extend to characterise non-uniqueness when considering
approximate value functions is an interesting open question.
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