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Abstract

Patient Electronic Health Records (EHR) data
consist of sequences of patient visits over time.
Sequential prediction of patients’ future clinical
events (e.g., diagnoses) from their historical EHR
data is a core research task and motives a se-
ries of predictive models including deep learning.
The existing research mainly adopts a classifica-
tion framework, which treats the observed and un-
observed events as positive and negative classes.
However, this may not be true in real clinical set-
ting considering the high rate of missed diagnoses
and human errors. In this paper, we propose to
formulate the clinical event prediction problem as
an events recommendation problem. An end-to-
end pairwise-ranking based collaborative recurrent
neural networks (PacRNN) is proposed to solve
it, which firstly embeds patient clinical contexts
with attention RNN, then uses Bayesian Person-
alized Ranking (BPR) regularized by disease co-
occurrence to rank probabilities of patient-specific
diseases, as well as uses point process to provide
simultaneous prediction of the occurring time of
these diagnoses. Experimental results on two real
world EHR datasets demonstrate the robust perfor-
mance, interpretability, and efficacy of PacRNN.

1 Introduction

The Electronic Health Records (EHR) data consist of se-
quences of patient visits over time. Each visit is composed
by a set of medical events, including diagnoses, procedures,
etc. Fig. 1 shows a segment of longitudinal EHR.

Sequential prediction of clinical events (e.g., diagnoses)
based on longitudinal EHR data is a core research task that
could support decision makings. However, there are lots of
challenges on working with EHR, such as event temporality,
high-dimensionalily, and visit irregularity. Such challenges
motivated a series of machine learning models for EHR-based
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Figure 1: An example segment of longitudinal patient records. Our
task is to predict next set of ranked diagnoses and their occurring
time.

phenotyping and event predictions. To name a few, in [Choi
et al., 2016¢; Cheng ef al., 2016], temporal dynamics among
clinical events were captured using RNNs or CNNs to im-
prove prediction of heart failure onsets. In [Ma er al., 2017,
Tengfei et al., 2018], attention mechanism was introduced to
add more interpretability to the prediction results. In [Farhan
et al., 2016; Liu et al., 20151, low dimensional clinical con-
cept embedding was used to provide better predictions.

In real clinical setting, the physicians need to deal with
a large number of patient-specific clinical observations, and
link them with the known manifestations of various diseases
to infer the best diagnosis [Donald er al., 1982; Sebastian et
al., 2009]. However, because of the complexity and ambigu-
ity of complicated diseases, there is a high rate of misdiagno-
sis and missed diagnosis across the entire world. Therefore it
may not be appropriate to formulate clinical event prediction
as a hard classification problem as in previous research. The
unobserved events could be missed or left out by error.

Based on the above considerations, we propose to treat
clinical event prediction as a recommendation problem. We
propose PacRNN, an end-to-end pairwise-ranking based col-
laborative recurrent neural network model to tackle this prob-
lem. PacRNN first embeds patient clinical contexts with
attention RNN, then uses typical pairwise ranking method
BPR regularized by disease co-occurrence to rank potential
patient-specific diseases. Point process is utilized to estimate
of the observed time of these predicted diagnoses as well. Be-
low we highlight the several contributions of PacRNN.

o Personalized Ranking based Modeling: We formulate
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clinical event prediction as a recommendation problem,
which captures the potential missingness and human er-
ror in patient EHR in a more robust way. A latent factor
model based BPR with disease correlation regularization
is proposed to estimate the diagnoses rankings for each
visit.

e Explicit Modeling of Diagnoses Time: We leverage point
process to explicitly predict the time of predicted diag-
noses. This is done by viewing the intensity function
of a point process as a nonlinear function of the history
information learned from RNN to simultaneously make
next visit time prediction.

The rest of this paper is organized as follows: In Section
2, we discuss the connection of the proposed approaches to
related work. Section 3 presents the preliminary of the work.
Section 4 shows the details of the proposed PacRNN. The
experimental results are presented in Section 5. Section 6
concludes the paper.

2 Related Work

Sequential prediction of clinical events based on EHR data is
a hot research topic and has attracted many attentions. Most
of existing models utilize RNNs for predicting the future di-
agnoses. RETAIN [Choi et al., 2016b] is an interpretable pre-
dictive model, which employs reverse time attention mecha-
nism in an RNN for binary prediction task. Dipole [Ma e al.,
2017] employs bidirectional recurrent neural networks and
introduces three attention mechanisms to measure the rela-
tionships of different visits for the prediction. TLSTM [Bay-
tas e al., 2017] is proposed to handle irregular time inter-
vals by learning a subspace decomposition of the cell mem-
ory which enables time decay to discount the memory content
according to the elapsed time. These existing works cannot
predict diagnosis and future visit time simultaneously. Doc-
torAl [Choi et al., 2016a] can make both types of predictions,
while it is a straightforward approach with simple RNN for
sequential patient data modeling. None of these methods di-
rectly optimizes for diagnosis ranking.

Point process has been a principled framework for mod-
eling event dynamics, such as Hawkes processes [Hawkes,
1971]. Some studies combined point process and RNN to im-
prove time prediction performance. RMTPP [Du et al., 2016]
proposed recurrent point process to make next occurring time
prediction. [Xiao et al., 2017] proposed modeling the inten-
sity function of point process via recurrent neural networks.
In this paper, we incorporate point process to explicitly pre-
dict the time of predicted diagnoses.

3 Preliminary

In EHR data, each disease code can be mapped to a node
of the International Classification of Diseases (ICD-9)', and
procedure code to a node of the Current Procedural Terminol-
ogy (CPT)?. For notation purposes, let D = {d1,da, ..., djp|}
denote the set of |D| disease codes, Ml = {my, ma, ..., m }

1
https://en.wikipedia.org/wiki/List_of_ICD-9_codes

2
https://en.wikipedia.org/wiki/Current_Procedural_Terminology

3521

i Regularization loss Ranking loss Regression loss |

Disease | Personalized disease Visit time
regularization layer ranking layer prediction layer

&t efhy &
Disease-specific Time-aware
attention layer attention layer
hy by
GRU layer
91 Dip| vy

Disease embedding layer Visit embedding layer

dy - dip| X1 %)

Visit sequence input

Figure 2: Overall PacRNN model. The diseases are embedded as
vectors. The disease-specific patient representation, and time-aware
patient representation are learned by attentional GRU. Then person-
alized disease ranking and visit time prediction are made. Our model
can be trained end-to-end.

Disease set

the set of |M| medical codes which consist of diseases and
procedures, D C M. Let 7 be the index of the N patients,
and the ¢-th patient has J; historical visits. For notation sim-
plicity, we will describe our algorithm with a single patient
and omit the index ¢. Then the patient can be represented by
a sequence of visits {z1,xa, ..., 27 }. Each visit, containing
a subset of medical codes, is encoded by a multi-hot vector,
z; € {0,1}MI, where the g-th element is 1 if the j-th visit
contains the code m.

The core tasks in PacRNN are to predict the diagnoses
0741 and visit time ¢y, of the future visit at J + 1, given
the sequence of the historical .J visits.

4 Methods

In this section, we describe our algorithm, Pairwise-Ranking
based Collaborative Recurrent Neural Networks (PacRNN),
which is an end-to-end, simple and robust model for simulta-
neously future diagnoses and occurring time prediction.

Fig. 2 shows the overall design of PacRNN. First, the set
of disease codes are embedded into vectors {¢, k = 1...|D|}
and then pass through disease regularization, attention and
disease ranking layers. Second, given a sequence of histori-
cal visits {21, z2, ..., x s} from a patient, we embed each visit
x; into a dense vector v;. The vector v; is then fed into the
Gated recurrent units (GRUs) [Cho et al., 2014], which out-
put a hidden state h; as the representation of the j-th visit.
With disease factors {¢x,k = 1...|D|} and hidden states
{hj,j = 1...J}, we generate two sets of attention weights.
One is used for computing disease-specific patient represen-
tation {é¢,k = 1...|D|}, which is then used to rank disease
codes of the future visit at time .J + 1. The other is used for
computing time-aware patient representation ¢t. Based on &,
we can formulate the conditional intensity function for the
future visit time prediction.

4.1 Patient Representation Learning

Given a visit z; € {0,1}™|, we can obtain its dense vec-
tor representation v; € R! via v; = ReLU(W,x; + by),
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where [ is the size of embedding dimension, W, € R!*IMI
is the embedding matrix of medical codes, and b, € R! is
the bias vector. The reason we employ the ReLU as the acti-
vation function is that ReLU enables the learned vector rep-
resentations to be interpretable. In the implementation, we
use word2vec method to map medical codes M into ! dimen-
sional dense representation as the initialization of W,. The
embedding vector v; is then fed into GRUs, and each unit
outputs a hidden state h; as the representation of j-th visit of
the patient.

Then we compute the disease-specific attention weights by
adopting the approach similar to [Bahdanau et al., 2015]. In
particular, given the disease factor set {¢, k = 1...|D|}, and
hidden states {h;, j = 1....J} of a patient, o is computed as:

aﬂ = S’oftmax([eiﬁl, eg’z, ...,ez)J]),
where
ety = VAT tanh(Weh; + Ulée)
is an alignment model which scores how well ¢, and h;
match. W& € RP*P, U4 € RP*? and V2 € RP are the pa-

rameters to be learned. Based on aﬂ, we can derive disease-

. J
specific contextual state as ¢ = Y =1 ad ; * hj. Concate-

nated with the last hidden state hj;, we have the disease-
specific patient representation ¢¢ = Re LU (Wy[hy, ci)).

We also use self-attention mechanism to learn time-aware
attention weights for the future visit time prediction. The self-
attention function is to calculate the weights solely from the

current hidden state h;: e} = V(thanh(thj + L), where
Wi e RPXP bt € RP and V! € RP are the parameters to
be learned. Then, we can obtain the attention weight vector
« using softmax function. Based on «, we can derive time-

aware contextual state as ¢! = Z'j]:l o * hj and time-aware
patient representation ¢* = ReLU (Wy[hy, c']).

4.2 Bayesian Personalized Ranking for Diagnosis
Modeling

In real clinical settings, doctors often assign several disease
codes to patients as diagnosis, ranked by the severity and
possibility of these diseases. The diagnosis prediction can
be considered as the ranking of diseases give the current
state of a patient. In this paper, we explicitly optimize on
patient-specific ranking of disease by using learning to rank
approach, which is employed in a wide variety of applica-
tions in information retrieval, natural language processing,
and data mining [Li, 2011; Qiao ef al., 2014].

Formally, given a patient u with diagnoses o1 (further
denoted by D™ for convenience) at visit J+1. We then denote
D~ =D\ D". We assume that the patient u intends to have a
disease in D™ over all diseases in D ™. In this paper, we adopt
BPR [Rendle ef al., 2009] to model such ranking problem
with the pairwise ranking loss. In particular, we compare each
positive disease in D" with several sampled negative diseases
in D™, and compute the loss as:

0" (074+1]0) = H

(dk,dpr)€(DF, D7)

P(s(u,dy) > s(u,dy)|©)

ey

3522

where © = (¢, ¢,b,), ¢ is the set of disease-specific
patient representation, ¢ is the set of latent factors of dis-
eases, and b, is the bias. s(u, dy) is the score function, rep-
resenting the possibility of patient « having disease dj. The
score function is defined as s(u,dy) = ¢¢ - ¢p + b?, and
P(s(u,dy) > s(u,dy)|©) is then defined as:

1
1+ es(u,dk)fs(u,dk/)

P(s(u,dy) > s(u,dy)|®) = 2)
Regularization based on Disease Correlation

With latent factor based BPR framework, we can easily in-
tegrate extra knowledge by joint matrix factorization and/or
regularization [Yuan er al., 2011]. In this paper, we regular-
ize latent factors of diseases by their co-occurrence, assuming
that frequent co-occurring diseases tend to have similar rep-
resentations. We firstly construct correlation network among
diseases:

3)

where Ay represents the set of visits containing disease £,
|Ar N Ay/| denotes the number of the set of visits containing
both disease k and k', and |A; U Ay/| the number of the set
with either diseases.

After we derive the disease correlation network, we incur
regularization term for disease latent factors and add a Gaus-
sian prior in the model:

P(Tkprlbrer) = N (T pr — Sigmoid(¢f ¢r)[0, brer) (4)
where b,.; is the bias.

4.3 Future Visit Time Modeling

Point process is an effective mathematical tool to model se-
quential data. Point process models the dynamics of the se-
quence by using the conditional intensity function A(¢): for a
short time window [t,t + dt), A\(t)dt = P{event in [t,t +
dt)|H.} is the probability of the occurrence of a new event
conditioned on the history H;. Given the conditional density
function f(¢) and its corresponding cumulative distribution
function F'(t), the conditional intensity function can be spec-
ified as:

f)de
A)dt = ———
(Ot = 155 5)
Then the conditional density function can be obtained by:
t
£ = MOen(- [ Ne)de) ©
ty

Conditional Intensity based on Historical Information
Based on time-aware patient representation & of the i-th pa-
tient, we can now formulate the conditional intensity function
by:

Ni(t) = exp(th - & + ac(t —tg) + by) (7)

where 7 is a column vector, and b, is a scalar as the bias. o
represents the time-aware weight. More specifically: 1) The
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first term represents the accumulative influence from the his-
torical visits. Compared to the fixed parametric formulations
of typical point process methods for the past influence, we
now have a highly non-linear general specification of the de-
pendency over the history. 2) The second term emphasizes
the influence of time. 3) The last term gives a base intensity
level for the occurrence of the next event. The exponential
function outside acts as a non-linear transformation and guar-
antees that the intensity is positive.

Based on Eq. 6 and 7, we can derive the likelihood that the
next visit will occur at the time J + 1 given the history by the
following equation:

Ctyp) = filtsp) = )\i(tJ)exp(_/ " Xi(e)de) (8)

ty

4.4 Joint Optimization

Deep neural networks are flexible to mix and match different
input signals and capture their correlations through hidden
layers. Latent representation of users, often used in factor
models, can be easily incorporated into our network just like
other embedding representations do. Having the two tasks at
hand and the inputs, we consider solving them jointly. The
parameters in model are then trained by minimizing the com-
bined objective:

N N
min — Z logli(0s11|0©) — Bt Z logl;(t+1)
i—1 i=1 9)
- B Z logp(Yh i |bret)

k,k'€D A k#k!

where [, 5, are hyperparameters used for tuning impacts
from the regression loss of time prediction and regularization
loss of disease correlation to the overall loss.

4.5 Diagnosis and Time Prediction

Diagnosis Prediction. After we learn the disease factor set
¢ = {¢1,02,...,6p} and the disease-specific patient repre-
sentation set ¢4 = {¢¢, ¢4, ..., éﬁm}, we can make personal-
ized diagnosis prediction by:

s(u,di) = &L - g1, + ba (10)

We sort the diseases for the patient » in descending order ac-
cording to their scores, and return the top-k diseases as diag-
nosis.

Time Prediction. We estimate the timing for the next event
using the expectation:

frar = / L ()t (11)
t

J

In general, the integration in above equation does not have
analytic solutions, so we can apply commonly used numerical
integration techniques [Isaacson, 1989] for one-dimensional
functions to compute above equation instead.
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Datasets CMS(08-10) MIMIC III
# of patients 755,215 46,520
# of visits 1,332,822 58,976
Avg. # of visits per patient 1.76 1.27
# of unique medical codes 18,599 9,017
-# of unique diagnose codes 7,873 6,985
-# of unique procedure codes 10,726 2,032

Table 1: Statistics of Datasets

5 Experiments
5.1 Dataset

We conduct experiments on two real world datasets, CMS
(2008-2010)* and MIMIC III*. CMS is synthetic medical
claims data while MIMIC is clinical data collected from ICU
patients. MIMIC dataset mainly consists of clinical logs of
patients admitted to critical care units with serious conditions.
The statistics of the two datasets are provided in Table 1. For
CMS dataset, we remove patients with less than four visit.
Similarly, for small volume MIMIC III dataset, we remove
patients with less than three visits.

For both datasets, each visit is represented by a set of struc-
tured medical codes, including disease codes (ICD 9) and
procedure codes. There have more than 5,000 unique ICD-
9 codes and 2,000 procedure codes for both datasets. To re-
duce the size of feature set and avoid information overload,
we group codes into coarse-grained categories. For both dis-
ease and procedure codes, we extract the top-2 digits, yielding
112 unique disease groups and 112 unique procedure groups
for CMS data, 110 disease groups and 109 procedure groups
for MIMIC III data.

We randomly split the dataset into training, validation and
testing sets in the ratio 8:1:1, where the validation set is used
to determine the best values of parameters.

5.2 Settings

In order to verify the performance gain by introducing the
regularization of the disease correlation, we create two vari-
ants for our method: one with regularization (PacRNN), the
other without regularization (PacRNNwr). We then compare
our methods with the state-of-the-art approaches for diagno-
sis prediction and future visit time prediction, respectively.
Diagnosis prediction task. Three state-of-the-art methods
are selected as baselines for diagnosis prediction task:

e DoctorAl: [Choi et al., 2016a] embeds visits into vector
representations and then feeds them into the GRUs. The
hidden states of the GRUs are used to predict the medical
codes of the future visit.

e RETAIN: [Choi et al., 2016b] proposes an interpretable
predictive model in healthcare with reverse time atten-
tion mechanism.

e Dipole: [Ma et al., 2017] uses attention-based bidirec-
tional recurrent neural networks for diagnosis predic-
tion.

3https://www.cms.gov
*https://physionet.org
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Table 3: The AUC scores of Diagnosis Prediction Task

Time prediction task. We further compare our method with
the following approaches for evaluating the performance of
visit time prediction:

e DoctorAl: It is also capable of predicting time.

e Homogeneous Poisson Process: The intensity function

is a constant, which produces an estimate of the average
inter-event gaps.

o Hawkes Process: We fit a self-excitation Hawkes pro-
cess for the intensity function modeling A(t) = o +

& th<t V(ta tj)'

e Self-correcting Process: We fit a self-correcting pro-
cess for the intensity function modeling A(f) =
exp(ut — th <t @)

CMS Data MIMIC Data

DoctorAl
s PacRNNwr
mmm PacRNN

Poisson

Hawkes

SelfCorrecting
1.5235

Poisson
Hawkes
SelfCorrecting

DoctorAl 1o
s PacRNNwr
mmm PacRNN
2.1012

2 2.04242:07122.0635 1.42111.4282

RMSE
RMSE

1.99391 9813 14 1.3877

1.29521.2843
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Figure 3: Comparison with other methods on time prediction.

Evaluation Metrics. To evaluate the performance of each
method on diagnosis prediction task, we adopt the Top-k re-
call and AUC score as measurement metrics. Top-k recall
is defined as the number of correct diagnosis codes in top &
ranked list divided by the number of ground-truth diagnoses.
In our experiments, we set k to be 10, 20, and 30. AUC [Ren-
dle et al., 2009] measures the overall results of pairwise rank-

Datasets Dx Dx&Time
Methods Recall@10 [ Recall@20 [ Recall@30 | Recall@10 | Recall@20 | Recall@30 | RMSE
Dipole 0.4624 0.6840 0.8172 N/A
Retain 0.4572 0.6835 0.8150 N/A
CMS DoctorAl 0.4552 0.6804 0.8122 0.4516 0.6810 0.8121 2.0636
PacRNNwr 0.4662 0.6889 0.8216 0.4641 0.6871 0.8211 1.9939
PacRNN 0.4681 0.6893 0.8222 0.4663 0.6887 0.8217 1.9813
Dipole 0.5094 0.7235 0.8417 N/A
Retain 0.4698 0.7068 0.8335 N/A
MIMIC 11 |_DoctorAl 0.4655 0.6959 0.8323 0.4627 0.6979 0.8297 1.4282
PacRNNwr 0.5584 0.7704 0.8747 0.5555 0.7617 0.8702 1.2952
PacRNN 0.5665 0.7749 0.8779 0.5631 0.7640 0.8733 1.2843
Table 2: The Top-k Recalls of Diagnosis Prediction Task with two settings (Dx and Dx&Time).
Methods CMS MIMIC 1T ing. It is suitable for highly imbalanced datasets, as in our
i Dx Dx&Time| Dx Dx&Time case where the negative diseases take a high proportion.
Dipole 0.8745 | N/A 0.8905 | N/A
Retain 0.8728 | N/A 0.8887 | N/A N
DoctorAl 0.8717 | 0.8712 | 0.8864 | 0.8857 : I(s(u.d) > s(u.d
PacRNNwr 0.8776 | 0.8769 | 0.9063 | 0.9042 AUC — izt 2yt aveny, T, dy) > sui, di))
PacRNN 0.8781 | 0.8773 0.9091 | 0.9074 Zf\; LPLIINE

(12)

where I(-) is an indicator function that equals to 1 if
s(ug, dj) > s(uy, dy), otherwise 0.

To evaluate the performance of each method on time pre-
diction task, we adopt root-mean-square error (RMSE) which
is a frequently used measure of the differences between real
values and predicted values.

13)

Implementation Details. We set 8; = 1 and 8, = 0.01 with
the help of validation set. In all experiments, the learning
rate is set to be 0.001, embedding size [ = 50 and hidden
state size p = 50 for baselines and our methods. We also use
regularization (12 norm with the coefficient 0.0001), drop-out
strategies (with the drop-out rate 0.5) and batch size 20 for all
methods.

In BPR, ranking loss optimization on all disease pairs
(dg,dgr) € (DT, D7) of each patient leads to poor conver-
gence owing to negative skewness, and high computation cost
(O(ID*||D™)). Therefore, for each dj, € DT, we randomly
sample 10 diagnosis dj, € D~.

We perform 100 iterations and report the best performance
for each method.

5.3 Experimental Results

Diagnosis Prediction Results
Table 2 shows the accuracies of the proposed PacRNN model
and baselines on both CMS and MIMIC III datasets for the
diagnosis prediction task. We report the results in two set-
tings: (i) optimization only for Diagnosis Prediction (Dx) and
(ii) joint optimization for both diagnosis and time predictions
(Dx&Time).

In Table 2, one can observe that the accuracies on the
MIMIC III dataset are higher than those on the CMS dataset.
The reason is that CMS is a kind of claims data, in which
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ICD Code Description ICD Code Description ICD Code Description
(Real) (PacRNN) (Doc-
torAI)
1 82 Fractures 20 Malignant Neoplasm of Lym- 8% Symptoms
phatic and Hematopoietic Poi-
etic Tissue
2 99 Other and Unspecified Effects S1* Other Diseases of Respira- 49 Chronic ~ Obstructive  Pul-
of External Causes tory System monary Disease and Allied
Conditions
3 51 Other Diseases of Respiratory 99* Other and Unspecified Ef- 28 Diseases of the Blood and
System fects of External Causes Blood-Forming
4 48 Pneumonia and Influenza 27 Other Metabolic and Immu- 40 Hypertensive Disease
nity Disorders
5 57 Other Diseases of Digestive 48%* P ia and Infl 27 Other Metabolic and Immu-
System nity Disorders
6 42 Other Forms of Heart Disease 26 Nutritional Deficiencies 30 Neurotic Disorders, Person-
ality Disorders and Other
Nonpsychotic Mental Disor-
ders
7 03 Other Bacterial Diseases 03* Other Bacterial Diseases 45 Diseases of Veins and Lym-
phatics and Other Diseases of
Circulatory System
8 78 Symptoms 78* Symptoms 03* Other Bacterial Diseases
9 28 Diseases of the Blood and 57* Other Diseases of Digestive
Blood-Forming Organ System
10 29 Psychosis 99* Other and Unspecified Ef-
fects of External Causes

Table 4: Comparison of predicted diagnoses for a real patient in MIMIC III data

revisit to hospitals can be affected by many personal factors,
such as financial status, the location of residence, means of
transportation, and lifestyle. In comparison, MIMIC III is
collected from ICU, in which diseases are generally severe
and have high possibility to reoccur.

We note that the accuracy of DoctorAl is somewhat lower
than others on both datasets. The main reason is that Doc-
torAl is the only one without using attention mechanism. It
predicts the diagnosis depending on the last hidden state of
the RNN, which cannot memorize all the past information,
causing that DoctorAl mainly focuses on the information of
recent visits. However, RETAIN, Dipole and our methods,
i.e., PacRNNwr and PacRNN, can take all the visits into con-
sideration. By assigning different attention weights to each
visit, these methods achieve better performance than Doc-
torAl. Furthermore, our methods directly optimize for rank-
ing, outperform Retain and Dipole on both datasets.

Compared with PacRNNwr, PacRNN achieves better per-
formance by regularizing latent factors of diseases by their
co-occurrence, assuming that frequent co-occurring diseases
tend to have similar representation. Note that the accuracies
of the joint task are lower than those of the task only predict-
ing diagnosis, because that the hypothesis space of the joint
prediction task is larger.

We also measure all methods by AUC metrics. The re-
sults are shown in Table 3. Similarly, our proposed models,
PacRNNwr and PacRNN achieve better ranking performance.

Time Prediction Results
We use the expectation of the log time interval between the
current and next events as our estimation. For PacRNN,
PacRNNwr and DoctorAl, we make the time prediction by
jointly optimizing diagnosis prediction and time prediction,
namely, with setting Dx&Time as shown in Table 2.

The right column of Table 2 shows the RMSE values for
the time prediction task, the smaller the better. Note that only
DoctorAl of the baselines in Table 2 is capable of predicting
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next visit time. One can observe that our methods outperform
DoctorAl on both datasets, demonstrating that time predic-
tion models based on point process can achieve higher accu-
racy. Again, attention mechanism proves to be useful in time
prediction task.

To further verify the performance of our methods on time
prediction task. We introduce more point process based base-
lines. Fig. 3 shows the time prediction accuracies of all meth-
ods. It shows that our methods PacRNNwr and PacRNN have
better performance. Hawkes processes, Homogeneous Pois-
son Process, and Self-correcting Process are all typical point
process models, which are making specific assumptions about
the functional forms of the generative processes, which may
not reflect the reality, and thus the respective fixed paramet-
ric representations may restrict the expressive power of these
models.

Case Study

Table 4 shows one example patient from real MIMIC III data,
with top-10 diseases predicted by PacRNN and DoctorAl.
The ICD codes marked with an asterisk are correctly pre-
dicted. Our method has better ranking performance (3 correct
ones in top-5) than DoctorAl (1 in top-5). It is worth not-
ing that ICD code 51 (Other Diseases of Respiratory System)
and 48 (Pneumonia and Influenza) are correctly diagnosed by
PacRNN, in the rank positions of 2 and 5 respectively. Both
diseases are not observed in the historical visits of this pa-
tient, demonstrating that our method is capable of predicting
new diseases. The two diseases (ICD code 51 and 48) of-
ten co-occur. Regularization based on disease correlation can
help for correct predictions.

6 Conclusions

In this paper, we propose to formulate the clinical event pre-
diction problem as a pairwise ranking problem considering
the high rate of misdiagnosis and missed diagnosis across the
entire world. We propose PacRNN, an end-to-end pairwise-
ranking based collaborative recurrent neural networks for
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clinical event prediction. Experimental results on two real
world EHR datasets demonstrate the robust performance, in-
terpretability, and efficacy of PacRNN.
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