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Abstract
Electricity demand forecasting is a very impor-
tant problem for energy supply and environmental
protection. It can be formalized as a hierarchical
time series forecasting problem with the aggrega-
tion constraints according to the geographical hi-
erarchy, since the sum of the prediction results of
the disaggregated time series should be equal to the
prediction results of the aggregated ones. How-
ever in most previous work, the aggregation con-
sistency is ensured at the loss of forecast accura-
cy. In this paper, we propose a novel clustering-
based hierarchical electricity time series forecast-
ing approach. Instead of dealing with the geograph-
ical hierarchy directly, we explore electricity con-
sumption patterns by clustering analysis and build
a new consumption pattern based time series hier-
archy. We then present a novel hierarchical fore-
casting method with consumption hierarchical ag-
gregation constraints to improve the electricity de-
mand predictions of the bottom level, followed by a
“bottom-up” method to obtain forecasts of the geo-
graphical higher levels. Especially, we observe that
in our consumption pattern based hierarchy the rec-
onciliation error of the bottom level time series is
“correlated” to its membership degree of the corre-
sponding cluster (consumption pattern), and hence
apply this correlations as the regularization term in
our forecasting objective function. Extensive ex-
periments on real-life datasets verify that our ap-
proach achieves the best prediction accuracy, com-
pared with the state-of-the-art methods.

1 Introduction
Electricity demand forecasting is a crucial problem for power
grid [Li et al., 2012; Taylor, 2012]. Precise prediction can
give effective guidance to enable reasonable decision making
and management on power generation and supply, and ben-
efits the economy and environmental protection issues. As
the smart grid develops faster, massive number of individual
electricity consumption data (such as smart electricity me-
ter data) can be obtained conveniently [Zheng et al., 2013;
Siano, 2014]. The available electricity consumption data

with large scale and wide variety leads to new challenges to
the communities of research and industry [Ramchurn et al.,
2012].

In electricity demand forecasting, the system structure is
usually built on the geographical hierarchy [Yang et al.,
2015]. For instance, electricity demand in a city can be dis-
aggregated into ones of districts through the administrative
divisions, which are further disaggregated into ones of streets
and blocks, etc.. The “aggregation consistency” is a criti-
cal point in hierarchical forecasting, that is the disaggregated
time series should add up equally to the high level aggregat-
ed ones. Since the aggregation consistency is very unlikely
ensured in the forecasting of the entire time series indepen-
dently, the “bottom-up” approach is adopted. It forecasts all
of the bottom level disaggregated series and then adds the
forecasts results to form various aggregated series forecast-
s to achieve the aggregation consistency. However, when the
disaggregated data tends to have low signal-to-noise ratio, the
overall prediction accuracy especially for the disaggregated
series forecasting is poor [Taieb et al., 2017]. In recent work,
various optimal reconciliation approaches become the main-
stream. Hyndman et al. (2011) propose a solution of using
least squares reconciliation to deal with the hierarchical fore-
casting problem. They apply a regression model to optimally
reconcile the forecasts of the disaggregated and aggregated
series correspondingly. However, the aggregation consisten-
cy is often achieved at the expense of the forecasting accura-
cy, since the side effects of the reconciliation and adjustments
may enlarge the prediction errors.

In this paper, we propose a novel approach for electric-
ity demand hierarchical forecasting. Instead of dealing with
the geographical hierarchy directly, we make time series clus-
tering analysis for electricity consumption pattern detection.
Individual household electricity consumption (power usage)
usually follows a steady pattern of growth over time in some
extent. In this work we build a new consumption pattern
based time series hierarchy based on the clustering results.
When the time series with similar patterns are grouped to-
gether, the signal-to-noise ratio of the aggregated time series
will be risen significantly, and the prediction accuracy of the
aggregated ones will be improved. Figure 1 gives more il-
lustration on this phenomenon. Note that the forecast of the
electricity usage is composed of two parts: the ground truth of
the electricity usage (denoted by TA and TD for aggregated
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and disaggregated forecasts respectively) and the prediction
error (denoted by EA and ED for aggregated and disaggre-
gated forecasts respectively). With aggregation constraints,
we have the equation: TA + EA = Σ(TD + ED), and as the
ground truth of the electricity consumptions at different levels
are always equal, it can be deduced that EA = ΣED. There-
fore, if the EA is decreased then in overall the prediction er-
ror of the disaggregated forecastsED will be decreased either
with proper reconciliation methods. Based on the above mo-
tivation, we propose a new optimal reconciliation approach to
improve the forecasting ability of the disaggregated time se-
ries. Finally the “bottom-up” approach is applied for adding
up the disaggregated forecasts to form various high level ag-
gregated forecasts, hence the aggregation consistency on the
geographical hierarchy is realized.

In this paper, our main contributions are threefold:
1. We present a novel hierarchical electricity demand fore-

casting approach. Unlike the traditional “single path” so-
lution, we exploit the idea of electricity consumption pat-
tern analysis, the optimal reconciliation regression and the
“bottom-up” approach altogether to deal with the hierarchi-
cal electricity time series forecasting problem.

2. In our approach we present a novel electricity consump-
tion pattern based hierarchical forecasting method. It is based
on the observation that the reconciliation error of the dis-
aggregated time series is “correlated” to its membership de-
gree of the corresponding cluster (the consumption pattern).
Hence we propose a new optimization object function with
a regularization term of penalizing the correlation of the two
distributions.

3. We conduct experiments on two real-life datasets for
performance evaluations. In our experiments, the state-of-
the-art methods and the strong baselines are compared with
our method on hierarchical electricity demand forecasting ex-
tensively. The experimental results show that our method
achieves the best forecasting accuracy while keeping geo-
graphic aggregation consistency. Specially, Mean Absolute
Percentage Error (MAPE) of our approach is 2.50% lower
than that of the state-of-the-art methods.

2 Related Work
Base forecasting (BASE) [Hyndman et al., 2011] estimates
time series at all levels in a hierarchical structure inde-
pendently. Some common models, such as ETS (Smooth-
ing State Space model), are applied in the classical fore-
casting [Box and Jenkins, 1976; Hyndman et al., 2008;
De Livera et al., 2011]. Due to the characteristic of inde-
pendent forecasting, the predictions at different levels do not
adversely affect each other. But the aggregation consistency
is not taken into account in BASE. To satisfy the aggregation
consistency, Bottom-up [Athanasopoulos et al., 2009] adds
up the bottom-level forecasts to obtain the upper ones.

Recently, the optimal combined forecasting becomes the
mainstream in hierarchical time series forecasting with aggre-
gation consistency. It estimates initial forecasts at bottom lev-
el by using BASE, then these forecasts are reconciled accord-
ing to the geographic aggregation constraints. The method
of Ordinary Least Square (OLS) [Hyndman et al., 2011] re-
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Figure 1: The electricity consumption pattern vs the region aggrega-
tion. By time series clustering, 278 time series are aggregated as the
consumption pattern (the blue curve). The same number of 278 time
series in one region are aggregated as the region aggregation time
series (the red curve). Note that the consumption pattern has more
regularity and its prediction error is less than that of the regional ag-
gregated series. In addition, compared with single individual series,
consumption pattern also has more regularity [Wijaya et al., 2015].

gards the covariance matrix as an identity matrix in the ad-
justment model learning. Although OLS ensures aggregation
consistency, the forecasting accuracy may be decreased due
to the simple assumption of covariance matrix. HLS method
[Athanasopoulos et al., 2015] obtains weights from the hier-
archical structure. It assumes that forecast errors of time se-
ries at the same level are equivalent while that of series at dif-
ferent levels are not. Different from HLS, other optimal com-
bined forecasting methods adopt weight least square method
[Wickramasuriya et al., 2015]. WLS [Hyndman et al., 2016]
estimates the diagonal part of the covariance matrix by us-
ing the sample variance of the pre-forecasts. Because WLS
estimates the covariance matrix based on the historical ob-
servations (pre-forecasts), the adjustments at the bottom level
series may be affected negatively when the time series is not
steady. MinT-Reg [Taieb et al., 2017] obtains the sparse ad-
justments by solving a regression problem with the elastic net
penalty.

For the general hierarchical forecasting problem, the
Bayesian framework is used to obtain the proportion changes
in hierarchical domestic tourism forecasting [Park and Nas-
sar, 2014]; An adaptable regression method combined with
multiple scalar forecasts to obtain accurate weather predic-
tions is proposed [Williams et al., 2016]. A data-driven deci-
sion support system [Huber et al., 2017] is presented to pre-
dict the hierarchical demand of fast moving consumer goods.

3 Our Proposed Method
3.1 Consumption Pattern Analysis and Hierarchy

Construction
We explore consumption patterns of electricity smart meter
data. Consumption patterns are extracted from amounts of
individual household time series by using the X-means [Pel-
leg et al., 2000] clustering algorithm. As a toy example, t-
wo consumption patterns are extracted from clustering eight
electricity time series, which is shown in Figure 2.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3507



Cluster 2

Cluster 1

Clustering

Aggregation

Aggregation

Consumption Pattern 1

Consumption Pattern 2

Electricity Time Series

Figure 2: Consumption pattern analysis. The consumption pattern
based hierarchy is build with the number of the high level series
Na = 3 and that of the bottom level series Nb = 8.

The ground truth of the electricity consumptions at differ-
ent levels are always equal, as illustrated in Section 1. If the
forecast of aggregated time series is accurate, the average pre-
diction accuracy of individual time series will be likely im-
proved under the aggregation constraints and reconciliation.
We observe that the pattern of electricity time series is more
regular than the aggregated time series based on geograph-
ical hierarchy (Figure 1). The prediction error of pattern is
hence less than that of the regional aggregated time series.
Motivated by the idea, we therefore construct a consumption
pattern based hierarchy (Figure 3), consisting of patterns (the
high level series) and individual time series (the bottom level
series).

3.2 Hierarchical Forecasting Based on
Aggregation Consistency

In the consumption pattern based hierarchy, the bottom lev-
el series adds up consistently over levels. We reconcile the
bottom level forecasts under the constraints of āp,T+h =
Sc,ab̄T+h, where āT+h and b̄T+h denote the mean aggregat-
ed h-period forecasts and disaggregated ones with T given
historical observations respectively. Sc denotes an N × Nb
summing matrix derived from the consumption pattern based
hierarchical structure. It consists of an Na × Nb submatrix
Sc,a and an Nb ×Nb identity matrix. N = Na +Nb.

Sc =

[
Sc,a
INb

]
=

1 1 1 1 1 1 1 1
1 0 1 0 1 0 0 0
0 1 0 1 0 1 1 1

INb

 . (1)

Our goal is to obtain the reconciled bottom level forecasts
by minimizing the expectation of square forecast errors.

arg min .E

[∥∥∥Yp,T+h − Scb̃T+h

∥∥∥2

2

]
= arg min

Q
.E

[∥∥∥Yp,T+h − ScQŶp,T+h

∥∥∥2

2

]
,

(2)

where

Yp,T+h =



ytop,T+h

ypattern1,T+h

ypattern2,T+h

yb1,T+h

.

.
yb8,T+h

 , b̃T+h =

ỹb1,T+h

.

.
ỹb8,T+h

 . (3)

Ŷp,T+h =

[
âp,T+h

b̂T+h

]
=



ŷtop,T+h

ŷpattern1,T+h

ŷpattern2,T+h

ŷb1,T+h

.

.
ŷb8,T+h

 . (4)

Yp,T+h denotes an N -length vector of real forecasts at time
T+h, b̃T+h denotes anNb-length vector of reconciled bottom
level forecasts, Q denotes an Nb ×N transformation matrix,
b̂T+h and Ŷp,T+h denote initial forecasts at bottom level and
all levels based on ETS model, respectively.

The optimal solution in Equation 2 can be obtained by the
best linear unbiased reconciled forecasts [Wickramasuriya et
al., 2015].

b̃T+h = Q∗Ŷp,T+h = (Sc
′W−1

h Sc)
−1Sc

′W−1
h Ŷp,T+h, (5)

where Wh denotes the covariance matrix of the h-period a-
head forecast errors and its estimator of one-ahead base fore-
cast errors is written as:

Wh = kh
1

T

T∑
t=1

(
Yt+1 − Ŷt+1

)(
Yt+1 − Ŷt+1

)′
, (6)

where kh denotes a positive constant. To simple the compu-
tation, Wh is assumed to be an identity matrix.

According to generalized least squares (GLS) [Kariya and
Kurata, 2004], the bottom level forecasts given by Equation 5
can also be estimated from the regression model in Equation
7.

Ŷp,T+h = ScβT+h + ξh, (7)

where βT+h is the conditional mean of the reconciled bot-
tom level forecasts b̃T+h under the observations at all level-
s. ξh is the estimated error of initial forecasts, whose mean
and variance are zero and covariance matrix Ŵh, respective-
ly. The GLS estimation of the bottom level forecasts then are
obtained by minimizing the squared Mahalanobis length of
the residual vector Ŷp,T+h − Scb̃T+h,

arg min
b̃T+h

(
Ŷp,T+h − Scb̃T+h

)′
Ŵh
−1(

Ŷp,T+h − Scb̃T+h

)
.

(8)
In this way, our problem is formulated as an optimal GLS
regression problem of forecast error, which can be effective-
ly solved by using gradient descent method [Snyman, 2005].
This method is denoted by CHF in this work.

Let ΘT+h be an Nb-length vector of adjustments of the
bottom level time series, we have b̃T+h = b̂T+h + ΘT+h.
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Figure 3: A clustering-based hierarchical electricity time series forecasting approach.

Then our new optimization object function is as follows:

arg min
ΘT+h

(
Ŷp,T+h − Scb̂T+h − ScΘT+h

)′
Ŵh
−1(

Ŷp,T+h−

Scb̂T+h − ScΘT+h

)
+ λ ‖Θnorm,T+h − Vnorm‖22

s.t. b̂T+h + ΘT+h ≥ 0

,

(9)

where Θnorm,T+h = ( |θ1|√
1

Nb

∑Nb
i=1(θi)2

, ...,
|θNb |√

1
Nb

∑Nb
i=1(θi)2

)

, θi denotes the i-th unknown value of adjustment of the
bottom level time series, 1 ≤ i ≤ Nb, Vnorm =

( d1√
1

Nb

∑Nb
i=1(di)2

, ...,
dNb√

1
Nb

∑Nb
i=1(di)2

), and di denotes the i-th

distance between the bottom level time series and its corre-
sponding clustering center (the consumption pattern), which
can be estimated by using clustering analysis.

3.3 The Regularization
The regularization term in Equation 9 is defined by L2 nor-
m [Hastie et al., 2015] of the distance between Θnorm,T+h

and Vnorm. λ > 0 is a penalty parameter. The constraint
of b̂T+h + ΘT+h ≥ 0 ensures the reconciled forecasts are
greater than or equal to zero. This method is referred to as
CHF-Reg in the rest of the paper. The regularization term
is based on exploring the correlation between consumption
pattern and individual electricity time series. Figure 4 shows
that the distribution of the absolute value of ideal adjustment
of real electricity individual time series is similar to that of
the distances from the time series to the clustering center (the
corresponding pattern).

A time series is more similar to the pattern means it is more
stable and regular. That is, when the time series is closer to
the clustering center, its forecast is more accurate and there-
fore requires smaller adjustment. In order to find the optimal
adjustment, we hence introduce the regularization term to pe-
nalize the correlation between the distribution of the adjust-
ment of series and that of its membership degree of the corre-
sponding pattern. When the time series is closer to clustering
center, the corresponding adjustment obtained by solving E-
quation 9 will be smaller.
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Figure 4: The distribution of the absolute value of ideal adjustment
and the distance between the time series and the corresponding clus-
tering center.

3.4 High Level Aggregated Forecasting

In order to keep geographical aggregation consistency, the
“bottom-up” method is applied as shown in Figure 3. Based
on the geographical hierarchy, we obtain the regional fore-
casts at all levels by summing the optimally reconciled bot-
tom level forecasts. Yregion,T+h = Sregion(b̂T+h + Θ∗T+h).
Where Sregion denotes a summing matrix derived from the
geographical hierarchical structure.

4 Experiments

4.1 Experimental Datasets

We use two real-life datasets on individual household electric
power consumption. The first one is power grid data from
State Grid Shanghai Municipal Electric Power Company. It
contains 3078 time series, taken from January 1th, 2014 to
February 19th, 2015, at a sampling rate of 24 hours. The
second one is public electricity data from Energy Demand
Research Project: Early Smart Meter Trials (EDRP) [Raw
and Ross, 2011]. It contains 2501 time series at a sampling
rate of 30 minutes.
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4.2 Experimental Setup
In the experiments, we compute one-step-ahead rolling fore-
casts [Hyndman et al., 2016] with historical consumption ob-
servations for the two datasets. Specifically, we repeat 15
forecasting tasks on the smart grid data from January 1th,
2014 to February 4th, 2015, so as to generate electricity de-
mand in half a month. While for EDRP data, we repeat 48
forecasting tasks, from May 9th 00:00, 2009 to May 20th
09:30, 2009, in order to predict electricity demand in the w-
hole day.

For each forecasting task, we use Mean Absolute Percent-
age Error (MAPE) [Wijaya et al., 2015] and Root Mean
Square Error (RMSE) [Yang et al., 2017] to measure fore-
casting errors. They indicate the relative forecast errors and
the average forecasting errors of household electricity con-
sumption at one time, respectively.

In the experiments, we compare our method with the strong
baselines and the state-of-the-art methods, including BASE,
Bottom-up [Athanasopoulos et al., 2009], HLS [Athana-
sopoulos et al., 2015], WLS [Hyndman et al., 2016] and
MinT-Reg [Taieb et al., 2017]. In our CHF and CHF-Reg,
32 types of patterns are extracted by clustering amounts of
time series whose dimension is reduced to 50 by using P-
CA [Hotelling, 1933]. The value of λ are 3× 105 and 104 for
smart grid and EDRP dataset respectively.

4.3 Experimental Results and Analysis
The prediction accuracy at each level and the average statisti-
cal results for the two real-life datasets are shown in Table 1
- 4, respectively. The last columns in these tables indicate
whether the forecasting methods satisfy the geographical ag-
gregation consistency.

From the tables, we can see in general that the upper level
predictions have less errors than the bottom level forecasts.
Because the upper level forecasts have higher signal-to-noise
ratios due to the aggregation. We can also observe that BASE
has the least forecast errors in some upper levels, but it can-
not preserve the constraints of geographical aggregation. In
contrast, CHF-Reg not only satisfies the constraints, but al-
so achieves a higher forecasting accuracy than BASE in most
cases.

In Table 1 and Table 2, the MAPE of BASE is 0.14% low-
er than that of Bottom-up, and is 1.17% lower than that of
HLS. It suggests that Bottom-up and HLS achieve the aggre-
gate consistency at the expense of overall prediction accu-
racy. In contrast, CHF-Reg forecasts achieve lower MAPE
and RMSE of 6.19% and 4.714 respectively than HLS. This
is because that CHF-Reg optimally reconciles forecasts of the
time series at bottom level according to the distances between
these series and their corresponding clustering centers, while
HLS uniformly reconciles the forecasts at the same level. The
RMSE of CHF-Reg forecasts are 27.215 lower than that of
WLS. The reason is that CHF-Reg estimates the adjustments
based on patterns extracted from historical observations. Al-
though both MinT-Reg and CHF-Reg have lower MAPE val-
ues than other methods, CHF-Reg still shows the best pre-
diction performance. Specially, one-day electricity consump-
tion forecasts of one household based on CHF-Reg is aver-
agely 0.502 kilowatt hour more precise than MinT-Reg. This

is because CHF-Reg can estimate the appropriate adjustment
values applied to the forecasts at all levels, which effectively
mitigates the negative effect of estimation errors in the ad-
justments. In addition, CHF-Reg has better forecasting per-
formance than CHF. It demonstrates the effectiveness of the
introduced regularization in the object function.

Figure 5 and Figure 6 show the comparison of prediction
accuracy for the six methods averaged over all time series
at the bottom and upper levels, respectively. We can see
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Figure 5: RMSE averaged over time series at the bottom level (smart
grid dataset).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TIME(DAY)

0

200

400

600

800

1000

RM
SE

Bottom-up
HLS
WLS
MinT-Reg
CHF
CHF-Reg

Figure 6: RMSE averaged over time series at the upper levels (smart
grid dataset).

that CHF-Reg (solid line with circle markers) always has less
forecasting errors at different horizontal coordinates than oth-
er methods.

In the forecasting results on the EDRP dataset in Table 3
and Table 4, it can also be found that CHF-Reg obtains the
most precise forecasts than other methods that satisfy aggre-
gation consistency. We can see that CHF-Reg forecasts show
more obvious advantages on the first dataset than the second
one. This is because the electricity time series data in the
second dataset are more stable and hence their adjustments
will be smaller. Overall, in term of both MAPE and RMSE,
CHF-Reg has better predictive power and more robustness on
two real datasets than strong baselines and the state-of-the-art
methods.
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Method Top Level 5 Level 4 Level 3 Level 2 Level 1/ Bottom Average Consistency
BASE 5.81 8.98 9.71 16.04 16.32 64.05 62.30 ×

Bottom-up 11.56 13.54 14.42 20.01 19.97 64.05 62.44
√

HLS (2015) 6.59 9.49 10.18 16.23 16.20 65.27 63.47
√

WLS (2016) 9.60 11.20 11.94 17.75 17.80 62.05 60.43
√

MinT-Reg (2017) 5.91 8.81 9.70 15.74 15.69 61.46 59.78
√

CHF 5.87 8.67 9.50 15.56 15.54 60.34 58.70
√

CHF-Reg 5.85 8.88 9.51 15.69 15.53 58.87 57.28
√

Table 1: The comparison of MAPE obtained by different methods (smart grid dataset).

Method Top Level 5 Level 4 Level 3 Level 2 Level 1/ Bottom Average Consistency
BASE 2056.837 541.551 245.579 155.137 90.451 5.530 50.839 ×

Bottom-up 3717.071 963.696 418.488 265.062 148.939 5.530 89.711
√

HLS (2015) 2260.852 592.863 263.710 167.549 97.585 5.436 55.477
√

WLS (2016) 3161.706 838.277 376.224 241.981 135.909 5.500 77.978
√

MinT-Reg (2017) 2076.402 546.970 246.325 156.440 91.150 5.425 51.265
√

CHF 2067.599 551.384 247.533 158.190 93.195 5.382 51.388
√

CHF-Reg 2062.086 541.505 241.895 154.130 90.182 5.351 50.763
√

Table 2: The comparison of RMSE obtained by different methods (smart grid dataset).

Method Top Level 5 Level 4 Level 3 Level 2 Level 1/ Bottom Average Consistency
BASE 3.60 22.29 21.14 21.65 26.04 68.69 67.21 ×

Bottom-up 11.90 25.56 24.71 24.51 28.16 68.69 67.30
√

HLS (2015) 4.45 22.12 20.89 20.92 24.55 66.34 64.91
√

WLS (2016) 5.97 22.82 21.59 21.71 25.20 66.71 65.28
√

MinT-Reg (2017) 3.72 44.83 35.02 31.98 32.09 66.46 65.36
√

CHF 3.70 23.11 20.92 20.83 24.24 66.34 64.90
√

CHF-Reg 3.69 22.93 20.61 20.48 24.08 65.23 63.82
√

Table 3: The comparison of MAPE obtained by different methods (EDRP dataset).

Method Top Level 5 Level 4 Level 3 Level 2 Level 1/ Bottom Average Consistency
BASE 29.290 8.790 6.160 4.269 2.506 0.244 1.015 ×

Bottom-up 70.673 16.395 10.893 6.832 3.574 0.244 1.966
√

HLS (2015) 33.704 8.814 6.057 4.072 2.347 0.242 1.051
√

WLS (2016) 40.661 10.076 6.833 4.459 2.499 0.243 1.206
√

MinT-Reg (2017) 29.887 8.495 5.985 4.099 2.402 0.243 0.999
√

CHF 29.293 8.066 5.590 3.752 2.192 0.242 0.952
√

CHF-Reg 29.348 7.942 5.526 3.709 2.157 0.243 0.945
√

Table 4: The comparison of RMSE obtained by different methods (EDRP dataset).

5 Conclusion
Aggregation consistency is one of the critical points in hi-
erarchical time series forecasting. In most of the previous
work, it is considered that the prediction accuracy is usually
affected by the geographical aggregation constraints. In this
work we demonstrate that a flexible usage of the aggrega-
tion constraints could bring the improvement of the electrici-
ty demand forecasting. To deal with the problem, we build a
new data hierarchy by electricity consumption patterns anal-
ysis. Then based on the new hierarchy and our proposed op-
timization regression method with regularization, the predic-
tion accuracy of the aggregated and disaggregated times se-
ries are significantly improved on the real-life datasets. In fu-

ture work, we will explore new hierarchy building approaches
and the optimization prediction with aggregation consistency
in the electricity demand forecasting problem and other ap-
plication fields.
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