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Abstract
This paper addresses active lighting recurrence
(ALR), a new problem that actively relocalizes a
light source to physically reproduce the lighting
condition for a same scene from single reference
image. ALR is of great importance for fine-grained
visual monitoring and change detection, because
some phenomena or minute changes can only be
clearly observed under particular lighting condi-
tions. Hence, effective ALR should be able to on-
line navigate a light source toward the target pose,
which is challenging due to the complexity and di-
versity of real-world lighting & imaging processes.
We propose to use the simple parallel lighting as
an analogy model and based on Lambertian law to
compose an instant navigation ball for this purpose.
We theoretically prove the feasibility of this ALR
strategy for realistic near point light sources and its
invariance to the ambiguity of normal & lighting
decomposition. Extensive quantitative experiments
and challenging real-world tasks on fine-grained
change monitoring of cultural heritages verify the
effectiveness of our approach. We also validate its
generality to non-Lambertian scenes.

1 Introduction
Image-based monitoring and change detection is an impor-
tant problem in computer vision and machine learning [Feng
et al., 2015; Khan et al., 2017]. Since the lighting condi-
tion, camera and scene are three key factors jointly deter-
mining the appearance of an image, the success of change
detection needs to effectively compensate the influence of
varied imaging conditions. Unlike classical change detec-
tion assuming fixed camera and slowly changed illumina-
tions [Ide et al., 2016], fine-grained change detection aims
to find minute changes of high-value scenes, like cultural
heritages, in long time intervals under the wild hosting en-
vironments [Stent et al., 2016], wherein how to reproduce
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Figure 1: Motivation and importance of active lighting recur-
rence (ALR) for fine-grained change detection. (a) The reference
observation captured under proper near side lighting condition to
highlight the rich 3D microstructure of the object. (b)–(d) Current
observations of the same object with minute changes, captured under
manually aligned lighting (w/o LR), virtually (Relighting using 80
varied illuminations) and ALR reproduced lightings, respectively.
The 10-times magnified absolute differences between current and
reference observations are shown in the corresponding bottom-right
corner. (e)–(i) compare the local microstructures under the reference
and different current lightings and their corresponding fine-grained
change detection results [Feng et al., 2015]. See text for details.

the reference camera pose and lighting condition is an es-
sential problem and supports many real-world applications,
such as accurate surface and material acquisition [Debevec
et al., 2000; Ou and Pellacini, 2011], cultural heritage imag-
ing [Tom et al., 2001; Elhabian et al., 2011] and fine-grained
change surveillance [Feng et al., 2015; Huang et al., 2017].

Compared to relatively mature camera relocalization (CR)
[Williams et al., 2011; Feng et al., 2016; Shi et al., 2018;
Miao et al., 2018], lighting recurrence (LR) is more challeng-
ing and rarely studied for fine-grained change detection. LR
aims to reproduce the lighting condition of a reference im-
age for the same scene with relocalized camera pose. Since
slightly varied lightings may cause great false alarmed change
detections for the same scene with fixed camera parameters,
reproducing the reference lighting condition, either virtually
or physically, is a critical issue.
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Figure 2: Overall framework of the proposed active lighting recurrence (ALR) approach that works well for realistic near point light sources.
The green and light-blue blocks indicate pose-adjustment/image-capturing and online calculation processes, respectively. See text for details.

There are some related works that can deal with the LR
problem intuitively, including relighting [Ren et al., 2015;
2013; Liu and Do, 2017], reflectance transformation imag-
ing (RTI) [Tom et al., 2001; Huang et al., 2015; Elhabian
et al., 2011], and photometric stereo (PS) [Lu et al., 2015;
Shi et al., 2016; Midorikawa et al., 2016]. Nevertheless, most
of them just passively take multi-illumination images as in-
put to virtually synthesize the target lighting condition, thus
belong to synthetic or virtual lighting recurrence (SLR). Be-
sides, to achieve higher reconstruction quality, they usually
need hundreds of images with different calibrated illumina-
tions [Ren et al., 2015; Tom et al., 2001], complex lighting
models and/or sophisticated optimizations [Ren et al., 2015;
Lu et al., 2015], which may inevitably lead to reconstruction
errors in the relighted image and cannot work in real-time.

As shown in Fig. 1, in real-world fine-grained change mon-
itoring tasks, we usually get the reference observation by
casting a particular near side lighting to highlight the rich
microstructures of the object, see Fig. 1(a). Hence, in cur-
rent observation, slight deviations from the reference lighting
condition may cause large differences in the relighted image,
see Fig. 1(b)–(d). Specifically, without or inaccurate LR may
generate two types of errors in fine-grained change detec-
tion, that is, rich or particular 3D microstructures caused false
alarms, and different shading caused missing, see Fig. 1(e)–
(h) and Fig. 1(i), respectively.1 Both of them can significantly
harm the fine-grained change detection accuracy.

This paper studies ALR that aims to physically reproduce
the lighting condition from a single reference image. In
contrast to SLR, ALR wants to physically relocalize a real
light source to exact the same position of the reference one.
Clearly, there are three major differences from ALR to the
widely-studied SLR. First, besides the reference image, the
input of ALR is just a very limited number of currently cap-
tured images under varied light source poses. The number
of input images for feasible ALR (usually a dozen) is much
less than that of SLR (at least hundreds). Hence, mature but
sophisticated SLR methods that need large number of images
to guarantee reconstruction accuracy are not applicable. Sec-
ond, ALR is a dynamic process. The purpose of ALR is
to produce reliable online navigation guidance from current

1The rich 3D microstructures of the object under different near
side lightings have different shadows, shadings and specular spots
that can cause great false alarmed changes. In contrast, some real
changes cannot be clearly observed under the lighting whose direc-
tion is close to the normal of the surface where the changes occur.

lighting pose to the target one, which is not even a problem
in any SLR tasks. Third, unlike SLR that prefers accuracy
much more than efficiency, instant response and the naviga-
tion correctness for each dimension are equally important for
the success of ALR. Therefore, ALR is a new problem and no
mature SLR methods can be directly used. In fact, to the best
of our knowledge, this paper may be the first work on ALR.

In this paper, we focus on ALR of near point light (NPL)
that is a commonly-used realistic lighting device in fine-
grained change monitoring of cultural heritages. Due to the
complexity of NPL model, direct NPL-based ALR is hard to
provide online navigation and stable lighting condition esti-
mation. To conquer this problem, as shown in Fig. 2, we
propose to use the simple parallel lighting (PL) as an anal-
ogy model and compose a navigation ball with two spherical
isointensity circles (SICs) indicating the reference and current
poses. We theoretically prove that when the two SICs coin-
cide on the navigation ball, the reference shading is strictly
recreated on any real object by current light source pose for
both PL and realistic NPL models. We also prove the invari-
ance of the proposed ALR strategy to the normal & lighting
decomposition ambiguity. As shown in Fig. 1(e)-(i) and our
extensive experiments, the proposed ALR works well for both
Lambertian and non-Lambertian scenes, and can significantly
improve the performance of fine-grained change detection.

2 Active Lighting Recurrence
2.1 Problem Formulation
As shown in Fig. 2, let Iref ∈ RP be the reference image,
P being the pixel number, I = FL(L(ρ | Θ),S) ∈ RP
denotes the real lighting/imaging model of the current obser-
vation, which is determined by the scene S (e.g., reflectance,
normal, specular regions, if any) and the lighting condition
function L(ρ | Θ), where Θ and ρ indicate the intrinsic
(e.g., radiation power, color temperature, intensity distribu-
tion) and extrinsic (i.e., position and orientation) parameters
of the light source. Since intrinsic lighting parameters Θ can
be easily reproduced using the same light source, we formu-
late the ALR problem as a dynamic process that progressively
reproduces the light source pose ρ,

ρ̂ = arg min
ρ

‖FL(L(ρ | Θ),S)− Iref‖2F, (1)

ρt+1 = ρt + diag(λt)mt,
ρ̂ = lim

t→∞
ρt, (2)
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Figure 3: (a) shows instant navigation ball Bt, reference and current
SICs Cref (blue) & Ct (red) in the scenario coordinate frame, the
parameterization of light source pose ρt = [rt, θt, φt]

T and ALR
increment ∆ρt = diag(λt)mt, and light source ALR adjustment
trajectory (green line). (b) illustrates the ambiguity matrix Z of N
& l decomposition for Lemma 3. See text for details.

where mt and λt indicate the t-th ALR navigation direction
and magnitude to adjust the light source pose, diag(·) is the
diagonalization of a vector. Note, in our formulation, Eq. (1)
defines the ALR objective, while Eq. (2) is the progressive
ALR strategy, i.e., at t-th iteration, we physically adjust the
current light source pose by ∆ρt = diag(λt)mt. Hence, the
convergence and goodness of an ALR approach relies on the
correctness of diag(λt) and mt, and lim

t→∞
diag(λt) = 0.

To provide accurate and instant ALR navigation, we first
compose an analogy parallel lighting (apl) based instant navi-
gation ball via Lambertian law and prove its invariance to nor-
mal & lighting decomposition ambiguity in Sec. 2.2. We then
prove the feasibility of this simple online ALR-apl strategy to
the common realistic near point light sources in Sec. 2.3.

2.2 Analogy Parallel Lighting-Based ALR
We use the simple parallel lighting as an analogy model, ab-
breviated to apl. Let l ∈ R3 denote the parallel lighting
vector, whose magnitude and direction indicate the lighting
strength and direction, respectively. Let N ∈ RP×3 and
R ∈ RP be the normal and grayscale reflectance of the scene,
respectively. Under this model, we have L(ρ | Θ) = l and
S = {R,N}, with R and N being the scene reflectance and
normal, respectively. Thus, the ALR formulation Eqs. (1)–(2)
can be reduced to a much simpler ALR-apl problem

l̂ = arg min
l
‖R ◦Nl− Iref‖2F, (3)

lt+1 = lt + diag(λt)mt,

l̂ = lim
t→∞

lt,
(4)

where the ◦ is elementwise multiplication.
Thanks to the simplicity of ALR-apl model, it is possible

to online calculate both the navigation direction mt and mag-
nitude λt from the reference and current images, Iref and It.
Specifically, Fig. 2 shows the working flow of the ALR-apl
approach.To get a reliable initialization, we first roughly cap-
ture K different side lighting images to form the in-situ cap-
tured image set I ic. From I ic and Iref , we obtain scene nor-
mal N, reflectance R and reference lighting vector lref . Then,
in each ALR-apl iteration, we compose an instant navigation
ball B and online calculate the navigation direction mt and
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Figure 4: ALR goodness g score with (MS-)SSIM change for scenes
S1 (a) and S5 (b), respectively. The difference maps of reference
image and some intermediate images of ALR are also shown.

magnitude diag(λt) for light source adjustment. We analyze
the convergence and efficacy of this process at last.

Initialization
By parallel lighting analogy, we have

S = Nl, (5)

where S ∈ RP is shading image that can be obtained by
disambiguated intrinsic image decomposition [Zhao et al.,
2012], by solving I = R ◦ S. Clearly, from I ic and Iref ,
we can obtain K+ 1 shading images (K in-situ captured side
lighting images, 1 reference image). They are used to esti-
mate the scene normal N and reference lighting vector lref

via a fast state-of-the-art uncalibrated photometric stereo al-
gorithm, LDR [Favaro and Papadhimitri, 2012]. In practice,
we only need K ≈ 12 side lighting images for initialization.

Instant Navigation Ball B
Given N and R, current lighting vector lt of It can be eas-
ily obtained by solving Eq. (5) in closed-form. To eliminate
scene dependency in ALR process, we online render both cur-
rent and reference lightings, lt and lref , onto a unit sphere Ns,
rather than on the real scene normal N. Specifically, let Bref

and Bt be the reference and currently rendered images of the
unit sphere, i.e., Bref = Nslref and Bt = Nslt, where Ns is
the sphere normal. From the Lambertian law, we can easily
obtain the following proposition about the spherical isointen-
sity sets Cref and Ct, formed by rendered pixels with some
particular intensity value, e.g., the median of Bref .
Proposition 1 (SICs & shading equivalence). With anal-
ogy parallel lighting and Lambertian law, given an arbitrary
lighting condition l, the spherical isointensity set C always
forms a circle under the view of lighting direction, which can
be named as spherical isointensity circle (SIC). Iff the refer-
ence and current SICs Cref and Ct coincide completely, the
reference and current images, Iref & It, are the same.

Due to the regular shape of a SIC, we can always make
the reference and current SICs, Cref and Ct, coincide on
the rendered sphere by adjusting light source pose. Propo-
sition 1 guarantees the shading equivalence between the real
reference and current images, once the corresponding SICs
coincide. Hence, as shown in Fig. 3(a), we can dynamically
compose an instant navigation ball Bt to provide effective
instant ALR navigation,

Bt = {Bt,Ct,Ot,C
ref ,Oref}, (6)

where Bt is the current rendered image on the unit sphere,
Oref and Ot are the center coordinates of Cref and Ct, re-
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spectively. As shown in Fig. 3(a), In fact, the center coor-
dinate of a SIC indeed indicates the corresponding lighting
direction, i.e., Oref = lref

‖lref‖ and Ot = lt
‖lt‖ .

Online Estimation of Navigation Direction mt

Note, see Fig. 3(a), an analogy parallel light source pose ρt
can be expressed by vector [rt, θt, φt]

T in the light source
spherical coordinate system, with rt =

∥∥lref
∥∥ being the light-

ing strength, θt & φt indicating the lighting direction in the
azimuthal and polar axes, respectively. Therefore, according
to Proposition 1, we can effectively estimate the ALR navi-
gation direction from current lighting lt toward the target one
lref in radial, azimuthal and polar axes as

mt = sgn([Aref , θref , φref ]T − [At, θt, φt]
T), (7)

where Aref = A(Cref) and At = A(Ct) are the area of SICs
Cref and Ct, respectively, A(·) is region area, sgn(·) is the
sign function. As illustrated by Fig. 3(a), mt reflects the pos-
itive +1 or negative −1 ALR directions along the three axes
of light source spherical coordinate system, for the apl model.

Online Estimation of Navigation Magnitude λt
With mt and fast estimation of current lighting vector lt, we
can establish a manual control loop with [Aref , θref , φref ]T as
desired set-point (SP) and [At, θt, φt]

T being the measured
process variable (PV). In fact, in our real-world tasks of fine-
grained change detection of cultural heritages, we mainly re-
lied on this manual ALR to do the job, due to its great porta-
bility.

Nevertheless, as shown in Fig. 3(a), we can also effectively
estimate the ALR navigation magnitude λt via bisection ap-
proaching, which together with mt can enable an automatic
ALR process, with the help of a robotic arm. Specifically,
given an initial λ0 = [rλ0 , θ

λ
0 , φ

λ
0 ]T, where rλ0 , θ

λ
0 , φ

λ
0 indi-

cate the initial light source adjustment magnitude in radial,
azimuthal and polar axes, respectively. In our experiments,
we empirically set rλ0 = θλ0 = φλ0 = 3mm in our robotic
platform. In t-th (t > 1) ALR iteration, we have

aλt =

{
1
2a
λ
t−1 amt a

m
t−1 < 0,

µaλt−1 otherwise,
(8)

where a ∈ {r, θ, φ} denotes the three independent spheri-
cal axes, µ is the speed-up rate of navigation magnitude and
is empirically set as 1.2 in our experiments. With Eq. (8),
we can efficiently update λt and obtain the ALR increment
∆ρt = diag(λt)mt, which is directly applied on the robotic
platform to finish the t-th ALR adjustment.

See Fig. 3(a), Eq. (8) indeed defines a bisection approach-
ing strategy. To understand the convergence of this strategy,
we conceptually separate the ALR process into two stages.
First, regardless of the spherical position (θt, φt) of the cen-
ter Ot of current SIC Ct, we first make the area of Ct equal
to that of Cref . That is, we first reproduce the target lighting
strength of the analogy parallel light source. In this condition,
current lighting pose ρt and the reference pose ρref lie on the
same great circle of a bigger sphere whose center coincides
with that of the scenario coordinate frame. mt indicates the
1D relative position from ρt toward ρref on this great circle.
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Figure 5: Quantitative comparisons of our ALR approach and 3
baselines for 7 scenes with near point light source.

Hence, the second stage is to use the bisection strategy to ap-
proach ρref , by iteratively checking the relative direction of
mt and mt−1. That is, on the great circle, if ρt do not reach
ρref , we enlarge the step size; if ρt crosses ρref , we bisect
the step size. Since in each cases mt guarantees the right di-
rection, it is clear that such strategy can effectively lead ρt
toward ρref , i.e., lim

t→∞
diag(λt) = 0. See the green curve of

Fig. 3(a) for an example of light source adjustment trajectory.

Algorithm & Implementation Details
Fig. 2 shows the detailed working flow of our ALR-apl ap-
proach. This process is terminated by an ALR goodness g
that measures the recurrence accuracy by the overlap ratio of
Cref and Ct,

g =
A(reg(Ct) ∩ reg(Cref))

A(reg(Ct) ∪ reg(Cref))
. (9)

If g is good enough, e.g., g > 0.99, the ALR process stops.

Invariance to N & l Decomposition Ambiguity
According to Eq. (5), the N & l decomposition generally sub-
ject to an ambiguity matrix Z,

S = Nl = ÑZ−1Z̃l, (10)

where Ñ ∈ RP×3 and l̃ ∈ R3 are the ground truth normal
and lighting condition. Therefore, our initialization also exits
an ambiguity matrix Z between the estimated and real scene
normal N and lighting direction l, which may influence the
correctness of ALR. Fortunately, we prove that if the estima-
tion error of scene normal N is smaller than π

3 , the ambiguity
matrix Z does not affect the effectiveness and convergence of
our ALR approach.
Lemma 1. The ambiguity matrix Z generated by the decom-
position of Eq. (5) is a rotation matrix.
Lemma 2. The radial-axis navigation direction, i.e., rm0 , is
independent to Z.
Lemma 3. Let 〈β, e〉 be axis-angle representation of Z. For
the azimuthal and polar ALR direction guidance in Eq. (7), if
β < π

3 , Z does not affect our ALR process. We can faithfully
relocalize the light source to reference apl pose.
Brief proof . Lemma 2 ensures the lighting strength can be
reproduced, regardless of Z. We need only relocalize Ot

to Oref on the unit sphere. In this condition, as shown
in Fig. 3(b), light source increment ∆ρt is equivalent to
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Figure 6: Visual comparisons of our ALR method and 3 baselines for one near-Lambertian scene (S1) and 3 non-Lambertian scenes (S4–6).
For each scene, the first row shows the reference image and the lighting recurrence images of 4 methods. The second row shows the zoom-in
regions and corresponding difference maps (magnified by 10). Besides, the MSE values of zoom-in regions are also provided.

a rotation matrix Tt. Considering Z, we have Tt+1 =
TtZP−1t Z−1, where Pt is the real light source adjustment
realized by robotic arm movement or manual adjustment.
Normally, Pt = Tt. So, Tt+1 = TtZT−1t Z−1. Then, the
conclusion follows by Theorem 1 of [Feng et al., 2016].

The convergence necessary condition β < π
3 of Lemma 3

can be easily satisfied by current photometric stereo meth-
ods [Favaro and Papadhimitri, 2012], which is empirically
verified and discussed in detail in Sec. 3.1.

2.3 ALR under Realistic Near Point Lighting
In fine-grained change detection, near point lighting (NPL) is
a commonly-used realistic model that assigns different scene
points with distance-related lighting directions,

Sp = eNp(ρ−Xp)/‖ρ−Xp‖3, (11)

where Sp is the shading intensity of pixel p, ρ ∈ R3 is the
near point light source position, Xp ∈ R3 indicates the spa-
tial coordinate of point p, e is the lighting power. Eq. (11)
describes the quadratic attenuation effect of lighting strength
w.r.t. the distance between the light source and scene. In the
following, we prove that the proposed ALR-apl approach still
works for such realistic NPL light source, thus avoiding so-
phisticated estimation of the NPL parameters. In this case,
lref and l in Fig. 2 now denote the equivalent parallel light
vector of the near point lighting.
Proposition 2 (SICs & shading equivalence). Under NPL
model, if we locate the point light source to an arbitrary po-
sition, then the spherical isointensity set C acquired from the
rendered ball image B always forms a circle, under the view
that light source points to the sphere center. Iff the reference
and current SICs Cref and Ct coincide completely, the refer-
ence and current images, Iref & It, are the same.
Proposition 3 (ALR navigation equivalence). The ALR ap-
proach for the apl model is also applicable to NPL model.
Brief proof . We use superscripts apl and NPL to distinguish
the apl model and NPL model. Given any two points p and

q, it is easy to verify Bapl
p ?Bapl

q ⇔ BNPL
p ?BNPL

q , where ?
denotes an operator in {>,<,=}. That is, Bapl

p and BNPL
p

have the same order relation. So, the proposed ALR guidance
also applies to near point lighting condition.

3 Experimental Results
We build 7 scenes (S1–7) to evaluate our ALR method and
baselines. S1–3 are near-Lambertian scenes. S4–7 are non-
Lambertian scenes, including many specular (S4, S7), trans-
parent (S5) and cast shadow (S6) regions respectively. For
each scene, we collect 20 multi-illumination images by a
Canon 5D Mark III camera. We use a small LED bulb as
the near point light source to carry out the experiments.

3.1 Convergence and Effectiveness Validation
In our ALR, we use ALR goodness g to determine the best
lighting recurrence result. To verify the effectiveness, we
record all images and the corresponding g during ALR for
S4 and S5, then we compute SSIM and MS-SSIM [Wang et
al., 2003] for each image. Fig. 4(a) and (b) show the rela-
tion of ALR goodness g and the average (MS-)SSIM for S4
and S5, respectively. Besides, the difference maps (magnified
by 10) of reference image and some recorded images during
ALR are also shown. Since the minute change of lighting
condition may cause large differences in image, it is reason-
able that the (MS-)SSIM may decrease slightly sometimes,
but the (MS-)SSIM increases with the increase of g in global.
It means that g is an effective goodness criterion for our ALR.

We prove that the ambiguity matrix Z does not influence
our ALR method if β < π

3 , where β is the angle of axis-angle
representation of matrix Z. In fact, the condition is easy to
be met. To verify this, we introduce the dataset [Xiong et al.,
2015] which includes 7 statue scenes (e.g., Cat, Frog, Hippo)
and corresponding ground truth normals. Each scene has 20
multi-illumination images. We estimate the scene normal by
LDR [Favaro and Papadhimitri, 2012] and calculate the cor-
responding mean angle error (MAE) for each scene. We find
that the average, maximum and minimum MAEs are π

27 , π
15
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Figure 7: Comparisons of ALR and PTM methods on fine-grained change detection of ancient murals in Dunhuang Mogao Grottoes #465
(Case 1–2) and Weijin Tomb #7 (Case 3–6). We use 20 images under different lighting conditions to conduct PTM method. For each case,
the zoom-in regions and corresponding change detection results are shown in the bottom, including the FPR/F1-Measure values.

and π
45 respectively, which are much less than π

3 . Therefore,
according to Lemma 3, we can confidently say that the ambi-
guity matrix Z does not influence our ALR method.

Our ALR method needs not large number of images. To
verify this, we carry out ALR for 7 scenes (mentioned later)
with variable number of multi-illumination images. The 2-th
to 5-th rows of Table 1 show the averages of 4 commonly-
used criteria MSE, PSNR, SSIM and MS-SSIM under differ-
ent image numbers. The 6-th row of Table 1 shows the MAE
between each estimated scene normal and the one using 100
images. We can see that the MAE reduces with the increase
of image number, and the recurrence accuracy of ALR is sta-
ble and always well. It also proves that our ALR is effective
as long as the estimated scene normal satisfies Lemma 3. In
practice, we commonly collect about 20 images for our ALR.

3.2 Quantitative Comparison
To compare with our ALR method, we use PTM [Tom et al.,
2001], HSH [Elhabian et al., 2011], LDR [Favaro and Papad-
himitri, 2012] as our baselines. PTM [Tom et al., 2001] and
HSH [Elhabian et al., 2011] are two image-based relighting
methods, and we use a light probe to calibrate the lighting
direction for each captured image. LDR [Favaro and Papad-
himitri, 2012] is a state-of-the-art uncalibrated photometric
stereo method based on parallel lighting model. We carry out
the 3 methods using the captured 20 images and generate 20
lighting recurrence images. We use MSE, PSNR, SSIM, MS-
SSIM [Wang et al., 2003] as accuracy metrics.

# Imgs 5 10 20 40 60 80 100
MSE 3.4289 3.2433 2.5803 2.8792 2.6086 2.7137 2.8708
PSNR 42.7792 43.0208 44.0140 43.5379 43.9665 43.7950 43.5506
MSSSIM 0.9953 0.9953 0.9961 0.9957 0.9961 0.9960 0.9957
MS MSSIM 0.9964 0.9964 0.9967 0.9965 0.9967 0.9966 0.9966
MAE π

20
π
23

π
49

π
87

π
136

π
305 0

Table 1: ALR accuracy vs. #images used in initialization.

Near-Lambertian Scenes
Fig. 5 shows the quantitative comparisons of our ALR
method and 3 baselines for near-Lambertian scenes (S1–3).
Each node indicates the average evaluation of 20 lighting re-
currence results and the up and down bar of each node de-
notes the variance. Besides, the average of the 4 criteria for
all scenes are also shown. Fig. 6 shows the visual compar-
isons of 4 methods for S1, including the zoom-in regions and
corresponding difference maps. We see that our ALR method
can generate more accurate lighting recurrence results than
baselines for both quantitative and visual comparisons. PTM
has the next best recurrence accuracy, and our ALR improves
PSNR score by about 29 percent than PTM. Besides, we can
see that even if the difference map has been magnified by 10,
the difference in image is not obvious.

Non-Lambertian Scenes
As shown in Fig. 5 (S4–7) and Fig. 6 (S4–6), we can also
see that our ALR method is more effective than baselines for
non-Lambertian scenes. From the zoom-in regions and dif-
ference maps in Fig. 5, we find that the baselines can not
faithfully reproduce the surface details for non-Lambertian
scenes generally, e.g., the missing of specular region for S4 in
Fig. 5. Besides, compared with the near-Lambertian scenes,
the baselines generally generate mush worse results for the
non-Lambertian scenes.

3.3 Real-World Applications
We apply our ALR to actively capture and measure the fine-
grained changes of ancient murals in two World Cultural Her-
itage Sites, Dunhuang Mogao Grottoes (Case 1–2) and Weijin
Graves (Case 3–6) in Fig. 7. Specifically, given the reference
image, we first relocalize current camera pose via ACR [Feng
et al., 2016], then we do ALR to physically reproduce the
lighting condition of reference image and take current im-
ages for evaluation. Besides, we also capture 20 images under
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different lighting conditions in current observation and carry
on PTM [Tom et al., 2001] to generate relighting images for
comparison. Fine-grained changes are detected by FGCD al-
gorithm [Feng et al., 2015] for both ALR and PTM results.

Fig. 7 shows 6 real cases of fine-grained changes of an-
cient murals, which are caused by either natural deteriora-
tions (Case 1–2) or artificial intervention, e.g. mural restora-
tion (Case 3–6), respectively. Refer to the zoom-in regions
and corresponding FGCD results, we can clearly see that our
ALR can generate much higher F1-Measure and lower FPR
errors. This is because that some surface details cannot be
faithfully reproduced by PTM, e.g., the cast shadow of Case
2 in Fig. 7. In contrast, our ALR supports much more accu-
rate fine-grained change detection.

4 Conclusion
We have studied a new problem, active lighting recurrence
(ALR), that actively reproduces the actual lighting condition
of a single reference image. To achieve instant and accurate
ALR guidance, we propose a simple yet effective analogy
parallel lighting (apl) based ALR approach. We show that the
proposed approach works well for the commonly-used real-
istic near point lighting model, with strict theoretical equiv-
alence and convergence guarantees. Extensive quantitative
experiments and challenging real-world tasks on fine-grained
change monitoring of cultural heritages verify the effective-
ness and superiority of our approach. In the future, we plan
to explore full 6D ALR for more general near surface lighting
model. We hope this work could encourage further studies of
active recurrence of imaging conditions, for both camera and
lighting, and their real-world applications. Besides, we are
also interested in exploring spherical panorama [Zhao et al.,
2015] based active environment lighting recurrence and using
region-level strategy [Feng et al., 2010] to further speedup
and stabilize the ALR process.
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