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Abstract

Event factuality identification is an important se-
mantic task in NLP. Traditional research heavily re-
lies on annotated texts. This paper proposes a two-
step framework, first extracting essential factors re-
lated with event factuality from raw texts as the in-
put, and then identifying the factuality of events via
a Generative Adversarial Network with Auxiliary
Classification (AC-GAN). The use of AC-GAN al-
lows the model to learn more syntactic information
and address the imbalance among factuality val-
ues. Experimental results on FactBank show that
our method significantly outperforms several state-
of-the-art baselines, particularly on events with em-
bedded sources, speculative and negative factuality
values.

1 Introduction
Event factuality expresses the commitment of relevant
sources towards the factual nature of events, conveying
whether an event is characterized as a fact, a possibility, or an
impossible situation. Event factuality identification is useful
for deep NLP applications, such as opinion detection, tem-
poral ordering of events, textual entailment, and rumor iden-
tification. In principle, event factuality is related to various
factors, including predicates, speculative and negative cues.
Two examples are given below:

(S1) McCulley, a famous economist, doubts that the tax
rate will increase soon.

(S2) He knows they are not able to go to the village due to
the flood.

In this paper, events are marked in bold and sources are
underlined in example sentences. In S1, the event increase is
possible (PS+) according to the predicate doubts, while in S2,
the event go is impossible (CT-) due to the predicate knows
and the negation word not. Table 1 shows that factuality can
be characterized by the combination of epistemic modality
and polarity. Modality conveys the certainty degree of events,
such as certain (CT), probable (PR), and possible (PS), while

+
(positive)

-
(negative)

u
(underspecified)

CT(certain) CT+ CT- CTu
PR(probable) PR+ PR- (NA)
PS(possible) PS+ PS- (NA)

U(underspecified) (NA) (NA) Uu

Table 1: Various values of event factuality.

polarity expresses whether the event has happened, includ-
ing positive (+) and negative (-). In addition, U/u means
underspecified. Some combined values are not applicable
(NA) grammatically (e.g., PRu, PSu, and U+/- [Saurı́, 2008;
Saurı́ and Pustejovsky, 2012]), and are not considered.

Previous methods employed rules [Saurı́, 2008; Saurı́ and
Pustejovsky, 2012], machine learning models [de Marneffe et
al., 2012; Lee et al., 2015], or a combination of the two [Qian
et al., 2015; Stanovsky et al., 2017]. These approaches rely
on annotated information, such as predicates, sources, specu-
lative and negative cues, which are limited and can be costly
to obtain. In addition, the performance of previous work is
imbalanced on different values of event factuality. On one
hand, the performance of speculative values is low due to
their scarcity (4.36%) (e.g., [Saurı́ and Pustejovsky, 2012]
achieved much lower performance of PR+ and PS+ compared
to that of CT+ and Uu (F1: 45.71, 59.46 vs 84.85, 74.61) on
Aquaint TimeML in FactBank using annotated data). On the
other hand, events embedded in other predicates and sources
(i.e., embedded events (31.04%)), which can have compli-
cated syntactic structures (e.g., the event increase is em-
bedded in the predicate doubts in S1), gave lower macro-
averaged F1 than that of those events only with AUTHOR as
sources (F1 67 vs 73 [Saurı́ and Pustejovsky, 2012]).

This paper proposes a two-step supervised framework to
identify event factuality in raw texts, in which we first extract
basic factors related with factuality (i.e., events, predicates,
sources, and cues), and then utilize an Generative Adversarial
Network with Auxiliary Classification for Event Factuality
identification (EF-AC-GAN). To automatically produce more
syntactic paths and improve the performance of embedded
events with complicated syntactic structures, we utilize the
generator in EF-AC-GAN to generate syntactic paths that are
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close to the distribution of real ones. In addition, to address
the imbalance among factuality values and improve the per-
formance of factuality values that are in minority (i.e., CT-,
PR+, and PS+), we design two auxiliary classification tasks in
EF-AC-GAN, one output deciding whether the event is Uu or
Non-Uu, and the other indicating whether the event is mod-
ified by a cue and determining the modality and polarity of
the event. Shortest Dependency Paths (SDP) are the main
syntactic features for EF-AC-GAN.

Experimental results on a standard benchmark show that
EF-AC-GAN outperforms the baselines significantly, espe-
cially on embedded events, speculative and negative factu-
ality values. The code of this paper is released at https:
//github.com/qz011/ef_ac_gan.

2 Basic Factor Extraction
This section introduces the basic factors related with factual-
ity, namely events, SIPs, sources and cues, and presents the
methods to identify them.

Events in FactBank are defined by TimeML [Pustejovsky
et al., 2003]. For event detection we utilize the maximum
entropy classification model [Chambers, 2013].

Source Introducing Predicates (SIPs) are events that can
not only introduce additional sources but influence event fac-
tuality. For example, in S1 above, the SIP doubts introduces
McCulley as a new source, and McCulley evaluates the event
increase as PS+ according to doubts. We consider both lexi-
cal level features and sentence level features to detect SIPs.
Similar to event detection, we consider the token, part-of-
speech (POS) and hypernym in WordNet1 of the event as lex-
ical level features and concatenate them into vector l.

A SIP has at least one embedded event [Saurı́, 2008].
Hence, we propose Pruned Sentence (PSen) as a sentence
level feature (i.e., a clause of an event is replaced by 〈event〉
if containing other embedded events; Nouns, pronouns and
the current event are unchanged, while other tokens are re-
placed by 〈O〉). S4 is the PSen of the event says in S3.

(S3) Tom, who is the secretary of the manager, says the
manager will attend a meeting later .

(S4) Tom 〈O〉 who 〈O〉 〈O〉 secretary 〈O〉 〈O〉manager 〈O〉
says 〈event〉 〈O〉

Because PSen has a simplified structure, we extract sen-
tence level features c from PSen X0 ∈ Rd0×n through an
attention-based CNN instead of an RNN. The CNN and its
objective function is defined as follows, where ⊕ is the con-
catenation operator, and Wc, bc,vc,Ws0 and bs0 are model
parameters:

Y0 =WcX0 + bc (1)

α = softmax(vTc tanh(Y0)) (2)

c = tanh (Y0α
T ) (3)

f = l⊕ c (4)
o = softmax(Ws0f + bs0) (5)

J(θ) = − 1

m

m−1∑
i=0

log p(y(i)|x(i), θ) + λ

2
‖θ‖2 (6)

1http://wordnet.princeton.edu

A Relevant Source is the participant of an event holding
a specific stance with regard to the factuality. AUTHOR is
always the source by default, and further sources (e.g. Mc-
Culley in S1) are represented in chain form [Saurı́ and Puste-
jovsky, 2012]: McCulley AUTHOR, which means that we
know about McCulley’s perspective only according to AU-
THOR and McCulley is an Embedded Source in AUTHOR.
The grammatical subjects of SIPs are chosen as the intro-
duced new sources. After we have identified events and SIPs,
we employ the recursive algorithm of [Saurı́, 2008] to iden-
tify relevant sources.

Cues include speculative and negative words. PR/PS
events are modified by PR/PS cues, while events can be
negated by negative (NEG) cues (e.g., the factuality of event
go in S2 is CT- due to the NEG cue not). [Velldal et al., 2012]
concluded that lexical sequence-oriented n-gram features can
achieve excellent results on cue detection. Hence, we em-
ploy the lexical features developed by [Velldal et al., 2012] to
classify each token as PR/PS/NEG cue, or not cue.

3 AC-GAN for Event Factuality Identification
3.1 Overall Structure
GAN [Goodfellow et al., 2014] involves a generator G and a
discriminator D, which are trained in opposition to one an-
other. Due to the game-theoretic formulation, G produces
samples that looks real, and D discriminates between gen-
erated samples and real ones. On top of GAN, AC-GAN con-
sider auxiliary classification for class labels. In AC-GAN, G
synthesizes samples conditioned on class labels, and D dis-
criminates not only real and generated samples but assigns
class labels for them. The objective function has two parts,
i.e., the log-likelihood of the real samples LS and the correct
class LC :

LS =E[logP (S = real|Xreal)]+

E[logP (S = generated|Xgenerated)] (7)
LC =E[logP (C = c|Xreal)]+

E[logP (C = c|Xgenerated)] (8)
where D is trained to maximize LC +LS , and G is trained to
maximize LC − LS .

We develop lexical and syntactic features according to the
basic factors defined above, and consider Shortest Depen-
dency Paths (SDP) from basic factors to events as syntac-
tic features. As mentioned above, embedded and specula-
tive/negative events are in the minority. In particular, events
only with AUTHOR as sources are nearer to the root of the
dependency tree, and their SDPs are simpler than those of
embedded events. Hence, we design EF-AC-GAN for event
factuality identification shown in Figure 1, where G gener-
ates SDPs conditioned on class labels, and D discriminates
whether SDPs are generated and the auxiliary classification
in D determines the class labels of events. We assign two
class labels for each event: labelu, which represents whether
the event is Uu, Non-Uu or other, and labelcue, which in-
dicates whether the event is modified by a cue and further
classifies Non-Uu events as CT+/-, PR+/-, PS+/-. Event fac-
tuality is determined directly by these two labels, which are
demonstrated in detail below.
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class label labelu, labelcue
noise of SDPs

(SIP_Path, RS_Path, and Cue_Path)

Xreal(data)

SIP_Path RS_Path Cue_Path
Relative 
Position

Type of 
Cue

LSTM

SIP_Path RS_Path Cue_Path

G

BiLSTM

softmax(Wfh)

Input 
Layer

LSTM 
Layer

Feature 
Layer

Softmax 
Layer
Output 
Layer

D

z

softmax(Wuh) softmax(Wcueh)

ofake_sp ofake_rp ofake_cp ou ocue

Xreal(data)

hsp hrp hcp lp lt

Auxiliary Classification

hsp hrp hcp hsp⊕hrp hcp⊕lp⊕lt

Figure 1: Architecture of AC-GAN for event factuality identification
(EF-AC-GAN).

3.2 Features
Due to the success of dependency parse trees in previous
work [Saurı́, 2008; Saurı́ and Pustejovsky, 2012], we develop
the following SDPs as syntactic features:

SIP Path is extracted from the ancestor SIP that introduces
the sources to the event.

Relevant Source Path (RS Path) is extracted from the
root of the dependency tree to the relevant sources of the
event, and contains all the sources in the chain form.

Cue Path is extracted from the cue to the event.
SIP Path and RS Path are used to judge whether the event

is Un, Non-Uu or other. In addition to Cue Path, we also
consider the following cue-related lexical features to decide
whether the event is governed by the cue:

Relative Position is the surface distance from the cue to
the event, and is mapped into lp with dimensions dp.

Type of Cue includes PR, PS, and NEG, and is mapped
into lt with dimensions dt.

If there is more than one cue in the sentence, we consider
whether the current event is modified by each cue separately.
An example sentence and its features for our EF-AC-GAN
are shown in Figure 2.

3.3 The Discriminator
We utilize LSTM [Hochreiter and Schmidhuber, 1997] with
hidden units nlstm in D to model the sequences. Bidirec-
tional LSTM (BiLSTM) is used to access the future as well
as past context of SDPs, producing forward/backward hidden
sequences

−→
H/
←−
H and the output sequenceHp =

−→
H +

←−
H . To

capture the most important sources of information from the
syntactic path, we adopt the attention model and obtain the
output hp:

α = softmax(vT tanh(Hp)) (9)

hp = tanh(Hpα
T ) (10)

where p=SIP Path(sp), RS Path(rp), Cue Path(cp). We con-
catenate hsp and hrp into fu to judge whether the event is
Uu, Non-Uu or other:

fu = hsp ⊕ hrp (11)
where ⊕ is the concatenation operator. To determine whether
the event is governed by a cue, we consider not only hcp but
the lexical features lp (Relative Position) and lt (Type of Cue)
described above:

fcue = lp ⊕ lt ⊕ hcp (12)
For the auxiliary classification of class labels, fu and fcue

are fed into a softmax layer:
ou = softmax(Ws1fu) (13)
ocue = softmax(Ws2fcue) (14)

where Ws1, Ws2 are model parameters. ou represents
whether the event is Uu, Non-Uu or other (labelu), and ocue
is used to determine whether the event is governed by the cue
(labelcue), and classify Non-Uu events as CT+/-, PR+/-, or
PS+/-. We have two main reasons for the design of the two
class labels. First, we can identify speculative and negative
values (e.g., CT-, PR+/-, PS+/-) more precisely with the cues.
Second, we can address imbalance among instances because
speculative and negative values are typically in the minority.

In GAN it is essential to consider whether SIP Path (sp),
RS Path (rp), and Cue Path (cp) are generated:

ofake p = softmax(Wfhp) (15)
where p = sp, rp, and cp. The objective function of each
output above is defined as:

LD(j) = − 1

m

m−1∑
i=0

log p(y
(i)
j |x

(i), θ) (16)

where j = labelu, labelcue, fake sp, fake rp, fake cp, and
y
(i)
j is the golden label of the corresponding output. The final

objective function of D is :

LD =
1

3
[LD(fake sp) + LD(fake rp) + LD(fake cp)]+

1

2
[LD(labelu) + LD(labelcue)] (17)

3.4 The Generator
To produce more syntactic information and improve the
performance of embedded and speculative/negative events,
we generate the SDP S = x0, · · · , xt by feeding labelu
and labelcue of events to the noise vector z, i.e., S =
G(z, labelu, labelcue). LSTM is employed as the generator
and generates a sequence of hidden states h0, . . . ,ht:

ht = LSTM(ht−1,xt−1) (18)
where x0 is the input vector related to the noise vector z and
the class labels:

x0 = z � vu � vcue (19)
where � is the element-wise multiplication, and vu and
vcue are the embeddings of labelu and labelcue, respectively.
SIP Path, RS Path, and Cue Path have their respective noise
vectors, which follow the normal distribution and are initial-
ized randomly. Finally, a softmax layer maps the hidden
states into the output token distribution:

p(xt|x<t) = softmax(Wght) (20)
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mark

The journalist reports that a famous economist claims that there is a high possibility that the economy will recover soon .
nsubj

debt
ROOT

root

mark
det

amod nsubj

ccomp

expl

ccomp

det

amod
nsubj

mark

det
nsubj

aux

ccomp

advmod

Current event: recover
Current Relevant Source: 
    economist_journalist_AUTHOR
Current SIP: claims
Current cue: possibility

SIP_Path:  claims ccomp is ccomp recover
RS_Path:   ROOT root reports nsubj journalist nsubj reports ccomp claims nsubj economist
Cue_Path: possibility nsubj is ccomp recover
Relative Position from cue to event: -5
Type of Cue: PS

Figure 2: Example sentence and features of an event for EF-AC-GAN.

3.5 Training
When updating the discriminator D in each batch, we gener-
ate samples as the same number as the real samples, and the
generated samples share the same Relative Position and Type
of Cue with the corresponding real samples. D(or G) can be-
come too strong and result in a gradient that cannot be used
to improve G(or D). Therefore, we stop updating D when
its training loss is less than 80% that of G, and also take the
corresponding strategy when G is too strong.

To prevent G over-training onD, we utilize Feature Match-
ing [Salimans et al., 2016] to encourage greater variance in
G. Instead of maximizing the error of the output of D, the
new objective requires G to generate data that match the real
data. More specifically, we train G to match the feature rep-
resentations on the penultimate layer ofD. For each SDP, the
objective is redefined as:

LG(p) =
1

m

m−1∑
i=0

(R(x(i)
p )−R(G(z(i)p )))2 (21)

where R is the output of the BiLSTM layer before the
final softmax layer, xp are SDPs, and p=SIP Path(sp),
RS Path(rp), Cue Path(cp). The objective of G is defined as:

LG =
1

3
[LG(sp) + LG(rp) + LG(cp)] (22)

4 Experiments
4.1 Experimental Settings
We evaluate our models on FactBank [Saurı́ and Pustejovsky,
2009], which contains 3864 sentences and 13506 event fac-
tuality values. Table 2 presents the distribution of the values
in FactBank. Following previous studies [Saurı́ and Puste-
jovsky, 2012; de Marneffe et al., 2012], we only consider the
five main categories of values, i.e., CT+, CT-, PR+, PS+, and
Uu, which make up 99.05% of all the instances.

For fair comparison, we perform 10-fold cross-validation
on FactBank. In addition to Precision, Recall, and F1-
measure, macro- and micro-averaging are also applied to ob-
tain the performance of all the factuality values. For SIP de-
tection we set the dimensions of the POS and hypernym em-
beddings as 50 and λ = 10−4. For event factuality identifi-
cation, we set nlstm = 50 and dp = dt = 10. We initialize
word embeddings via Word2Vec [Mikolov et al., 2013], set-
ting the dimensions as d0 = 100, and fine-tuning them during
model training. SGD with momentum is applied to optimize
our models.

Source All Author Embed
CT+ 7749/57.37% 5412/57.05% 2337/58.15%
CT- 433/3.21% 206/2.17% 227/5.65%
PR+ 363/2.69% 108/1.14% 255/6.34%
PS+ 226/1.67% 89/0.94% 137/3.41%
Uu+ 4607/34.11% 3643/38.40% 964/23.99%
other 128/0.95% 29/0.31% 99/2.46%
Total 13506/100% 9487/100% 4019/100%

Table 2: Distribution of factuality values in FactBank.

P(%) R(%) F1
Event 86.67 82.86 84.68
SIP 74.58 72.91 73.66
Source of events 80.70 77.44 78.99
Cue 64.78 70.13 67.05

Table 3: Performance of basic factor extraction.

4.2 Results on Basic Factor Extraction
Table 3 presents the performance of basic factor extraction. It
is worth noting that a correctly identified SIP means that both
the SIP and the new source introduced by it are correctly de-
tected. For the SIP detection task, we also employ the model
of [Chambers, 2013], obtaining F1=72.56, while our CNN
achieves a higher F1=73.66 (p < 0.05 on two-sample two-
tailed t-test). We argue that one SIP can determine ALL the
sources of events embedded in it. Therefore, our CNN based
on the PSen structures is effective.

4.3 Results on Event Factuality Identification
We employ the following baselines, whose features are de-
veloped according to the outputs of basic factor extraction,
for fair comparison with our model:

Rules are developed by [Saurı́, 2008] and [Saurı́ and Puste-
jovsky, 2012]. Instead of using annotated data directly, we
obtain the performance of Rules using identified information
according to basic factor extraction.

SVM is developed by [Saurı́ and Pustejovsky, 2012]. Be-
sides, [de Marneffe et al., 2012] and [Lee et al., 2015] only
considered AUTHOR as the source and employed traditional
machine learning models. We re-implement them and ob-
tain lower results than the SVM model on AUTHOR (macro-
averaged F1 are 46.29 and 48.42, respectively).

ME+Rules: A two-step model combining a maxi-
mum entropy classification model and a simple rule-based
model [Qian et al., 2015].
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Systems Sources CT+ CT- PR+ PS+ Uu Micro-A Macro-A

Rules
(Saurı́ et al.[ 2008; 2012])

All 61.83 54.52 20.75 39.89 26.08 50.71 40.62
Author 64.83 48.83 13.35 31.93 26.17 53.49 37.02
Embed 53.19 61.94 25.11 47.01 25.95 44.20 42.64

SVM
(Saurı́ et al. [2012])

All 64.94 44.80 26.54 25.90 57.68 60.78 43.97
Author 71.39 42.61 34.67 35.00 65.64 68.14 52.59
Embed 50.78 45.60 28.58 27.66 25.45 43.33 35.40

ME Rules
([Qian et al., 2015])

All 61.55 43.52 17.65 41.49 53.58 56.89 43.56
Author 67.75 44.21 11.55 40.99 60.95 63.80 43.75
Embed 46.39 40.40 22.22 40.78 30.46 40.73 36.05

CNN-D
All 62.97 50.99 37.41 39.98 55.90 59.25 49.45

Author 68.92 52.41 40.62 42.96 63.80 65.98 53.25
Embed 50.53 49.00 36.99 42.93 18.57 43.26 39.18

L1
All 64.88 45.83 32.52 34.92 58.06 60.78 47.24

Author 71.21 47.20 36.36 40.82 65.92 68.19 52.84
Embed 50.76 44.22 31.59 33.67 24.88 43.22 36.62

BiLSTM
All 64.81 53.24 41.36 42.19 56.56 60.93 51.63

Author 70.85 56.88 45.45 46.63 64.72 67.94 56.31
Embed 51.89 49.24 38.89 40.08 18.76 44.37 39.31

EF-AC-GAN
All 65.65 54.81 44.37 46.17 59.29 62.47 54.06

Author 71.93 56.45 49.90 45.35 66.85 69.35 57.52
Embed 52.11 52.33 41.47 47.99 24.97 46.14 43.56

Table 4: Performances (F1-measures) of various models on event factuality identification.

CNN-D is a variant of the EF-AC-GAN whose BiLSTM in
the discriminator D is replaced by the CNN with the hidden
units nc = 50.

L1 is a variant of the EF-AC-GAN, which concatenates
fu and fcue in Equations (11) and (12) into ONE vector and
consider only ONE class label of factuality.

BiLSTM utilizes BiLSTM in D of the EF-AC-GAN and
does NOT consider generative model.

Table 4 shows the performance of various models on event
factuality identification. Rules have low performance on Uu
due to the error propagation from the basic factor extraction.
SVM gets low results on CT-, PR+, and PS+ with minority
events. For the model combining rules and machine learning
classifiers, we employed the method of [Qian et al., 2015] and
achieved the performance between Rules and SVM (micro-
and macro-averaged F1 are 56.89 and 43.56, respectively).
Compared to the traditional models that utilized complicated
algorithms or features (19 features in SVM and 15 features
by [Qian et al., 2015]), the features of our EF-AC-GAN are
much fewer and easier to access.

Among all the models, EF-AC-GAN achieves the best re-
sults not only on CT+ and Uu but on CT-, PR+ and PS+ with
All sources. The performance gaps among different factual-
ity values illustrate that it is challenging to identify CT-, PR+
and PS+, which only cover 7.57% of all the instances. Com-
pared to SVM, EF-AC-GAN improves the F1 of CT-, PR+
and PS+ by 10.01, 17.83 and 20.27, respectively. All the
improvements are significant with p < 0.05 applying two-
sample two-tailed t-test (the same below). The improved per-
formance on CT+ and Uu means that EF-AC-GAN can effec-
tively discriminate Non-Uu from Uu events, which can con-
tribute to the outstanding results of CT+/-, PR+/- and PS+/-.

For both AUTHOR and Embedded Sources, EF-AC-GAN
significantly outperforms the other methods on the micro-
averaged and macro-averaged F1. The performance of CT-,

PR+, PS+, and embedded sources shows that the generator
G in EF-AC-GAN can produce meaningful dependency paths
and EF-AC-GAN can benefit from G effectively. Besides, the
results of events with embedded sources are lower than those
with AUTHOR in EF-AC-GAN, mainly due to the complex
syntactic structures of the events embedded in other sources.
Similar to other models, the F1 of Uu for embedded sources is
quite low (24.97) indicating that it is difficult to discriminate
Uu from Non-Uu for embedded events.

To further verify the advantages of our model, we imple-
ment two variants of EF-AC-GAN, namely CNN-D and L1,
as baselines. CNN ignores the context, while EF-AC-GAN
considers both future and past context in syntactic paths and
is superior to CNN-D. Compared with L1, both BiLSTM and
EF-AC-GAN can obtain much better performance on CT-
, PR+, and PS+, which can demonstrate that the design of
the two class labels in auxiliary classification can address the
problem of data imbalance. EF-AC-GAN also outperforms
BiLSTM that does not consider the generative model, espe-
cially on PR+, PS+, and embedded sources, which illustrates
that EF-AC-GAN can benefit from those generated samples.
Moreover, if we only consider whether the syntactic paths are
generated and neglect the auxiliary classification for the class
labels of event factuality, we obtain poor performance (i.e.,
micro- and macro-averaged F1 are 17.85 and 20.79, respec-
tively), which proves that class labels of event factuality are
important supervised information for the training of EF-AC-
GAN, and the auxiliary classification tasks are effective.

In conclusion, the experimental results of the neural net-
work models above show that:

1) The design of the two class labels in the auxiliary classi-
fication task can improve the performance of speculative and
negative factuality values (i.e., CT-, PR+, PS+) compared to
the use of one class label.

2) The generator in EF-AC-GAN can produce useful and
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Systems Source CT+ CT- PR+ PS+ Uu Micro-A Macro-A

Rules
All 86.69 73.72 57.83 55.64 76.13 81.52 70.00

Author 88.32 68.59 53.93 56.18 81.18 84.56 69.29
Embed 82.62 77.64 60.44 54.16 58.47 74.19 66.67

BiLSTM
All 85.25 74.03 58.21 61.32 73.35 80.08 70.43

Author 86.95 73.09 58.45 58.79 78.69 83.16 71.19
Embed 81.48 74.78 57.80 63.92 48.67 72.67 65.33

EF-AC-GAN
All 85.46 74.12 63.07 65.40 75.10 80.81 72.63

Author 87.21 72.49 62.50 58.84 79.96 83.76 72.20
Embed 81.49 74.60 64.47 66.66 53.35 73.79 68.11

Table 5: Performances (F1-measures) on event factuality identification with annotated information.

20

30

40

50

60

70

2000 4000 6000 8000 10000 12000 13506

F1

Data Size

Micro-Average Macro-Average

Figure 3: Performances of EF-AC-GAN with different data sizes of
FactBank.

meaningful dependency paths to offer more syntactic infor-
mation, and can improve the performance of the specula-
tive/negative and embedded events in minority.

We investigate the relationship between the data size of
FactBank and the performance of EF-AC-GAN, showing the
results in Figure 3. Both the micro- and macro-averaged
F1 of EF-AC-GAN become steady when we use more than
10000 samples. Particularly, in term of the performance of
EF-AC-GAN on the whole FactBank, standard deviations of
the micro- and macro-averaged F1 in 10 folds are less than 3,
indicating that we obtain steady results.

To explore the upper bound of the performance of EF-AC-
GAN, Table 5 shows the performance of Rules, BiLSTM
and EF-AC-GAN with annotated information. Comparing
Table 4 and 5, the micro- and macro-averaged F1 of Rules
are improved by 30.81 and 29.38, respectively, and those of
EF-AC-GAN by 18.34 and 18.57, respectively, which illus-
trates that the performance of Rules relies much more heavily
on annotated information compared to EF-AC-GAN. Com-
pared to Rules and BiLSTM, EF-AC-GAN achieves higher
F1 of CT-, PR+, and PS+, indicating that our model is
better at identifying speculative and negative factuality val-
ues. For embedded events, EF-AC-GAN is superior to BiL-
STM on both micro- (73.79>72.67) and macro-averaged F1
(68.11>65.33). Therefore, the EF-AC-GAN model is more
effective than BiLSTM, which does not consider GAN.

4.4 Error Analysis
We analyze the errors produced by the EF-AC-GAN model,
which can be classified into the following main categories:

Incorrect relevant sources. Our model fails to identify
correct relevant sources for events due to the error propaga-
tion from the basic factor extraction tasks (72.64%). These
errors prove the significance of the SIP and relevant source
detection task.

(S5) Parliamentary president Rita Suessmuth said the Peo-
ple’s Union correctly listed Jacques de Mathan as having do-
nated about 274,500 marks in 1995, but gave a false address
for him.

(Event: donated, Source: Union AUTHOR, Uu)
For example, event donated is Uu according to Union in

S8, but we fail to identify Union as the new source introduced
by the SIP listed and miss the source Union AUTHOR for
donated.

Incorrect Non-Uu/Uu. Whether an event is Non-Uu or
Uu is mistakenly identified (EF-AC-GAN: 22.57%, BiLSTM:
25.08%). In S6, the BiLSTM model evaluates the event
change as Uu incorrectly, and cannot assign PR+ to change
even if determines that change is governed by the PR cue ap-
pears. In S7, BiLSTM classified the event take as Non-Uu
and assign CT- to it according to the negative cue not incor-
rectly. While EF-AC-GAN identifies change as PR+ and take
as Uu correctly, proving the usefulness of the auxiliary classi-
fication and the generated syntactic paths that can offer more
syntactic information.

(S6) Everyone appears to believe that somehow Cuba is
going to change.

(Event: change, Source: Everyone AUTHOR, PR+)
(S7) He added, “This has nothing to do with Marty Acker-

man and it is not designed, particularly, to take the company
private.”

(Event: take, Source: He AUTHOR, Uu)
Incorrect Modality/Polarity. The modality or polarity of

an event cannot be identified correctly because the model fails
to determine whether the event is governed by a cue (EF-AC-
GAN: 4.14%, BiLSTM: 4.39%).

(S7) He indicated that some assets might be sold off to ser-
vice the debt.

(Event: service, Source: He AUTHOR, PS+)
(S8) There was no hint of trouble in the last conversation

between controllers and TWA pilot Steven Snyder.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4298



(Event: conversation, Source: AUTHOR, CT+)

In S7, the event service is PS+ according to He due to the
PS cue might. The BiLSTM model did not identify might for
the event service, while EF-AC-GAN gave the correct result.
In S8, the event conversation is not governed by the negative
cue no and is annotated as CT+. However, EF-AC-GAN re-
gards no as the NEG cue of conversation and evaluates it as
CT- mistakenly, indicating that EF-AC-GAN may overfit to
the generated paths.

5 Related Work

Event factuality identification is a challenging task. Many
studies limited the sources to the reader or AUTHOR. [Diab
et al., 2009] and [Prabhakaran et al., 2010] presented a study
of belief annotation and classified predicates into Commit-
ted Belief (CB), Non-CB or NA under a supervised frame-
work. Recently, researchers presented scalable annotation
schemes [Lee et al., 2015; Stanovsky et al., 2017], and de-
veloped new corpus [Soni et al., 2014; Prabhakaran et al.,
2015]. To predict the factuality, [Lee et al., 2015] employed
lexical and dependency features, and [Stanovsky et al., 2017]
developed deep linguistic features.

FactBank [Saurı́ and Pustejovsky, 2009] considers both
AUTHOR and embedded sources. Previous studies [Saurı́,
2008; Saurı́ and Pustejovsky, 2012] proposed a complicated
rule-based method to identify factuality of events on Fact-
Bank. [de Marneffe et al., 2012] proposed a new annotation
framework and identified the factuality of events in some
sentences of FactBank. [Qian et al., 2015] utilized a two-
step framework combining machine learning and simple rule-
based approaches.

Previous work also employed neural networks for factu-
ality identification, but only considering the coarse-grained
sentence-level factuality, e.g., uncertainty detection [Adel and
Schütze, 2017] and modal sense classification [Marasović
and Frank, 2016] for sentences, while this paper focuses on
event factuality identification via AC-GAN instead of sen-
tence factuality.

Syntactic paths [Roth and Lapata, 2016] and atten-
tion [Chen et al., 2016; Zhou et al., 2016] are helpful for
many neural network-based NLP applications. Hence, we
consider BiLSTM with attention to learn features from de-
pendency paths in the discriminator of AC-GAN.

Generative Adversarial Networks (GAN) [Goodfellow et
al., 2014] aim at fitting generative models to the distribution
of realistic data, and have been proven successful in various
AI and NLP applications, such as speech recognition [Chang
and Scherer, 2017], image synthesis [Ghosh et al., 2017],
and text generation [Yu et al., 2017]. Compared with GAN,
AC-GAN [Odena et al., 2017] considers both class labels
of samples and the synthesis of sequences, and sets them
as different outputs. AC-GAN is mainly applied on image
synthesis [Dash et al., 2017; Zhang et al., 2017] instead of
factuality-related NLP tasks. This paper applies AC-GAN to
event factuality identification.

6 Conclusion
We presented a two-step framework for event factuality iden-
tification, which first extracts various basic factors, such as
events, source introducing predicates, relevant sources and
cues from the texts, and then employs EF-AC-GAN to iden-
tify event factuality. The design of auxiliary classification
tasks in the discriminator can address the data imbalance
among factuality values, and the generator can produce more
syntactic information to improve the performance of specula-
tive/negative and embedded events in minority. Experimental
results show that EF-AC-GAN is superior to several state-of-
the-art methods, especially on embedded events, and specu-
lative and negative factuality values. To our best knowledge,
this is the first work to apply AC-GAN to event factuality
identification.
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