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Abstract
The n-Queens problem is to place n chess queens
on an n by n chessboard so that no two queens
are on the same row, column or diagonal. The n-
Queens Completion problem is a variant, dating
to 1850, in which some queens are already placed
and the solver is asked to place the rest, if possi-
ble. We show that n-Queens Completion is both
NP-Complete and #P-Complete. A corollary is that
any non-attacking arrangement of queens can be in-
cluded as a part of a solution to a larger n-Queens
problem. We introduce generators of random in-
stances for n-Queens Completion and the closely
related Blocked n-Queens and Excluded Diagonals
Problem. We describe three solvers for these prob-
lems, and empirically analyse the hardness of ran-
domly generated instances. For Blocked n-Queens
and the Excluded Diagonals Problem, we show the
existence of a phase transition associated with hard
instances as has been seen in other NP-Complete
problems, but a natural generator for n-Queens
Completion did not generate consistently hard in-
stances. The significance of this work is that the
n-Queens problem has been very widely used as
a benchmark in Artificial Intelligence, but conclu-
sions on it are often disputable because of the sim-
ple complexity of the decision problem. Our results
give alternative benchmarks which are hard theoret-
ically and empirically, but for which solving tech-
niques designed for n-Queens need minimal or no
change.

1 Introduction
The n-Queens problem is to place n chess queens on an n
by n chessboard so that no two queens are on the same row,
column or diagonal. This puzzle dates to 1848, and only two
years later a variant was introduced by Nauck [1850] in which
some number of queens are pre-placed and the solver is asked
to place the rest, if possible. This is the n-Queens Completion
problem and Figure 1 shows the first known instance studied.

∗This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Gent et al., 2017].
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Figure 1: This is the first published instance of the n-Queens Com-
pletion problem, by Nauck [1850]. The reader may enjoy attempting
to place 6 more queens on the chessboard so that no two queens at-
tack each other. Is it possible? If so, how many different ways are
there to do it? The answers to these questions are given below in
Figure 2.

We will show that the n-Queens Completion problem is NP-
Complete and #P-Complete, discuss solvers for the problem,
and empirically analyse randomly generated instances. The
n-Queens Completion problem may be one of the simplest
NP-Complete problems to explain to people who understand
the rules of chess. The problem is “Given an n×n chessboard
on which some queens are already placed, can you place a
queen in every remaining row so that no two queens attack
each other?”

1.1 History of n-Queens
The n-Queens problem has an extraordinary history for such
an apparently unassuming problem, both generally and inside
Artificial Intelligence. Formerly, and incorrectly, attributed
to Gauss, the problem’s history was clarified by Campbell
[1977]. The 8-Queens problem was introduced by Bezzel
[1848] and by Nauck [1850] (possibly independently). The
latter publication attracted the interest of Gauss, who even
made a small mistake in studying the problem.1 The gen-
eralisation to n-Queens has attracted the interest of many

1He reported finding 76 solutions but later realised that four of
those were erroneous so had only 72.
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other mathematicians, whose results are surveyed by Bell
and Stevens [2009]. The first paper to describe backtrack-
ing search on computer, presented in 1958, does so for the
n-Queens problem [Walker, 1960]. Since then it has been
used as an example and/or benchmark problem in many clas-
sic AI papers, for example at least six with more than 400
citations on Google Scholar at time of writing [Golomb and
Baumert, 1965; Bitner and Reingold, 1975; Mackworth and
Freuder, 1985; Minton et al., 1992; Selman et al., 1992;
Crawford et al., 1996].

1.2 Complexity of n-Queens
The complexity of the n-Queens problem is often misunder-
stood. The decision problem is solvable in constant time
since there is a solution for all n > 3 so is only NP-
hard if P=NP. A witnessing solution can be constructed eas-
ily [Bell and Stevens, 2009] but note that the witness (a
set of n queens) requires n log n bits to specify but this
is not polynomial in the size of the input, which is only
log n bits. The n-Queens problem has often been incorrectly
called NP-hard, even in well-cited papers [Mandziuk, 1995;
Martinjak and Golub, 2007; Shah-Hosseini, 2009; Nakaguchi
et al., 1999, each with at least 29 citations]. The counting
version of the problem, i.e. to determine how many solutions
to n-Queens there are, is sequence A000170 of the Online
Encyclopedia of Integer Sequences [Sloane, 2016]. The se-
quence is currently known only to n = 27, for which the
number of solutions is more than 2.34 × 1017. No approach
better than optimised exhaustive search seems to be known:
e.g. the n = 27 total was counted using a massively parallel
search using FPGAs [Preußer, 2016]. Hsiang et al. [2004]
show that solving the n-Queens counting problem is “beyond
the #P-class”. Bell and Stevens [2009] states that this means
that there is no closed form expression in n for the number of
solutions, but Chaiken et al. [2015] claim to give one.2

1.3 Generalising to n-Queens Completion
Cadoli and Schaerf [2006] studied the n-Queens Completion
problem without studying its decision or counting complex-
ity. The most closely related work to ours is by Martin [2007],
who proves a rather different generalisation of n-Queens to
be NP-complete, the key difference being that some squares
can be marked as stopping attacks. In particular, this means
that solutions to Martin’s problem need not be solutions to the
n-Queens problem, unlike n-Queens Completion.

We are contributing to a rich literature on the complexity
of puzzles and games. One of the earliest results in the area
is that generalised chess is EXPTIME-complete [Fraenkel
and Lichtenstein, 1981]. Amongst other games to have been
proved NP-complete or harder are the card solitaire games
Klondike [Longpré and McKenzie, 2009], Freecell [Helmert,
2003] and Black Hole [Gent et al., 2007], the Sudoku puzzle
[Takayuki and Takahiro, 2003], video games like Pac-Man
[Viglietta, 2014], and casual games such as Minesweeper

2It is unclear to us if this is a mathematical dispute or simply a
dispute on what it means to be a closed form expression, but in any
case Chaiken et al.’s formula has not been used to extend knowledge
of the number of solutions beyond n = 27.
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Figure 2: The two possible solutions of the 8-Queens Completion
instance from Figure 1.

[Kaye, 2000], Candy Crush Saga and Bejeweled [Walsh,
2014; Guala et al., 2014]. Many other games are surveyed by
Kendall et al. [2008] and by Demaine and Hearn [2009]. In
each case, the complexity-theorist must define a generalised
class of instances. Unlike some of the examples above, this
step is completely natural for n-Queens Completion.

1.4 Controversy Surrounding n-Queens for
Benchmarking

Because of the ease of finding a solution, the n-Queens prob-
lem has been subject to repeated controversy in AI over
whether it should be used as a benchmark at all. For ex-
ample a sequence of papers argued the point in the pages of
SIGART Bulletin in the early 1990s [Sosic and Gu, 1990;
Johnson, 1991; Bernhardsson, 1991; Gu, 1991; Valtorta,
1991], and then in 2014 the issue was raised again in a blog
post by Smet [2014]. We resolve this issue in the sense
that, as an NP- and #P-Complete problem, n-Queens Com-
pletion does provide a valid benchmark problem. Similarly,
the Quasigroup Completion Problem (which is to complete
a partially filled latin square) is NP-Complete [Colbourn,
1984] and is a challenging and popular benchmark [Gomes
and Selman, 1997], whereas constructing a latin square from
scratch is trivial. A very closely related problem, “Blocked
n-Queens”, has previously been used for benchmarking with-
out complexity guarantees [Namasivayam and Truszczynski,
2009]. Our results show as a corollary that Blocked n-Queens
is NP-Complete and #P-Complete. We explore the practical
difficulty of these problems, and a new variant, the Excluded
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Diagonals Problem. For Blocked n-Queens and the Excluded
Diagonals Problem, we show the existence of a phase transi-
tion associated with hard instances, but we were not able to
generate consistently hard instances for the n-Queens Com-
pletion problem.

1.5 Theoretical Results
In the journal paper [Gent et al., 2017] we give definitions of
a sequence of problems, where the first problem is n-Queens
Completion, and the last is a variant of Boolean Satisfiability
(SAT) that is NP- and #P-Complete, with the Excluded Diag-
onals Problem at an intermediate stage. The proof proceeds
by a sequence of polynomial reductions, starting with the last
problem and ending with n-Queens Completion.
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