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Abstract

In this paper, we address the problem of LTL re-
alizability and synthesis. State of the art tech-
niques rely on so-called bounded synthesis meth-
ods, which reduce the problem to a safety game.
Realizability is determined by solving synthesis in
a dual game. We provide a unified view of duality,
and introduce novel bounded realizability methods
via reductions to reachability games. Further, we
introduce algorithms, based on Al automated plan-
ning, to solve these safety and reachability games.
This is the the first complete approach to LTL re-
alizability and synthesis via automated planning.
Experiments illustrate that reductions to reachabil-
ity games are an alternative to reductions to safety
games, and show that planning can be a competitive
approach to LTL realizability and synthesis.

1 Introduction

LTL synthesis aims to compute a strategy that satisfies a Lin-
ear Temporal Logic (LTL) specification. The problem was
first proposed in the context of reactive synthesis, and is cen-
tral to the automated construction of controllers and certain
classes of programs [Pnueli and Rosner, 1989].

LTL realizability and synthesis are commonly addressed as
a two-player game between an agent and the environment,
played over automata transformations of the LTL specification
(so-called automata games). Each player has a disjoint set
of variables, and the objective is to synthesize a strategy for
setting the agent’s (“controllable”) variables such that the LTL
specification is guaranteed to be satisfied, no matter how the
environment sets its (“uncontrollable”) variables.

Traditional approaches to LTL realizability and synthesis
assume that the agent plays first. Interestingly, in recent
years there has been a surge in the development of modern
LTL synthesis tools based on automata games, and whereas
LTL synthesis tool Lily [Jobstmann and Bloem, 2006] adopts
an agent-first play protocol, many of the most successful
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LTL synthesis tools such as Unbeast [Ehlers, 2010], Acacia,
and Acacia* [Filiot et al., 2009; Bohy et al., 2012] adopt
an inverted turn protocol, where the environment plays first.
Indeed, this inverted turn-taking has become the standard
used in different incarnations of SYNTCOMP, the annual
reactive synthesis competition (e.g. [Jacobs et al., 2017]).
SYNTCOMP has promoted standardization and facilitated
tool comparison with the introduction of the high-level LTL
input language TLSF [Jacobs er al., 2016]. Participating tools
(including Acacia™) are compliant with TLSF.

To describe the different semantics associated with turn-
taking protocols, the notions of Mealy- and Moore-type se-
mantics has been introduced (e.g. [Ehlers, 2011; Khalimov
et al., 2013]), where intuitively Mealy-type semantics cor-
respond to settings where the environment plays first, and
Moore-type semantics correspond to settings where the agent
plays first. The names originate from Mealy and Moore ma-
chines. When a winning strategy exists for one of these se-
mantics, the strategy has a finite representation and is typi-
cally conveyed in terms of Mealy (resp. Moore) machines.

Inverting the order of agent-environment turn-taking corre-
sponds to playing a dual game. We aim to provide a unified
view of duality results for LTL realizability and synthesis, and
automata games. To this end, we review the connection be-
tween LTL synthesis and automata games, and formalize a
duality result for existence of winning strategies in automata
games that replicates the duality results for synthesis. We fur-
ther investigate different reductions to automata games that
exploit duality to determine realizability, and introduce novel
techniques that exploit these correspondences.

We exploit mappings from LTL synthesis to games, to-
gether with duality results, to chronicle different techniques
to solve LTL realizability and synthesis (Table 1). These tech-
niques extend well-known approaches, and establish the con-
nection between Mealy and Moore semantics for LTL real-
izability and synthesis, and games over Universal k-coBiichi
Word (UkCW) automata and Non-deterministic k-Biichi Word
(NkBW) automata. From an algorithmic perspective, our ap-
proaches to LTL realizability via reduction to NkBW games
provide an alternative to existing techniques based on UKCW.
Whereas the latter are safety games, the former are reacha-
bility games. Finally, we address the realizability problem in
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safe and co-safe specifications, and show how these can be
solved more efficiently.

We further present the first complete approach to LTL syn-
thesis via Fully Observable Non-Deterministic (FOND) plan-
ning. Our approach constructs a planning problem that simu-
lates an automata game, and that can be solved using state-of-
the-art planners. While our contributions are intended to be
largely theoretical, we conducted preliminary experiments to
assess the practicality of the different techniques for LTL re-
alizability and synthesis that we present. Preliminary results
show that techniques employing NkBW automata can com-
plement existing techniques based on UkCW automata, ad-
dressing realizability and synthesis problems that otherwise
cannot be solved by existing tools. Moreover, they show that
automated planning technology (and, in particular, FOND)
can be an efficient approach to LTL realizability and synthesis.
Finally, we believe that the NkBW game reductions presented
here open the door to novel bounded realizability methods
for LTL realizability and synthesis as reachability games, pro-
viding an alternative to bounded synthesis [Kupferman and
Vardi, 2005; Schewe and Finkbeiner, 2007].

2 Background

2.1 Automata on Infinite Words

A non-deterministic automaton is a tuple A = (Q, %, qo, 9, @),
where Q is a finite set of automaton states, X is a finite alpha-
bet of input letters, go € Q is the initial state of the automaton,
0 C O XXX Qis a transition relation, and @ C Q is an ac-
cepting condition. We sometimes write d(¢g, o) to denote the
set Q' C Q such that (g,0,q’) € ¢ for every ¢’ € Q’. Intu-
itively, an automaton A in state ¢ can transition into any state
in 6(q, o) when it reads an input letter o-. When |6(g, 0)| = 1
for every ¢ € Q and o € X, the automaton is deterministic.

X% denotes the set of all infinite words over X. A run of
A on word w = 0,0%,... € Z¥ is an infinite sequence of
states p = qo,q1,... € Q¥ where (g;_1,07;,q;) €  for every
i > 0. It is useful to define operators occ, : @ — N U {0, oo},
indexed by runs p, that return for each ¢ € Q the number of
occurrences of ¢ in p. In what follows, we review three types
of acceptance conditions. A run p is accepting with the Biichi
condition if occ,(g) = oo for some g € « — that is, when some
state in @ occurs infinitely often in p. Conversely, a run p
is accepting with the coBiichi condition if occ,(q) < oo for
every q € a. Finally, p is accepting with the k-Biichi (resp.
k-coBiichi) condition for k € N U {0} if occ,(g) > k for some
q € a (resp. occ,(q) < k for every g € @).

The language of an automaton A, £(A), is the set of infinite
words accepted by A. We say a non-deterministic automaton
A accepts a word w when some run of A on w is accepting —
that is, A has non-deterministic branching factor. In contrast,
when A is a universal automaton all runs of A on w must be
accepting — that is, A has universal branching factor.

Following the naming conventions described above, Non-
deterministic Biichi Word (NBW) automata and Non-
deterministic k-Biichi Word (NkBW) automata have non-
deterministic branching factor and Biichi and k-Biichi ac-
ceptance condition, respectively. Similarly, Universal Co-
Biichi Word (UCW) automata and Universal k-coBiichi

Word (UkCW) automata have universal branching factor and
coBiichi and k-coBiichi acceptance condition, respectively.
For clarity, throughout the paper we use a pairwise notation
to denote the acceptance condition of automata. For example,
U, = (A, UKCW) and N = (A, NkBW) denote automaton A
with, respectively, UKCW and NkBW acceptance conditions.
This notation makes it easy to write automata that differ in
their accepting conditions. In particular, it facilitates notation
in complementation rules (cf. Proposition 1). The comple-
mentation of an automaton A is the task of constructing an
automaton that accepts the words that are not in L(A).

Proposition 1. The complementation of Uy, is Ni1.

2.2 Linear Temporal Logic

Linear Temporal Logic (LTL) extends propositional logic with
the unary temporal operator “next” and the binary temporal
operator “until”. As such, Op stands for “next ¢” and Uy
stands for “¢ until ”. LTL formulae over a set of propositions
AP are evaluated over infinite sequences sys; - - -, where each
s; is a subset of AP. If o = 557 - - -, then, for every i > 0:

e 0,i F pif ¢ is a propositional formula and s; | ¢.
e 0,iEQpiffo,i+ 1k .

e 0,1 F Uy iff there exists a j > i such that s; | ¢ and
foreveryk e {i,...,j— 1}, s E .

Finally we say that o is a model of ¢, denoted o [ ¢, iff
0,0 E ¢. Three other common temporal operators, “even-
tually ¢” (0¢), “always ¢” (O¢), and “y releases ¢” (YRyp),
can be defined as follows: ¢¢ = TUp, Op = -, and
YRe = ~(~yU-p).

2.3 LTL and Automata

It is well-known that for an LTL formula ¢ one can construct
an automaton N, = (A,, NBW) that accepts all and only the
infinite words that satisfy ¢. The construction is worst-case
exponential in the size of the formula. An UCW automaton
U, that accepts the models of ¢ can be obtained from the
construction of an NBW automaton that accepts the models
of —¢. Formally, U, = (A, UCW) accepts the models of ¢ iff
N_, = (A,NBW) accepts the models of —¢ (cf. [Kupferman
and Vardi, 2005]). Lemma 1 summarizes these results.

Lemma 1. Given an LTL formula ¢, it is possible to build an
NBW automaton N, and a UCW automaton Uy, such that
L(N,) = L(U,) = {weXZ|wk ). The constructions are
worst-case exponential in the size of .

2.4 Fully Observable Non-Deterministic Planning

Here we briefly describe the Fully Observable Non-
Deterministic (FOND) setting, and refer the interested reader
to Geffner and Bonet [2013] for a more thorough description.

A FOND problem is a tuple (F, O, I,G), where F is a set
of fluents (atomic propositions whose truth value can change
over time); I C F are the fluents true in the initial state;
G C F, are the fluents that must hold in a goal state; and
O is the set of (possibly non-deterministic) operators or ac-
tion schemas. Each o € O is made up of Pre, (the fluents
that must hold for o to be executable) and Eff, (the set of
possible effects for o, one of which will update the state).
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States are represented by a set of fluents (all those not in the
set are presumed false) and partial states are represented by a
set of literals (i.e., fluents or their negation). An action is a
ground operator. The outcome of action a in state s is another
state s’ that results from updating s with one of the effects
of the ground operator o corresponding to a. A distinguish-
ing property of FOND planning is that the action outcome is
not known until run time, and so all contingencies must be
planned for. For this reason, solutions to a FOND problem
take the form of a policy 7 that maps the state of the world to
the action that should be executed. An execution of a policy
7 from state s is a sequence of states sg, sy, . . . such that each
Si+1 18 an outcome of 7(s;) in s;.

Cimatti ef al. [2003] defined different classes of solutions
to a FOND problem. Here, we examine two of them. A strong
solution is a policy that is guaranteed to achieve the goal re-
gardless of non-determinism. Strong cyclic solutions are less
restrictive and guarantee goal reachability in the presence of
fairness, which presumes that all the action outcomes in a
given state would manifest infinitely often. As the name sug-
gests, a strong cyclic solution may revisit states. Strong cyclic
solutions have the property stated in Proposition 2.

Proposition 2 (Strong Cyclic Solution). A policy ris a strong
cyclic solution iff for every state s reachable by rt there exists
an execution that achieves the goal from s.

Automated planning technology is highly optimized, and
typically used for computation of plans or policies that
achieve a prescribed goal after execution of a finite number
of actions — that can be unbounded in strong cyclic plans. Pa-
trizi et al. [2013] proposed a means of synthesizing infinite
plans for planning domains with LTL goal formulae and fair
non-deterministic actions. Their technique compiles the orig-
inal domain into a new domain in a way that executions of a
strong cyclic solution to the modified domain produce infinite
plans in the original domain. The approach is limited to the
class of LTL formulae that can be compiled into deterministic
Biichi automata.

3 LTL Realizability and Synthesis

The realizability and synthesis problems for an LTL specifi-
cation were first posed by Pnueli and Rosner in 1989. Since
then, the scholarly literature has explored two slightly dif-
ferent interpretations of an LTL specification in the context
of synthesis. In this paper, we study both interpretations,
which differ in their semantics, distinguishing them via the
subscript s € {Mealy, Moore} notation (cf. Definition 1). We
adopt the terms Mealy and Moore semantics, which have been
used previously in the synthesis literature (e.g. [Ehlers, 2011;
Khalimov et al., 2013]). A strategy for an LTL specification
(X, Y, p)is afunction f : (2X)* — 2¥ that maps histories, or
finite sequences of subsets of X, into subsets of Y. A strategy
f is winning when, for every infinite sequence X;X;--- of
subsets of X, either: (i) s = Mealy and {(X; U f(X| - - X{))};
satisfies ¢; or (ii) s = Moore and {(X; U f(Xp - - - Xj_1))};» sat-
isfies ¢ for some constant Xj, typically set to the empty trace
€. Winning strategies for an LTL specification (X, Y, ©)Mmoore
are also winning strategies for (X, Y, ©)mealy, but the opposite
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does not hold in general (see example below). The realizabil-
ity problem consists of determining existence of a winning
strategy, and the synthesis problem consists of computing one
(Definition 2). For unrealizable specifications, a certificate of
unrealizablity is a strategy g : (2¥)* — 2% that prevents the
agent from realizing ¢. Lemma 2 formulates a well-known
duality between the two semantics in LTL realizability.

Definition 1. An LTL specification is a tuple (X,Y, ),
where X and Y are two finite and disjoint sets of vari-
ables, ¢ is an LTL formula over variables in X U Y, and
s € {Mealy, Moore}.

Definition 2. The realizability problem for an LTL specifica-
tion (X, Y, p); is to determine whether there exists a winning
strategy. The synthesis problem for a realizable LTL specifi-
cation consists of computing a winning strategy. We say that
an LTL specification is unrealizable when it is not realizable.

Lemma 2 (Duality). An LTL specification (X, Y, ©)meary is
realizable iff (Y, X, ~©)so0re IS unrealizable.

Example LTL specification {({x}, {y}, O(x <> y))Mealy is realiz-
able, and has a winning strategy f that maps each sequence
X)X, € 2%* to {y} if X, = {x}, and to @ otherwise. On
the other hand, {({x}, {y},O(x < y))Moore 1s unrealizable. An
unrealizability certificate g : (2¥)* — 2% can be constructed
by assigning g({y}) = 0 and g(0) = {x}. Clearly, plays that
start with a prefix (g(f(Xo))U f(Xo)) cannot satisfy O(x < y).

3.1 Automata Games

Following Thomas [1995], in this paper a two-player game is
defined with respect to two finite sets of variables, X and Y,
and an automaton A with alphabet = = 2¥“¥ whose language
describes which plays are winning in the game. In this pa-
per we exploit the correspondence between LTL synthesis and
games in various forms. To facilitate readability, in this pa-
per we opt to represent games with a tuple (X, Y, A),, where
s € {Moore, Mealy}. In the following, we formalize automata
games, and present duality results that are analogous to those
for LTL synthesis.

We first describe the dynamics of a game (X, Y, A)Moores
which corresponds to the definition of automata games com-
monly used in the literature. A game (X, Y, A)Mmoore has two
players, P1 and P2. In each round of the game, PI selects
a subset of variables Y; C Y, followed by P2, which selects
a subset of variables X; € X. The game is played an in-
finite number of rounds, and so a play consists of an infinite
wordw = {(X; UY)) | X; € X,Y; C Y};5;. The play is winning
(for P1) if A accepts w, and the game is winning (for PJ) if
P1I has a strategy that only yields winning plays, regardless
of the moves of P2. Formally, (X, Y, A)moore 1 winning if
there exists an strategy f : (2X)* — 2¥ such that, for any
sequence {X;};»; of moves of P2, A accepts the infinite word
w={(X; U f(Xo---Xi-1))};>, for some constant Xj.

In this paper we are also interested in examining the con-
ditions under which player P2 has a winning strategy. We
write (X, Y, A)mealy to denote a game with inverted turns
with respect to (X, Y, A)moore- In each round, player PI se-
lects a subset of variables of X, followed by player P2, which
selects a subset of variables of Y. The difference now is



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

that the game is P2-centric. We say that the game is win-
ning (for P2) if there exists an strategy g : (2%)* — 2Y
such that, for any sequence {X;},»; of moves of PI, the play
w = {(X; U f(X; --- X;))};» 1s accepted by A.

Proposition 3 below is analogous to Lemma 2, and
formalizes the well-known zero-sum property of automata
games. That is, player P/ has a strategy to win a game
(X, Y, A)Moore iff player P2 has no strategy to win the dual
game (Y, X, A)Mecaly, Where A is an automaton that accepts
the complement language of A. Note that duality inverts the
set of controllable variables. Throughout this paper we ex-
ploit a particular case of Proposition 3 with two classes of
automata that recognize complement languages: UKCW and
NkBW automata. We formalize the result in Lemma 3.

Proposition 3 (Duality). A game (X, Y, Adproore IS Winning
(for P1) iff the game (Y, X, A)pmealy is not winning (for P2).

Lemma 3 (Duality). Let U, = (A, UkCW) and N, =
(A, NkBW). A game (X, Y, Udmoore is winning iff
(Y, X, Nix1)Mealy is not winning. Likewise, (X, Y, Ui)meaty
is winning iff (¥, X, Nx+1)Moore 1S ROt winning.

3.2 LTL Realizability and Automata Games

The correspondence between LTL realizability and automata
games has been commonly exploited to approach LTL real-
izability and synthesis (e.g. [Jobstmann and Bloem, 2006;
Filiot et al., 2009; Ehlers, 2010]). Theorem 1 formalizes
the mapping, which preserves winning strategies. Typically,
automata-based approaches to LTL synthesis rely on deter-
ministic automata. NBW automata can be determinized (into
Rabin automata) with the Safra construction. This construc-
tion, unfortunately, is very involved and not amenable to sym-
bolic methods. Reportedly, the best tools cannot even handle
relatively simple automata with more than 6 states.

Theorem 1. Let ¢ be an LTL formula over X U Y, and let
A, be an automaton that accepts the models of ¢. o is a win-
nlng Strategnyr <X7 y? @)Muore (”3517' <X’ y’ ‘10>Mealy) U?O— isa
winning strategy for (X, Y, Ay)moore (resp. {X, Y, Ap)meaty)-

Safety Games As an alternative to avoid Safra’s construction,
so-called safraless methods reduce the synthesis problem to
a series of safety games over UKCW automata [Kupferman
and Vardi, 2005]. In a safety game, all plays that violate
the LTL specification formula ¢ have a bad prefix. A bad
prefix is a finite trace & from which it is no longer possible
to satisfy ¢. That is, any infinite trace n’ with prefix =« is
such that " £ ¢. The challenge in a safety game is for the
agent to avoid bad prefixes. The advantage of using UKCW
automata is that these can be determinized efficiently, using
well-known methods derived from the powerset construction
commonly used to determinize finite-state automata.

Reachability Games In a reachability game, winning plays
have a good prefix, that is, a finite trace 7 such that any infinite
trace n” with prefix « satisfies the specification. In particular,
games over NkBW automata are reachability games.

4 Reductions to Automata Games

In this section we introduce a collection of techniques to re-
duce LTL realizability into a series of games defined over
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UkKCW and NkBW automata. The reductions rely on The-
orems 2, 3, 4, and 5, and are summarized in Table 1.

Theorem 2. Let A = (A, UCW) be an automaton that ac-
cepts the models of —¢. The following are equivalent:

o (X, Y, O)Mealy s unrealizable

o (Y, X, (A, UKCW))p1o0re is winning for some k in 2004D
o (X, Y, (A, NkBW))ueary not winning for some k in 20041

Proof sketch. By Lemma 2, (X, Y, ¢)meay is unrealizable
iff (M, X, =¢)Moore 1S realizable. By well-known results on
bounded synthesis (e.g. [Kupferman, 2006]), this occurs iff
(Y, X, (A, UKCW))moore is Winning for some k in 200D By
Lemma 3, this occurs iff (X, Y, (A, NkBW))mcaly is not win-
ning for some k worst-case exponential in the size of A. O

Theorem 3. Let A = (A, NBW) be an automaton that accepts
the models of —~¢. The following is equivalent:

o (X, Y, O)meaiy is realizable

o (Y, X, (A, NkBW))proore is not winning for some k in 2004D
o (X, Y, (A, UKCW))peary is winning for some k in 2004D

Proof sketch. By Lemma 2, (X,Y,@)mcay is realiz-
able iff (M, X, —¢@)moore is unrealizable. This occurs iff
(M, X, (A, NKBW))noore 18 NOt winning for some k < co. By
Lemma 3, this occurs iff (X, Y, (A, UKCW))jeqry is winning
for some k < co. The results for bounded synthesis (e.g.
[Kupferman, 2006]) set the exponential bound on k. O

Theorem 4. Let A = (A, UCW) be an automaton that ac-
cepts the models of ¢ The following is equivalent:

o (X, Y, O)moore is realizable
o (X, Y, (A, UCCW))rto0re is winning for some k in 204D
o (Y, X, (A, NKBW))seay is not winning for some k in 20040

Proof sketch. 1t follows from negating Theorem 2 and apply-
ing the duality results in Lemmas 2 and 3. O

Theorem 5. Let A = (A, NBW) be an automaton that accepts
the models of . The following is equivalent:

o (X, Y, O moor is unrealizable
o (X, Y, (A, NCBW))yioore is not winning for some k in 2004
o (Y, X, (A, UCCW))reary is winning for some k in 2004D

Proof sketch. 1t follows frin negating Theorem 3 and applying
the duality results in Lemmas 2 and 3. O

Bounded Realizability and Synthesis Table 1 summarizes
the results of the theorems above into a series of tests to
determine realizability and unrealizability of an LTL speci-
fication. The tests based on reductions to UkCW games (i.e.
safety games) are well known, and commonly referred to as
bounded synthesis methods [Schewe and Finkbeiner, 20071,
which build upon safraless methods [Kupferman and Vardi,
2005]. These tests are constructive, meaning that a winning
strategy for the reduced game is a winning strategy for the
original specification — in case it is realizable —, or a certificate
of unrealizability — in case it is unrealizable. Bounded syn-
thesis has been a successful approach to synthesis, and nowa-
days many modern tools exploit reductions to UkCW games
in some way (e.g. Lily [Jobstmann and Bloem, 2006], Un-
beast [Ehlers, 20101, and Acacia/Acacia® [Filiot et al., 2009;
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Specification ~ Construction of A Test Good for Constructive Thm
(X, Y, Omeay LANBW) = L) Fk(Y, X, (A, UKCW))moore Winning for P/ < unrealizable co-safe yes 2
(X, Y, Omeaty LANBW) = L) TFk(X,Y, (A, NkBW))yeay not winning for P2 & unrealizable  co-safe no 2
(X, Y, Omeay LA, UCW) = L) Fk(Y, X, (A, NKBW))yoore NOt winning for P/ < realizable safe no 3
(X, Y, Omeaty LA, UCW) = L) kX, Y, (A, UKCW))yeay Winning for P2 < realizable safe yes 3
(X, Y, OMmoore LA, UCW) = L(p) Tk (X, Y, (A, UKCW))po0re Winning for P/ < realizable safe yes 4
(X, Y, O)moore LA, UCW) = L(¢) Tk(Y, X, (A, NkBW))pieay not winning for P2 < realizable safe no 4
(X, Y, Omoore  LANBW) = L(9) Tk (X, Y, (A, NKBW))moore DOt winning for P/ < unrealizable  co-safe no 5
(X, Y, Ohmoore LA, NBW) = L(¢) Fk(Y, X, (A, UKCW))yeay Winning for P2 < unrealizable co-safe yes 5

Table 1: Strategies to determine realizability and unrealizability of an LTL specification via reduction to automata games. When ¢ is a safe
(resp. co-safe) LTL formula, strategies that are good for safe (resp. good for co-safe) formulae only require tests with k = 0 in UkCW games;
and k = 1 in NkBW games. Constructive tests yield a winning strategy or certificate, as appropriate.

Bohy et al., 2012]). The tests based on reductions to NkBW
games (i.e. reachability games) are novel. These tests deter-
mine realizability and unrealizability. By way of analogy to
bounded synthesis, we refer to them as bounded realizability
methods. Note that a complete approach for LTL realizability
and synthesis would combine at least two of these approaches
in parallel or with interleaved search.

Safe and Co-Safe LTL Specifications Different syntactic
characterizations of LTL formulas have been studied (e.g.
[Sistla, 1994]). Here, we examine the safe and co-safe frag-
ment of LTL [Kupferman and Vardi, 2001]. Safe properties
assert that something bad never happens. Co-safe properties
are dual, and assert that something good eventually happens.
The following syntactic fragments of LTL express safe, and
co-safe properties:
Safe: ¢ =T | L|pl-pleVel|Op|eRe
Co-safe: ¢ =T | L|p|-pleAe|OpleUp
Safe and co-safe LTL formulae can be transformed into
automata with absorbing rejecting and accepting states, re-
spectively [Kupferman and Vardi, 2001]. We observe that
with these automata constructions, realizability of safe and
co-safe formulae can be determined by performing only one
test (Theorem 6).

Theorem 6. LTL realizability for safe (resp. co-safe) speci-
fications can be determined with strategies that are good for
safe (resp. good for co-safe) formulae (cf. Table 1) by per-
forming a single test with k = 0, in the case of reductions to
UkCW games, and k = 1, in the case of reductions to NkBW
games.

Proof sketch. The proof follows from applying Lemma 3 in
Theorems 2, 3, 4, and 5, with a construction of an NBW with
absorbing accepting states. Here, we sketch the proof of one
case. Let ¢ be a co-safe LTL formula, and let A = (A, NBW)
be an automaton that accepts the models of ¢. (X, Y, ¢)moore
is realizable iff (X, Y, (A, NkBW))moore 1S Winning for all k,
but this happens iff (X, Y, (A, NkBW))ysp0re is Winning for
k = 1 (because A has absorbing accepting states). Lemma
3 derives that this only happens iff (Y, X, (A, UKCW))nealy is
not winning for k = 0. O

5 Automata Games via Planning

In recent years there has been increased interest in the devel-
opment of algorithms that exploit automated planning tech-

niques to synthesize programs of varying sorts including
so-called generalized planning (e.g., [Aguas et al., 2016;
Bonet ef al., 2017]) and LTL synthesis. Camacho er al.
[2018b] studied the correspondence between LTL synthesis
and planning, and presented an algorithm to synthesize strate-
gies, via planning, that is complete when the formula is trans-
formed into deterministic Biichi automata, but not in general.
Together with this work, it constitutes the first approach to
LTL synthesis via planning. Also related to this work is [Ca-
macho et al., 2018al, where planning technology is used to
solve LTL synthesis for LTL interpreted over finite words [De
Giacomo and Vardi, 2015]. Approaching LTL synthesis as
planning enables the use of highly optimized search tech-
niques and heuristics. Planning algorithms can reason about
action costs, stochasticity, plan quality, and preferences. Our
work opens the door to using planning technology for richer
notions of LTL synthesis, including those that optimize for
high-quality strategies [Almagor and Kupferman, 2016].

In this section we present reductions of UkCW and NkBW
games to FOND planning. These reductions comprise the
first complete approach to LTL realizability and synthesis via
planning. For an LTL specification (X, Y, ¢), and a test strat-
egy from Table 1, our approach consists of three steps:

(1) construct an automaton ‘A
(2) solve a sequence of automata games via FOND planning
(3) determine realizability or unrealizability

In addition, and if the test is constructive, a fourth step can be
performed to synthesize a winning strategy — if realizable —
or a certificate of unrealizability — if unrealizable.

Step 1: LTL to automata In the first step we construct an
automaton (A, NBW) that accepts the models of ¢ or —¢, ac-
cording to the strategy selected from Table 1. Our FOND
compilation requires post-processing of the set of automa-
ton transitions. Each transition ¢ = (g, guard(?), ¢’) in A with
guard guard(f) = \/;c; in DNF is decomposed into a set of
transitions #; = (q, ¢;,q’). Each t; has guard c;, that is a con-
junctive formula over variables in X U Y. For each f;, we
denote by macro(#;) the set of transitions derived from ¢. It
can be proved that the decomposition of the transitions does
not affect the language accepted by the automaton.

Step 2: Construction of a FOND Problem The second step
takes as input the automaton generated in Step 1, and con-
structs a series of FOND problems %, for k > 0. Each #;
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simulates a game over a UKCW or NkBW automaton in ac-
cordance with the strategy selected from Table 1. We de-
tail the FOND compilations for UkKCW and NkBW automata
games in Sections 5.1 and 5.2.

Step 3: Determine Realizability or Unrealizability The
compiled FOND problems #; have the following property:
%P has a solution iff the simulated automata game is winning.
This property is exploited in the following manner: our tech-
nique searches for existence of solutions to the FOND prob-
lems P, for k = 0,1,... until the test in Table 1 is passed.
Note that the tests are not guaranteed to terminate if, for in-
stance, LTL realizability for an unrealizable specification is
checked. However, termination can be achieved by combin-
ing two strategies in parallel: one that checks realizability,
and another that checks unrealizability.

Step 4: Construction of a strategy A finite state controller
that implements a strategy that solves the synthesis p roblem
for specification ¢ can be constructed from a policy for P;.
See [Patrizi et al., 2013; Camacho et al., 2017] for details.

5.1 UkCW Games via Planning

Figure 1 describes the details of the compilation of a game
with automaton A = (Q,ZX, go,d, @) into a FOND planning
problem #%. For illustration purposes, we assume the game is
in the form (X, Y, (A, UKCW))realy, that is, we are searching
for winning strategies for P2. At the end of the section we
show how the dynamics of $; can be modified to compile
games in the form (X, Y, (A, UKCW ) moore-

The dynamics of P, simulates an infinite sequence of
rounds in the two-player game. Each round is divided into
three sequential stages. The first stage simulates the move of
the environment and agent players. The move of P/ is simu-
lated with a cascade of actions that non-deterministically as-
sign a value to the variables in X. In turn, the moves of P2
are simulated with a cascade of deterministic actions that as-
sign a value to the variables in Y. As a consequence of the
player moves, some automaton transitions are deemed unfea-
sible. The second stage performs all automaton transitions.
Fluents F(q) are true in a planning state if there exists a run of
A on the play being simulated that ends in g. The third stage
sets the value of the counters associated to each automaton
state g. A fluent newCnt(q, m) is true if there exists a run of
A on the simulated play that ends in g and hits m accepting
states. The fluent 01dCnt(q, m) keeps track of the maximum
number of hits for a fluent g. At the end of the third stage, the
first stage is reestablished to simulate the next round.

There are two important things to notice about the dynam-
ics of P. First, when an input word being simulated is not
accepted by (A, UKCW) (that is, a run visits more than k ac-
cepting states), a deadend in %% is incurred. This is because
a fluent newCnt(q, k + 1) prevents syncF actions to disable
the fluent F(q), action continue is no longer applicable, and
the first stage can no longer be reestablished. Second, the
non-determinism of action continue ensures that execution
of strong-cyclic solutions yield an infinite number of rounds
in the game being simulated (cf. [Patrizi et al., 2013]).

Finally, the turn-taking of player moves mandated by the
semantics of the specification (Moore vs. Mealy) is forced by

4688

Components of the SAFE2FOND compilation:

F ={turn(vi)}o<iqxuy Y {sync, goal}
U {poss(t)},er U {0ldCnt(q, m),newCnt(q, m)}qEQ,OSmSk
I :={sync, 01dCnt(qe, 0)} U {safe(t)},ecsurer) Y {POSS(T)}
Safe(T) :={(q,0,¢)ET | ¢ ¢ a}
O = {moveX(V)},x U {movePosY(v),moveNegY(v)},.y

t.orig=qq

U {transAcc(t,m), transRej(t,m)},cr o<mek
U {startSync, continue}
U {syncF(q, m)} ;e 0<msk
G :={goal}
Stage 1: Actions that simulate X and Y/ moves:
Premovex(vl) - turn(vl)}

Eﬁmovex(vl) turn(viy), oturn(vi)} U oneof (e, e2)
PremovePosY(vl) turn(v;)}
Eff noveposy(v;) = {TUrn(viy ), ~turn(vi)} U e

{

{

{

={

Prepovenegyvi) =1
Eff novenegyvy) = {TUrn(viyy), =turn(vi) U e

e = {=poss(t)}er,-veLits(guardr)

€3 = {7posS(t)}herveLits(auard(r)

Stage2: Actions that simulate transitions, t € 7,0 <m < k:
Preiransrejiem = {turn(vixuy)), poss(t), safe(t), oldCnt(q, m)}
Eff ransrejem = (F(@), newCnt(q’, m)} U {=poss(t")},emacroty
Presransaceem = {turn(vixuy)), poss(t), -safe(t), oldCnt(q, m)}
Eff i ransacecem = (F(@), newCnt(q',m + 1)} U {-poss(t)}yemacrot
Stage 3: Actions that synchronize the automaton, g € Q, 0 <m < k:
Prestaresync = {turn(vixoy)} U {=poss(t)}cr

Eff startsyne = {Sync, ~turn(vixuy)} {=01dCnt(q, m)}seo o<msk
Presyncrqm =1{sync, F(q), newCnt(q,m)} U {-newCnt(q, n)}, <
Eff syncriqm = {POSS(1)}; orig—q U {01dCnt(q, m)} U {=F(q)}

U {=newCnt(q, n)y<,<}

Action that reestablishes the dynamics of the problem:

Precontime = {sync}U {_‘F(q)}qu
Eﬁcontinue = Oneof(efh 64)
ez = {goal}

e4 = {turn(vy), -sync}

Figure 1: Details of the SAFE2FOND compilation for a game S =
(X, Y, (A, UkCW)), with automaton A = (Q, X, ¢o, 5, @).

establishing a fixed order in the variables v € X U Y. E.g.
with the Moore semantics, the order must guarantee that the
fluents turn(v;) first iterate over all variables in Y.
SAFe2FOND(S) denotes the FOND problem constructed
from specification S = (X, Y, (A,UKCW)),, where s €
{Moore, Mealy}. The construction of SArE2FOND(S) is
polynomial, and thus existence of a winning strategy for S
can be determined in time that is exponential in the size of A.
Recall that FOND planning is EXPTIME-complete in the size
of succinct representations of the problem [Rintanen, 2004].

Theorem 7. The construction SAFE2FOND(S) is a polyno-
mial reduction of UkCW games S into FOND planning. If &
is a strong cyclic solution to SAFE2FOND(S) then a winning
strategy for S can be constructed from .

Proof sketch. The proof of correctness for UKCW-based
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automata compilations follows the intuition explained be-
low. The dynamics of the automaton are captured by plan-
ning actions. Each planning state s simulates an automa-
ton macrostate (as in the powerset construction), and has the
property that F(q) € s iff there exists a run on the automa-
ton in the simulated play that ends in ¢. In addition, plan-
ning states count the maximum number of times automaton
runs hit accepting states. Given the properties above, and
a fixed k, the UkCW game has a winning strategy iff there
exists a policy that (1) only visits planning states with asso-
ciated counter that is not greater than k, and (2) runs in per-
petuity. Property (1) is achieved by forcing planning states
with associated counter equal to k to be deadends — and this
is actually done in the current compilation. Property (2) is
achieved by strong-cyclic solutions, with the trick of intro-
ducing the artificial non-deterministic action continue and
dummy goals (cf. [Patrizi et al., 2013]). The construction of
Sare2FOND(S) is polynomial. A transducer that implements
a winning strategy can be constructed by unfolding a strong
cyclic solution, collapsing states that belong to the same sim-
ulated turn. O

5.2 NkBW Games via Planning

The construction SAFE2FOND presented in Section 5.1 can be
modified into an algorithm, REaci2FOND, that solves NkBW
games via reduction to strong FOND planning. The main
modifications follow.

In contrast to safety games, solutions to a reachability
game have to yield good prefixes. Recall that the compiled
FOND problem has fluents newCnt(q,m) that keep track of
whether there exists a run of A on the play being simulated
that hits m accepting states. In a NkBW reachability game, a
good prefix is achieved when a state in which newCnt(q, k)
holds is visited. As such, in REAci2FOND(S) the goal is no
longer the dummy fluent goal, but to reach one of the fluents
newCnt(q, k) for ¢ € Q. The action continue is now de-
terministic, and its unique effect reestablishes the first stage.
This time, not all runs of the automaton need to be carried
over. To this end, action continue does not require all F(q)
to be false, and instead falsifies all of them. Finally, strong
solutions to REacH2FOND(S) yield winning strategies for S.
The correctness and complexity results obtained in Section
5.1 extend to FOND compilations of NkBW games.

Theorem 8. The construction REaAci2FOND(S) is a polyno-
mial reduction of NkBW games S into FOND planning. If i is
a strong solution to REAcH2FOND(S) then a winning strategy
for S can be constructed from m.

Proof sketch. Similar to the proof of correctness of The-
orem 7, the dynamics of REAcH2FOND(S) simulate plays
of the game. This time, the dynamics simulate transitions
in a NBW automaton. Planning states can do bookkeeping
of some runs of the NBW (not necessarily all), and count
the maximum number of times that these runs hit accepting
states. In other words, a fixed play can be simulated by car-
rying over some runs of the NBW, or all, at the discretion of
the planner. As such, strong solutions to REAcH2FOND(S)
yield winning strategies to S. A transducer that implements
a winning strategy can be constructed by unfolding a strong
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solution, collapsing states that belong to the same simulated
turn. In the other direction, winning strategies can be simu-
lated with the dynamics of REaca2FOND(S). The construc-
tion of REacH2FOND(S) is polynomial. O

6 Multiple Automata Decompositions

Our automata-based approaches to LTL synthesis rely on
worst-case exponential transformations of the LTL formula
into NBW and UCW automata. In practice, this complexity
can be reduced by systematically decomposing LTL formula ¢
into smaller subformulae and transforming them into multiple
automata that together capture the models of ¢. Such transfor-
mations have been exploited in some previous approaches to
LTL synthesis (e.g., [Camacho et al., 2017; Bohy et al., 2012;
Camacho et al., 2018al) and in approaches to planning with
LTL goals and preferences (e.g. [Baier and Mcllraith, 2006]).
In Acacia*, specification ¢ is systematically decomposed
into the conjunction of a set of subformulae ¢;, each of which
is transformed into a UCW A;. The resulting game is the
composition of potentially smaller safety subgames, each one
with associated UKCW A;, which run in parallel. Winning
strategies have to avoid bad prefixes in all of the subgames.
In [Camacho er al., 2018al, we presented a reduction of
LTL synthesis — that is, synthesis of LTL specifications inter-
preted over finite words — into FOND planning. The construc-
tion of a FOND problem is similar to the NkBW-based com-
pilation presented in this paper, with the major exception that
the target was non-deterministic finite-state automata (NFA).
Automata decompositions take a specification ¢ in NNF, de-
compose it into a conjunction of subformulae ¢;, and trans-
form each ¢; into an NFA A;. The resulting game is the com-
position of potentially smaller subgames, each one with as-
sociated NFA A;, that run in parallel. The dynamics of all
subgames are integrated within a single FOND problem, and
the goal is achieved whenever all subgames are winning.
The FOND compilations that we presented in Section 5
are also amenable to automata decompositions. FOND com-
pilations of UKCW games can use multiple automata decom-
positions following Acacia*, whereas NkBW games can use
automata decompositions following Camacho et al. [2018al.

7 Evaluation

We implemented the algorithms for LTL realizability and syn-
thesis via FOND in a tool we named SynKit [Camacho er al.,
2018c]. SynKit implements the algorithms presented in this
paper, and others (e.g., those in [Camacho er al., 2018a] for
finite LTL synthesis). We use Spot to transform LTL formu-
lac into NBW [Duret-Lutz et al., 2016]. Reductions to au-
tomata games listed in Table 1 are solved via FOND planning
with SAFE2FOND and ReacH2FOND compilations. We use
PRP to generate strong cyclic solutions [Muise et al., 2012],
and MyND to generate strong solutions [Mattmiiller et al.,
2010]. Our experiments were run on an Intel Xeon E5-2430
2.2GHz processor, and each process was limited to 30 minute
run times and 4GB memory usage. We configured SynKit to
perform reductions to UKCW games with k < 2 and NkBW
games with k < 3.
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Table 2: Number of problems solved by SynKit on a collection
of benchmarks used in SYNTCOMP 2017. Realizability (Real.)
and unrealizability (Unreal.) tests were performed via reduc-
tions to NkBW (i.e., safety) and UKCW (i.e., reachability) games.
Safety and reachability games were solved via FOND planning with
Sare2FOND and ReacH2FOND compilations, respectively. For ref-
erence and broad comparison, results for tools that participated at
SYNTCOMP 2017 are also reported. Note that these results were
run under more favorable computational settings.

Synthesis via Planning One of the main objectives of our
experiments was to evaluate whether automated planning is
a viable technology to address LTL synthesis. We tested the
performance of our planning-based methods over a collection
of benchmarks used in the sequential realizability track of the
SYNTCOMP 2017 competition. Table 2 summarizes the ag-
gregated coverage results (i.e., number of problems solved)
obtained by SynKit. For reference, we include coverage re-
sults of participants in SYNTCOMP 2017: Party, Iltlsynt,
Bosy, Bowser, and Acacia®. These results are reported on
the competition website. They were run with an Intel XEON
E3-1271 3.6GHz processor, 32GB of memory, and a pro-
cessing time limit of 60 minutes. Rather than giving a pre-
cise comparison of run time, our objective was to evaluate
whether planning technology, and the algorithms presented in
this paper are competitive with more mature synthesis tools.
In terms of run time, we observed that most problems can be
solved with low time and memory usage. In terms of cov-
erage, while SynKit does not outperform any of the tools we
compared with, it is very competitive and able to determine
realizability for several problems that eluded other solvers.

Advantage of NkBW-based Reductions The second objec-
tive of our experiments was to assess the advantage of our
novel bounded realizability methods over existing bounded
synthesis. Table 2 details the coverage results obtained
with the tests for determining realizability and unrealizabil-
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ity listed in Table 1. The coverage obtained with reductions
to NkBW and UKCW games is very similar. We observed
that the run times differ significantly in some problems, and
no method clearly dominates the other. Thus, bounded real-
izability can be an alternative to bounded synthesis.

8 Summary and Discussion

LTL synthesis is central to the automated construction of con-
trollers and certain classes of programs. While LTL synthe-
sis is a well-established problem, it has only been in the last
decade that efficient tools have started to emerge. Common
approaches to LTL synthesis reduce the problem to automata
games and many modern tools make use of bounded synthesis
techniques based on safety games played over UKCW.

In this paper we established the duality between so-called
Mealy and Moore semantics of LTL specifications in the con-
text of LTL synthesis. We exploited this duality to define
novel reductions of LTL realizability to reachability games
played over NkBW automata. We also introduced the first
complete approach to LTL realizability and synthesis via au-
tomated planning. Our approach compiles automata games
into instances of FOND planning. Preliminary experimental
results show that reductions to NkBW games can be benefi-
cial and complement other well-known reductions to UkCW
games. Moreover, they show that planning technology can be
a competitive technique to approach synthesis.
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