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Abstract
Prescriptive pricing is one of the most advanced
pricing techniques, which derives the optimal price
strategy to maximize the future profit/revenue by
carrying out a two-stage process, demand model-
ing and price optimization. Demand modeling tries
to reveal price-demand laws by discovering causal
relationships among demands, prices, and objec-
tive factors, which is the foundation of price opti-
mization. Existing methods either use regression or
causal learning for uncovering the price-demand re-
lations, but suffer from pain points in either accura-
cy/efficiency or mixed data type processing, while
all of these are actual requirements in practical pric-
ing scenarios. This paper proposes a novel demand
modeling technique for practical usage. Speaking
concretely, we propose a new locally consistent in-
formation criterion named MIC, and derive MIC-
based inference algorithms for an accurate recovery
of causal structure on mixed factor space. Experi-
ments on simulate/real datasets show the superior-
ity of our new approach in both price-demand law
recovery and demand forecasting, as well as show
promising performance to support optimal pricing.

1 Introduction
Prescriptive pricing [Caro and Gallien, 2012; Ito and Fuji-
maki, 2016; 2017] is one of the most advanced pricing tech-
niques, which derives the optimal price strategy to maximize
future profit/revenue on the basis of demand forecasting. Pre-
scriptive pricing generally carries out a two stage analysis, 1)
demand modeling that reveals the exact price-demand laws
by discovering the quantitative causal relationships among
prices, sales, and objective factors from historical observa-
tions, and 2) pricing optimization that finds the optimal price
strategy by resolving a mathematical optimization problem
constructed from the discovered relations. Demand modeling
plays a vital role in pricing. A correct detection of actual fac-
tors affecting sales and an unbiased estimation of their quan-
titative effects by demand modeling, act as the foundation of
the second stage, and decide whether pricing optimization can
∗Equal contribution. Corresponding author: Liu Chunchen.

choose key control factors for optimal pricing. (biased rela-
tion estimates leads to sub-optimal pricing solutions.)

Several issues are crucial and should be resolved in demand
modeling for practical usage. Firstly, factors involved in pric-
ing usually comprise a mixture of discrete (e.g., season) and
continuous variables (e.g., prices, sales), needing a technique
that can process mixed data types jointly. Secondly, demand
modeling requires an accurate recovery of the quantitative
price-demand relations, which is the foundation to achieve
optimal price strategy. Thirdly, the demand modeling process
should be efficient so as to timely catch the insight from the
fast-changing market, especially to support online pricing.

The causal models targeting at causal relation discovery
is a nature selection for discovering price-demand laws, and
have been attracting extensive attention recently. A causal
model describes the demand as a causal effect of its own
price, the prices of competing products, promotion, season-
ality, and etc. But the widely used causal models are es-
sentially regressions [Lee, 2011; Caro and Gallien, 2012;
Ferreira et al., 2015]. Regression for correlation analysis is
not causal discovery in nature, and pseudo causes are always
reported due to confounders, leading to a low accuracy of
price-demand relation recovery. Speaking concretely, corre-
lation analysis will produce a high miss-hunting ratio of ac-
tual causes and much biased estimations of causal effects.

Causal structure discovery is able to eliminate pseudo caus-
es by telling causation from correlation. Structural equation
models (SEM) and causal Bayesian networks are two main
classes of causal models [Pearl, 2009]. Recently, a family of
SEMs called Causal Additive Noise Models (ANM) [Shimizu
et al., 2011; Bühlmann et al., 2014] have been widely applied
in causal structure discovery of continuous variables. ANM
also can deal with discrete variables [Peters et al., 2011a], but
the case involving a mix of continuous and discrete variables
has received little attention. Causal Bayesian network gives a
probabilistic interpretation of causal relations. Independence-
based methods like PC [Spirtes et al., 2000] and score-based
methods like GES [Chickering, 2003] are able to identify
the causal graph from the joint distribution up to Markov e-
quivalence, under the causal Markov condition and faithful-
ness condition [Pearl, 2009]. There has been a long line of
work on recovering a hybrid Bayesian network from a mix-
ture of variables by discretizing continuous variables [Monti
and Cooper, 1998; Dojer, 2016], or converting the condition-
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al distributions of all variables into the same type [Romero
et al., 2006]. Until recently, some work [Cui et al., 2016;
Sedgewick et al., 2017] adopted conditional independence-
based methods to infer causal structures from mixed data.

In this paper, we develop a mixed causal model to describe
price-demand relationships, propose a novel information cri-
terion and derive related inference algorithms, to tackle the
general issues required by demand modeling for practical us-
age. Our contributions can be detailed as follows:

Mixed causal model: We develop a mixed causal model
for a mixture of discrete and continuous variables, and prove
its identifiability in the bivariate cases.

Mixed information criterion: For score-based causal dis-
covery, the key is an information criterion used for evaluating
how mixed data fit a causal graph, which should be factoriz-
able and tractable to compute. We derive a locally consistent
criterion named Mixed Information Criterion (MIC) to tackle
this problem.

Factorized causal inference: Based on MIC, we derive an
inference framework for efficient structure discovery. Speak-
ing concretely, with MIC, we construct a factorized optimiza-
tion problem, on which an explorative search can be adopted
to recover the causal structure. To accelerate the search pro-
cess further, we propose ancestor-based search space cutting
for speeding up without losing accuracy.

Evaluation on simuation/real retail datasets: We com-
bine the proposed demand modeling technique with a latest
pricing optimization method for test on both simulation and
real datasets. Experiment results show that comparing with
existing causal methods, our technique shows superiority in
price-demand law recovery, supports demand prediction with
higher accuracy, and helps to achieve higher gross profit.

2 Mixed Causal Modeling
Suppose we observe all factors relating to pricing, and have
historical data X = [X1, · · · , XD], where each random vari-
able Xi can be binary (Xi ∈ {0, 1}N ), categorical (Xi ∈
{1, ..., T}N ), or continuous (Xi ∈ RN ). Since a categor-
ical variable with T class can be translated to (T − 1) bi-
nary variables equally by standard practice, X is simplified
as a mixture of binary and continuous variables. Under the
causal markov and faithfulness assumptions, we model the re-
lationships among theD observed variables as a probabilistic
graphical model defined over a directed acyclic graph (DAG)
G. Each random variable Xi corresponds to a node in G, and
there is an edge linking from Xi to Xj if Xi is a direct cause
of Xj . The probability graph model is in the form,

p(X1, · · · , XD)

= ΠD
i=1pb(Xi|Pa(Xi))

zipc(Xi|Pa(Xi))
(1−zi),

(1)

where Pa(Xi) is the parent set of Xi in G. pb(•) and pc(•)
denotes the probability distribution of binary and continuous
variables, respectively. zi ∈ {0, 1} is an indicator variable
that zi = 1 if the variable Xi is binary and zi = 0 otherwise.

We assume the relations between a continuous variable and
its parents are linear as (2) shows. Actually, the relations
in real scenarios are generally non-linear, however, defining

non-linear relations in demand modeling will raise great diffi-
culty in the next pricing optimization stage, that is non-linear
formulas make optimization problem hard to build and re-
solve or even lead the problem to be unsolvable. Alternative-
ly, we represent non-linear by combining linear model and
non-linear transformation of variables, which can avoid the
above dilemma.

Xi = βTi X−i + εi, εi ∼ Laplace(0, bi), (2)

βi quantitatively describes the relations between Xi and
all the other variables X−i where βij = 0 for Xj /∈
Pa(Xi). Here we use a symmetric super-Gaussian distribu-
tion, Laplace distribution, which will produce a least abso-
lute deviation score that is robust to outliers, and has been re-
ported work well in non-Gaussian causality estimation meth-
ods including LiNGAM [Hyvärinen and Smith, 2013], S-
LIM [Henao and Winther, 2011], and etc. We assume the
relations between a binary variable and its parents as follows,

Xi =

{
1 βTi X−i + εi > 0
0 otherwise , εi ∼ Logistic(0, 1). (3)

By introducing (2) and (3) to (1), we obtain the joint proba-
bility distribution,

p(X1, · · · , XD)

= ΠD
i=1ΠN

n=1e
βT

i X−i,nxinzi(1 + eβ
T
i X−i,n)−zi(1−xin)

ΠN
n=1b

zi−1
i e

−
|xin−βT

i X−i,n|·(1−zi)

bi ,

(4)

where xin is the n-th element of Xi.

2.1 Identifiability of the Mixed Causal Model
Here we give the definition of bivariate identifiability and
prove the above mixed causal model is bivariate identifiable.

Definition 1 (Bivariate Identifiability) [Peters et al.,
2011b] Let F = {f |f : R2 → R} be a set of functions,
PU = {PR,P{0,1}} denotes the set of probabilistic distri-
butions for continuous/binary random variables, we call a
set B ⊆ F × PU × PU containing functions f ∈ F and
distributions of inputs X and noise ε bivariate identifiable in
F if

(f, PX , PεY ) ∈ B and Y = f(X, εY ), X �εY
⇒ @(g, PY , PεX ) ∈ B and X = g(Y, εX), Y �εX (5)

holds. Additionally, we require f(X, εY ) 2X for all
(f, PX , PεY ) ∈ B with X �εY .

Theorem 1 For the mixed causal model, F =

{fc, fb|fc(x, ε) = βx + ε, fb(x, ε) =

{
1 βx+ ε > 0
0 otherwise },

PU is a set of non-Gaussian distributions with Laplace
distribution for noise on continuous variables and Logistic
distributions for noise on binary variables. The model is
bivariate identifiability.

Here we provide an intuition rather than a formal proof
which can be found in Appendix A. Briefly speaking, i) for
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the case that both variables are continuous, the model degen-
erates to a kind of linear ANM model of which the identifia-
bility has been well proved by existing work [Shimizu et al.,
2006]; ii) for the case that both variables are binary, with a
sufficient condition that the random variables do not share the
same marginal distribution, the model is identifiable; iii) for
the case of a mixed of binary and continuous variables, based
on the differences in conditional distributions, the model is
identifiable.

3 Causal Inference

3.1 Mixed Information Criterion (MIC)
In the score-based causal inference approach, a scoring func-
tion is defined over the space of DAG, and one searches this
space for a structure that optimize the scoring function. While
the traditional approaches estimate the graph structure G and
parameters {β1, . . . , βD} jointly using scoring functions like
the Bayesian Dirichlet likelihood-equivalent (BDe) [Chicker-
ing, 2003], we propose a mixed information criterion (MIC),
to assess the fit of a DAG on a mixture of binary and contin-
uous variables, as follows,

MIC(G) =
D∑
i=1

MIC(Xi, Pa(Xi))

=
D∑
i=1

(
1

wi
LL(Xi|Pa(Xi)) + Pen(Xi, Pa(Xi))

)
, (6)

where LL(Xi|Pa(Xi)) is the negative log-likelihood of da-
ta, and Pen(Xi, Pa(Xi) is the `0 penalty. We introduce a
scale parameter {wi}Di=1 to make the negative log-likelihood
of different variables comparable in terms of magnitude. The
magnitude of the negative log-likelihood changes a lot from
one variable to another, especially when the observations are
a mixture of binary and continuous variables. Such magni-
tude variation may comes from the differences in the value
of variables which are measured on different scales. Normal-
ization is one common way to adjust different variables to
an aligned scale, but it might bring undesirable changes into
the probability distribution of adjusted variables, which will
lead to an accuracy loss of causal structure estimate. Our in-
troduced scale parameter {wi}Di=1 is an alternative way for
scale aligning while avoiding changing the data distribution.
The magnitude variation may also comes from the estimation
errors of model parameters, which will further bias the esti-
mate of causal structure. Using a relative loss as MIC does is
more robust to such magnitude variation than using an abso-
lute loss if the scale parameter is proper designed. Here, we
fix the value of wi to an underestimate of LL(Xi|Pa(Xi)),
that is,

Pac(Xi) = arg minX′⊆X−i
LL(Xi|X ′), (7)

wi = LL(Xi|Pac(Xi)), (8)

Pac(Xi) is the optimal potential parent set of vari-
able Xi, and Pa(Xi) ⊆ Pac(Xi). The relative loss
LL(Xi|Pa(Xi))/wi measures the ratio of the absolute loss

to an optimistic estimate, and is robust to data scale variations
and estimation errors as validated by the experiments.

We give the definition of local consistency and prove that
MIC score is locally consistent. Local consistency, which
was proposed in [Chickering, 2003], means that optimizing
the model selection criterion leads to select a graph that can
represent the data generating distribution, and the graph con-
tains no edges that are redundant for representing the data
generating distribution [Schulte and Gholami, 2017].

Definition 2 (Local Consistency) [Chickering, 2003] Let X
be a set of data consisting of N records that are iid samples
from some distribution p(·). Let G be any DAG, and let G′
be the DAG that results from adding the edge Xi → Xj . A
scoring criterion S(G,X) is locally consistent if the following
two properties hold:

1. If Xj 2pXi | PaGj , then S(G′,X) > S(G,X)

2. If Xj �pXi | PaGj , then S(G′,X) < S(G,X)

where, PaGj is shorten for Pa(Xj) in the DAG G.

Theorem 2 MIC score is locally consistent.

The formal proof can be found in Appendix B.

3.2 MIC-Based Causal Inference
With the new defined MIC used for evaluating the goodness
of causal structures, we construct an optimization formula-
tion to model the problem of causal structure discovery from
mixed data. Speaking concretely, by instantiating the log-
likelihood in (6) with the joint probability distribution in (4),
we obtain a target for optimization, and a DAG constraint and
`0 constraints are added to achieve a sparse network.

min
β1,··· ,βD

D∑
i=1

MIC(βi, Xi, X−i)

s.t. G{β1,··· ,βD} ∈ DAG, ‖ βi ‖0≤ k, i ∈ {1, · · · , D},

MIC(βi, Xi, X−i) =
LL(βi, Xi, X−i)

minβi,S(βi)⊆X−i
LL(βi, Xi, X−i)

,

LL(βi, Xi, X−i) = (1− zi)
N∑
n=1

(
log bi +

|xin − βTi X−i,n|
bi

)

+zi

N∑
n=1

(
(1−xin) log(1 + eβ

T
i X−i,n)− xinβTi X−i,n

)
.

(9)

S(βj) denotes the support set of βj . When resolving formu-
la (9), the challenge is how to minimize an objective while en-
forcing the implied graph structure should contain no direct-
ed cycles. Existing researches [Koller and Friedman, 2009]
show that the DAG-constraint structure learning problem can
be cast as that of learning an optimal ordering of variables.
Once the variable order is fixed, the constraint of no direct-
ed cycles can be enforced by constraining the parents of a
variable to be a subset of variables ordering precede it. Bind-
ing with our case, we translate the problem in formula (9)
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to a dynamic decision problem, of which the resolving will
simultaneously produce the optimal variable ordering and a
DAG-satisfied sparse causal structure.

orderSc(U) = min
Xj∈U

{
orderSc(U \Xj)

+ nodeSc
(
Xj |(X \U) ∩ Pac(Xj)

)}
, (10)

nodeSc (Xj |(X \U) ∩ Pac(Xj))

= min
βj ,S(βj)⊆(X\U)∩Pac(Xj)

MIC(βj , Xj , X−j)

s.t. ‖ βj ‖0≤ k, (11)

U (U ⊆ X) is a set of variables of which the order have not
been identified, orderSc(•) is the score of the optimal or-
dering of •, nodeSc(•|•̄) is the optimal score of • under the
choice of its parents from •̄, Pac(Xj) is the optimal potential
parent set for variable Xj , whose computation is described
as formula (7). Take (X \ U) ∩ Pac(Xj) as candidate par-
ents for computing nodeSc for Xj (formula (10)) will not
reduce the causal discovery accuracy compared with using
X \ U , but will save computation cost greatly (experiments
show this further). We resolve the `0 regression problem-
s (11) by applying the forward backward greedy (FoBa) algo-
rithm [Zhang, 2011] since it offers the tightest upper bounds
of feature selection error, estimation error, and objective error.
Although the upper bounds for the original FoBa algorithm
have only been derived for least square regression, we can
achieve the same bounds for our problem by slightly modify-
ing the proofs of [Zhang, 2011]. Please refer to Appendix A
for how we adapt FoBa to our problem.

A* FoBa for Optimization

For the dynamic decision problem like formula (10), some
previous work [Xiang and Kim, 2013] solves it by finding
a shortest path in the order search space. The start state of
this order search space is an empty variable set, the goal state
is the complete variable set, and any other state represents a
subset of the complete variable set. In this order search space,
an arc is always linking from one state to another with one
more variable added. Each arc has been assigned a cost, and
a path from start to goal with the lowest total cost is called the
“shortest” path. The order according to which variables are
added on the “shortest” path is the optimal variable order. We
borrow the idea and derive our own method A* FoBa for the
MIC-based causal inference. It is called A* FoBa because
we resolve the optimization problem in (10) by A* search,
and solve the sparse regression problems in (11) using FoBa
algorithm. Start from the start state in the order space, A*
search explores a shortest path, by greedy selecting the most
promising succeeding state. A stateQ is called most promis-
ing if its estimated cost, f(Q) = g(Q) +h(Q), is the lowest.
g(Q) summarizes the cost of the arcs on the path from the
start to the Q state, which denotes the cost incurred so far.
h(Q) is the estimated future cost to be incurred from Q to
the goal. Based on formula (10), we derive g(Q) and h(Q)

as following,

g(Q) =
∑
X∈Q

nodeSc(X|ΠQ≺X ∩ Pac(X)), (12)

h(Q) =
∑

X∈X\Q

nodeSc(X|X \X). (13)

ΠQ denotes an ordering of the nodes in Q and ΠQ≺X denotes
the set of variables in Q that precede X in ΠQ. A* search
requires the h function to be admissible, meaning that h(Q)
is always an underestimate of the true cost to reach the goal.
Also, the h function should be consistent, meaning it should
satisfy h(Q) ≤ c(Q,Q′)+h(Q′), whereQ′ = Q∪{Xj} is a
succeeding state and c(Q,Q′) = nodeSc(Xj |Q∩Pac(Xj))
is the cost of moving from Q to Q′. We prove that, based on
score definitions((11), (13)) and the working process of the
FoBa algorithm, h(Q) in (13) is admissible and consistent.

Theorem 3 The h function in equation (13) is admissible.

Proof: The true cost from the current state to the goal
is T (Q) =

∑
X∈X\Q nodeSc(X|Π≺X ∩ Pac(X)). The

parent set selected by nodeSc(X|X \ X) in h is Pac(X)
based on the definition in (7), while the parent set selected by
nodeSc(X|Π≺X ∩ Pac(X)) is a subset of Pac(X) and de-
noted by Pa′c(X). Considering the feature selection process
of FoBa, a feature r ∈ Pac(X) \ Pa′c(X) will be selected
only if nodeSc gets smaller. Therefore, h(Q) ≤ T (Q) and
the h function is admissiable.

Theorem 4 The h function in equation (13) is consistent.

Based on Theorem 1, Theorem 2 can be easily proved, and
we skip it because of the space constraint.

3.3 Ancestor-Based Search Space Cutting
We utilize the ancestor relations to further cut down the order
search space for inference accelerating.

Theorem 5 Ancestor relations can be used to prune the
search space without losing optimality.

Proof: Given Q the set of variables assigned in the cur-
rent state, and Q ∩ {Xi, Xj} = ∅, there are two path-
s to achieve the future state with variables Q ∪ {Xi, Xj}.
Path1 is Q → Q ∪ {Xi} → Q ∪ {Xi, Xj}, and Path2 is
Q → Q ∪ {Xj} → Q ∪ {Xi, Xj}. If the ancestor relation
between two variables, e.g. Xi ≺ Xj , is known, then we can
eliminate Path2 because it is always suboptimal compared
with Path1 which is proved as follows,

cost(Path2)− cost(Path1)

=nodeSc(Xj | Q ∩ Pac(Xj))− nodeSc(Xi | Q ∩ Pac(Xi))

+ nodeSc(Xi | Q ∪ {Xj} ∩ Pac(Xi))

− nodeSc(Xj | Q ∪ {Xi} ∩ Pac(Xj))

=nodeSc(Xj | Q ∩ Pac(Xj))

− nodeSc(Xj | Q ∪ {Xi} ∩ Pac(Xj)) ≥ 0, (14)

in which nodeSc(Xi | Q∪{Xj}∩Pac(Xi))=nodeSc(Xi |
Q ∩ Pac(Xi)) due to the ancestor constraint Xi ≺ Xj .
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Algorithm 1 A* FoBa with ancestor-based space cutting
Input: DataX , the number of variables D
Output: Optimal structureB = {βd}Dd=1
Initialize:empty queue open, empty set close
1: For each variable Xj ∈ X , get its optimal potential parent set
Pac(Xj) by solving (7) using FoBa

2: Construct an adjacent matrix from {Pac(Xj)}Dj=1

3: Extract m SCCs of variables scc1 ≺ scc2 ≺ · · · ≺ sccm from
the adjacent matrix using Tarjan’s algorithm [Tarjan, 1972]

4: Project SCCs onto a series ordering constraints C = {Xi ≺
Xj | Xi ∈ scck, Xj ∈ sccl, scck ≺ sccl}, ∀i, j ∈
{1, · · · , D},∀k, l ∈ {1, · · · ,m}

5: open.insert(Q = ∅, f(∅) = h(∅), g(∅) = 0,BQ = ∅)
6: while true do
7: Q, f(Q), g(Q),BQ ← open.pop()
8: if h(Q) = 0 then return BQ end if
9: for each Xj ∈X \Q do

10: Q′ ← Q ∪ {Xj}
11: if Q′ /∈ close and not voilate(Q′,C) then
12: Compute nodeSc(Xj | Q ∩ Pac(Xj)) by (11)
13: g(Q′)← g(Q) + nodeSc(Xj | Q ∩ Pac(Xj))
14: h(Q′)← h(Q)− nodeSc(Xj |X \Xj))
15: f(Q′)← g(Q′) + h(Q′), BQ′ ← BQ ∪ {βj}
16: open.insert(Q′, f(Q′), g(Q′),BQ′ )
17: close← close ∪{Q′}
18: end if
19: end for
20: end while

We first learn the ancestor relations among all the variables,
and then project these ancestor relations onto a series of topo-
logical ordering constraints, which can be easily integrated
into the A* FoBa framework for search space cutting. The
whole algorithm is summarized in Algorithm 1. The function
voilate(Q′,C) in line 11 checks whether the current vari-
able ordering violates the topological ordering constraints.
The time complexity of our MIC-based causal inference algo-
rithm is O(mmaxi 2|scci|D2N), where m is the number of
strongly connected components (SCCs) [Tarjan, 1972], |scci|
is the number of variables in the SCC scci, D denotes the
total number of variables, N is the sample number.

4 Simulated Study

4.1 Synthetic Data

We simulated prices and sales of 40 kinds of beer, and 9
objective factors (i.e., temperature (continuous), seasonality
(4, binary), vacation (binary), promotion (binary) and sun-
ny/rainy (2, binary)). We used ptm and qtm to denote the price
and sales of the m-th product in the t-th day, and denoted
the n-th objective factor in the t-th day as gtn. To mimic
the nonlinear relations between prices and sales, we intro-
duced univariate transformation on prices that are f1 (ptm) =
1/ptm, f2 (ptm) = ptm, and f3 (ptm) = ln (ptm). Prices
and sales are simulated by (15) and (16). The coefficient
{α∗,β∗,γ∗,a∗,b∗, c∗} were randomly generated from rea-
sonable ranges. For noisy terms ε or e, we simulated expo-

nential distribution and mixture Gaussian distribution.

qtm = α∗m+
40∑

m′=1

3∑
i=1

β∗mm′ifi(p
t
m′)+

9∑
n=1

γ∗mng
t
n+εtm, (15)

ptm = a∗m +
∑
m′ 6=m

3∑
i=1

b∗mm′ifi(p
t
m′) +

9∑
n=1

c∗mng
t
n + etm.

(16)
We simulated 16 experiment settings differed in noise types,
sparsity (simple/complex structure), train sample scale (1/3
years), and test sample scale (7/30 days). b∗ = 0 holds in the
simple structure, while b∗ is not zero in complex structure.
Under each setting, we generated 10 datasets while each con-
tained 169 random variables.

4.2 Benchmarks
We compared our method with 7 other methods, 1) the l0
sparse regression [Liu et al., 2014] as a representative of
regression-based demand modeling, 2) stable PC [Colombo
and Maathuis, 2014] that is an improved version of the classi-
cal constraint-based method, PC, 3) causalMGM [Sedgewick
et al., 2017], which is a latest constraint-based method for
mixed data processing, 4) GES [Chickering, 2003] that is a
classical score-based method, 5) A* Lasso [Xiang and Kim,
2013] whose shortest path finding framework we refer to, 6)
Direct LiNGAM [Shimizu et al., 2011] that is designed for
linear non-Gaussian data, 7) CAM [Bühlmann et al., 2014]
that is a nonlinear-Gaussian SEM. Besides implementing the
l0 sparse regression by ourselves, we used the implementa-
tions provided by authors and their default parameter settings
for all the other benchmarks. The stable PC and causalMGM
use the likelihood ration test (LRT) for independent test.

4.3 Evaluation Metrics
We consider the following evaluations:

Causal structure discovery (price-demand law discov-
ery): Two metrics were used to measure the accuracy of
structure discovery: 1) Precision = TP

TP+FP , denoting a-
mong all the discovered causal relations, how many actually
hold, and 2) Recall = TP

TP+FN , denoting among all the actu-
al causal relations, how many have been identified.

Demand forecasting: We used the learnt demand models
to predict sales of 40 products on the test samples, and we
used the averaged root-mean-square error (RMSE) to mea-
sure the prediction accuracy.

Pricing strategy: Based on a learnt demand model, we
defined the optimization target, gross profit, as

l(p) =
T∑
t=1

M∑
m=1

(pm − rm)qtm(p,gt), (17)

where p = {pm}Mm=1 are control variables to be optimized,
g = {gn}Nn=1 are external variables whose values are already
known from test samples. qtm(•) is the function revealing
price-demand relations. T is the number of test samples, rm
is the cost of the m-th product. With the gross profit function
as objective and with some actual requirements as constraints
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(e.g., pm is chosen from discrete values {pm1, . . . , pmJ}.),
the pricing optimization problem was formulated as binary
quadratic programming (BQP), and solved by a semi-definite
programming (SDP) relaxation [Ito and Fujimaki, 2017].

For evaluation, let l∗(•) denotes a gross profit function
with true parameters {α∗,β∗,γ∗,a∗,b∗, c∗}, then the true
optimal pricing strategy is p∗ = arg maxp l

∗(p). Let l̂(•)
denotes a profit function on

{
α̂, β̂, γ̂, â, b̂, ĉ

}
that are learnt

by a demand model from train data, then a generated pricing
strategy is p̂ = arg maxp l̂(p). We used l∗(p̂)

l∗(p∗) ∈ [0, 1] to
measure the goodness of a pricing strategy. (l∗(p̂) means the
actual profit if running strategy p̂ in real environments, while
l∗(p∗) means the ideal profit if using optimal strategy p∗.)

4.4 Experimental Results
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Figure 1: Comparisons of structure discovery.
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Figure 3: Comparisons of pricing accuracy.
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Figure 4: Comparisons of elapsed time between MIC-A*FoBa with
and without the acceleration policies.

Figure 1 summarizes the accuracy comparisons for causal
structure discovery. The four sub-figures tell us that, across
all the datasets that vary in structure, noise distribution, train
data scale, and test duration, our method (MIC-A*FoBa) out-
performed all the other methods in Precision obviously and
identically. Such results mean that the causal relations de-
tected by our method are more reliable since a higher ratio of
its identified relations are actually true. When checking the
performance of Recall, we find that our method is better than
(Figure 1 B/D) or comparable with (Figure 1 A/C) most of
the benchmarks except the DLiNGAM. A high Recall while
a low Precision like DLiNGAM means that it hunts a large
amount of true and pseudo relations at the same time, which
is bad news especially for the pricing optimization, because
these pseudo causes will bias the causal effects of true causes
which will further lead to bad pricing strategy.

Figure 2 compares the demand forecasting accuracy. Re-
sults show that MIC-A*FoBa defeats all the other causal
methods across all the datasets and achieved the smallest pre-
diction error. Comparing MIC-A*FoBa with FoBa that is
for prediction, they show comparable accuracy, which fur-
ther confirms that the causal relations and their related causal
effects learnt by MIC-A*FoBa is close to the groundtruth.

Figure 3 compares the goodness of pricing strategies.
MIC-A*FoBa shows the best performance across all datasets,
meaning that it helps to produce pricing strategies that bring
the highest gross profits. For the l0 regression, it worked
relative well on datasets with simple structures, but dropped
sharply on complex structures. One possible explanation is
that, the regression failed to find real causes for demand vari-
ation due to price interactions in complex structure, and such
pseudo causes lead to produce sub-optimal pricing strategy.

In A*FoBa, we adopted two policies for accelerating the
inference. One is by the ancestor-based search space cutting
strategy, and the other is by adding Pac(•) to constraint the
candidate parent space as the underlined part in formula (9)
shows. We compare two versions of MIC-A*FoBa, one is
with the above strategies adopted while the other does not.
The comparison showed in Figure 4 confirms the usefulness
of the policies for inference accelerating.

5 Real World Retail Data
5.1 Data and Experimental Settings
We applied our method to real retail data from a supermarket
in Tokyo.1 We used daily prices, univariate transformations

1The data is provided by KSP-SP Co.,LTD.
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Figure 5: Causal structure on retail data. Red/blue lines indicate the
positive/negative effect.

on prices and sales of 10 products (5 kinds of milk and 5 kinds
of bread)2 in two years from 2012/01 to 2013/12. In addition,
objective factors during the same period were used, like the
daily guest flow volume (continuous), seasonality (4, binary),
month (12, binary), weekend (binary), day of the week (7,
binary), weather (binary), and temperature (continuous). In
total, we used 69 randomly variables for analysis.

We simulated the whole procedure of prescriptive pricing
on this real data. For demand modeling, we learnt the sales
formula of each product from the data of the year 2012. As
for the price optimization, we constructed the optimization
target, l̂(p), using (17) setting the cost to 0 for simplicity, and
then obtained a pricing strategy p̂ by maximizing the revenue.
To evaluate the pricing strategy, we built an independent vali-
dation environment l̂′(•) by estimating new sale formulas on
data from 2013/01 to 2013/09. Compared to l̂(•), l̂′(•) is an
environment that is more similar to the real one in the valida-
tion stage (2013/10). We ran the pricing strategy p̂ on data
from 2013/10, and achieved l̂′(p̂) as the validation revenue
explained as running p̂ in the validation sale environment.

5.2 Causal-Structure-Based Insight
A subgraph of the causal graph learnt by our method was
shown in Figure 5 to make a concise presentation. It illus-
trates some laws of market, such as the price elasticity of de-
mand (e.g. price of bread1 has a negative effect on sales of
bread1), the cross-price elasticity of demand (e.g. price of
milk2 has a positive effect on sales of milk1). It also reveals
some relations that are in accord with common sense, such as
the guest flow has a positive effect on sales, and the weekend
and daylight have a positive effect on guest flow.

5.3 Improvement of Profit
Figure 6 a ∼ c compare the predicted sales of different meth-
ods with the true sales, we find the predicted sales curves of
Dlingam, Alasso, PC and CAM are much biased from the true
ones, indicating they discovered pseudo causes and/or biased
causal effects. Figure 6 d compares the validation revenue by
different methods with the actual revenue computed from his-
torical data (the above 4 methods are excluded because they
performed not good at pricing and for a clear visualization.).

2We used a few products to make causal graph visible and clear.
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Figure 6: Comparison of sale forecasting and pricing strategy on
2013/10. a∼ c. Predicted sales of 3 randomly chosen products by
different methods. d. Validation revenues by different methods.

The sum of the validation revenue by GES, causalMGM, Fo-
ba, and MIC-A*Foba were 1.27×107, 1.26×107, 1.44×107,
and 1.58 × 107 respectively. The revenue obtained by our
method is the highest. When comparing the curve of MIC-
A*Foba with actual one in detail, we find that the improve-
ments of revenue in low-actual-revenue days is more signifi-
cant than that in high-actual-revenue days. It suggests that our
pricing strategy is more effective when the business is tepid.

6 Conclusion
We proposed a mixed information criterion MIC and derived
an MIC-based causal inference method for accurate causal
discovery on mixed factor space. Experiments showed our
demand modeling method outperformed other competitors in
terms of causal recovery, prediction and pricing strategy.

A Proof of Bivariate Identifiability
We respectively prove the bivariate identifiability of mixed
causal model in the binary-binary case, continuous-binary
case, continuous-continuous case.

Theorem 6 Given a pair of binary variables (X,Y ) all of
which take values in {0, 1}, under the mild assumption that
X and Y do not share the same marginal distribution, the
mixed causal model is bivariate identifiable.

Proof: If the mixed causal model is not bivariate identifi-
able, under the definition of the causal model and the defini-
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tion of bivariate identifiability, there exist two models,

M1 = {Y = fb(X, εY ) =

{
1 β1X + εY > 0
0 otherwise ,

PX(X = 1) = k1, PεY = logistic(0, 1)}

M2 = {X = fb(Y, εX) =

{
1 β2Y + εX > 0
0 otherwise ,

PY (Y = 1) = k2, PεX = logistic(0, 1)}

of which the joint distributions are the same. Let us consider
their joint distributions respectively, that are,

PM1
(X,Y ) = PX(X)PεY (Y |X)

= kX1 (1− k1)1−X(
1

1 + e−β1X
)Y (1− 1

1 + e−β1X
)1−Y ,

PM2
(X,Y ) = PY (Y )PεX (X|Y )

= kY2 (1− k2)1−Y (
1

1 + e−β2Y
)X(1− 1

1 + e−β2Y
)1−X .

If PM1(X,Y ) = PM2(X,Y ) holds, it induces that
PM1

(X=0,Y=0)

PM2
(X=0,Y=0) = 1, and it further induces k1 = k2, which

conflicts with the assumption that the marginal distributions
for X and Y should not be the same, so comes the theorem.

Theorem 7 Given a pair of mixed variables (X,Y ) that X
takes value in R and Y takes value in {0, 1}, the mixed causal
model is bivariate identifiable.

Proof: If the mixed causal model is not bivariate identifi-
able, under the definition of the causal model and the defini-
tion of bivariate identifiability, there exist two models,

M1 ={Y =

{
1 β1X + εY > 0
0 otherwise , PεY = logistic(0, 1)},

M2 ={X = β2Y + εX , PεX = Laplace(0, b)},

of which the joint distributions are the same.
However, for model M1, we have P (Y = 1|X = x) =

PεY (εY > −β1X) and PεY = logistic(0, 1), then

lim
x→+∞

P (Y = 1|X = x) =

{
1, if β1 > 0
0, if β1 < 0

,

lim
x→−∞

P (Y = 1|X = x) =

{
0, if β1 > 0
1, if β1 < 0

.

(18)

For modelM2, from PεX = Laplace(0, b) and

P (Y = 1|X = x) =
P (Y = 1, X = x)

PX(X = x)

=
PY (Y = 1)PεX (X = x|Y = 1)

PY (Y = 0)PεX (X = x|Y = 0) + PY (Y = 1)PεX (X = x|Y = 1)
,

we can derive

lim
x→±∞

P (Y = 1|X = x) = PY (Y = 1), (19)

which conflicts with that in (18), so comes the theorem.

Theorem 8 Given a pair of continuous variables (X,Y )
which all take values in R, the mixed causal model is bivari-
ate identifiable.

Proof: For the situation where both variables are con-
tinuous, our model degenerate to a kind of linear additive
noise model, whose identifiability has been well proved by
[Shimizu et al., 2006].

B Proof of Local Consistency
Revisit the definition of decomposable MIC score in (6),∣∣PaGj ∣∣ is the cardinality of PaGj ,

MIC(G,X) =
D∑
j=1

(
− 1

wj
log p(Xj | PaGj ) + λ

∣∣PaGj ∣∣)
and BIC score is as follows,

BIC(G,X) =
D∑
j=1

(
log p(Xj | PaGj )− logN

2

∣∣PaGj ∣∣)
Let X be a set of data consisting of N records that are iid
samples from some distribution p(·). Let G be any DAG, and
let G′ be the DAG that results from adding the edgeXi → Xj ,

MIC(G′,X)−MIC(G,X)

=
1

wj

(
log p(Xj | PaGj )− log p(Xj | PaGj ∪ {Xi})

)
+ λ.

1. If Xj 2pXi | PaGj ,

MIC(G′,X)−MIC(G,X)

=
1

wj
(BIC(G,X)−BIC(G′,X))− logN

2wj
+ λ < 0.

As BIC score is locally consistent [Chickering, 2003],
BIC(G,X) − BIC(G′,X) < 0 follows the definition
of local consistency, wj , λ ∈ R+ are constant, logN →
+∞ as N → +∞.

2. If Xj �pXi | PaGj ,

p(Xj | PaG
′

j ) = p(Xj | PaGj ∪ {Xi}) =
p(Xj , Xi | PaGj )

p(Xi | PaGj )

=
p(Xj | PaGj )p(Xi | PaGj )

p(Xi | PaGj )
= p(Xj | PaGj ),

and thus,

MIC(G′,X)−MIC(G,X)

=
1

wj

(
log p(Xj | PaGj )− log p(Xj | PaGj )

)
+ λ

= λ > 0.

Hence MIC score is locally consistent.
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