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Abstract

Traditional metric learning methods aim to learn
a single Mahalanobis distance matrix M, which,
however, is not discriminative enough to character-
ize the complex and heterogeneous data. Besides,
if the descriptors of the data are not strictly aligned,
Mahalanobis distance would fail to exploit the re-
lations among them. To tackle these problems, in
this paper, we propose a multi-level metric learn-
ing method using a smoothed Wasserstein distance
to characterize the errors between any two samples,
where the ground distance is considered as a Maha-
lanobis distance. Since smoothed Wasserstein dis-
tance provides not only a distance value but also a
flow-network indicating how the probability mass
is optimally transported between the bins, it is very
effective in comparing two samples whether they
are aligned or not. In addition, to make full use
of the global and local structures that exist in data
features, we further model the commonalities be-
tween various classification through a shared dis-
tance matrix and the classification-specific idiosyn-
crasies with additional auxiliary distance matrices.
An efficient algorithm is developed to solve the
proposed new model. Experimental evaluations on
four standard databases show that our method ob-
viously outperforms other state-of-the-art methods.

1 Introduction

Metric learning problem targets at learning an optimal dis-
tance matrix M via minimizing the distance function, such as
Mahalanobis distance

dni(x; x;) = \/(Xi —x;) TM(x; — x;), 6]

to capture the important relationships among data for a given
task. It has been shown to be indispensable when used
in conjunction with many computer vision techniques that
heavily rely on distances or similarities [Roth et al., 2014;
Hu et al., 2014].

To obtain a well-learned M, various kinds of metric
learning algorithms have been proposed, e.g., large-margin
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2919

Figure 1: An illustration of the proposed method. Red filled circles
are target neighbors lied in different regions of sample P’s local
neighborhood. Solid squares are differently labeled data which also
lied in P’s local neighborhood. During training process, a global
distance matrix and several local distance matrices are learned with
respect to different regions. After training, similarly labeled samples
get closer while differently labeled samples are pulled farther away
from sample P.

nearest neighbors (LMNN) [Weinberger and Saul, 2009],
information-theoretic metric learning (ITML) [Davis et al.,
20071, logistic discriminant metric learning (LDML) [Guil-
laumin et al., 2009], robust metric learning [Luo and Huang,
2018; Wang et al., 2014], etc. Among all these works, LMNN
is widely used and generalized. If we denote the similar sam-
ple pairs by S and triplet constraint by R as:

S = {(x4,x;),x; and x; are similar},
R = {(xi,X;,X) : X; is more similar to x; than to xj },

(2
then LMNN model can be formulated as:
- 2
gin (=) Y daCax)Fa Do G
(xi,%;)€S (i,5,k)ER 3)

s.t. dIQ\A(Xi,Xk) — dIQ\A(Xi,Xj) Z 1-— gijka
V(xi,x5,%xk) € R,

where £ € [0, 1] controls relative weight between two terms,
and &;;;, is a safety margin distance for each triplet. Although
LMNN is proved to be very effective in learning a good Ma-
halanobis distance for practical problems, it is sensitive to Eu-
clidean distance when it computes neighbors of each sample
at the beginning.

As with LMNN, most metric learning works mainly fo-
cus on improving the discriminability of the distance matrix
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M via minimizing the squared Mahalanobis distance from
similar sample pairs. Especially, the descriptors of the sam-
ple pairs they address are usually assumed to be aligned in
advance. However, in practice, such an assumption is often
violated due to some unavoidable factors like geometrical de-
formation, non-linear lighting changes and heavily intensity
noise. In this case, Mahalanobis distance is not applicable
due to its limitation on descriptors of sample data.

Fortunately, the Wasserstein distance, as a cross-bin dis-
tance function, is good at dealing with such kind of hard-to-
align problem. It at present plays an important role in many
practical applications, including computer vision, statistics
and etc [Bisot et al., 2015]. The original Wasserstein dis-
tance is motivated by the theory of optimal transport and
some related methods used in image processing and com-
pressed sensing [Rubner ef al., 2000]. Due to its high time
complexity, many researchers try to improve the efficiency
by simplifying the linear programming formulation with re-
gard to Wasserstein distance or designing a parallel method
for Wasserstein distance related problems [Ling and Okada,
2007; Li et al., 2017].

In this paper, we proposed a novel multi-level metric
learning method using smoothed Wasserstein distance as a
measure of errors between samples. To enhance the dis-
criminability of model, we choose the ground distance as
a Mahalanobis distance. Meanwhile, to take advantage of
the crucial structured information that exist in data space,
we learn a global smoothed Wasserstein distance through a
shared distance matrix and local smoothed Wasserstein dis-
tance with additional auxiliary distance matrices, where the
former reflects commonalities between various classification
and the later captures classification-specific idiosyncrasies.
Smoothed Wasserstein distance yields not only a distance
value but also a optimal transformation plan. Thus, our
method is more stable in characterizing the differences be-
tween two samples with noise than traditional Euclidean or
Mahalanobis distance. We propose to jointly optimize the
Mahalanobis distance matrix in the ground distance and the
Wasserstein distance flow-network by using the alternative it-
erative strategy. The effectiveness of the proposed method is
demonstrated by a series of computer vision tasks.

For a given vector a = (aj,as,--- ,aq) ', diag(a) = A
corresponds to a square diagonal matrix such that Vi, A; ; =
a;. e represents a unit vector, and I is the unit matrix.

2 Multi-Level Metric Learning via Smoothed
Wasserstein Distance

We start this section by revisiting the Smooth Wasserstein
distance, and then propose our multi-level metric learning
model.

2.1 Smoothed Wasserstein Distance

Wasserstein distance is actually the optimal solution of
transportation problem in linear programming. It can be
viewed as a minimum amount of work required to move
all the earth from the source to the destination [San-
dler and Lindenbaum, 2011]. Given two signatures

P = {(p17wp1)a(p2’wp2)7"'7(pmawpm)} and Q =
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{(d1,wq, ), (2, wy,), -+, (An,wy, ), the Wasserstein dis-
tance between them is defined as

W(P,Q) = min

Tr(D'F) 4)
FeF(P,Q)

where D = {d(i,5)},i = 1,--- ,m,j = 1,--- ,n is the
ground distance matrix, and d(i, j) defines the cost of mov-
ing one unit of earth from the source p; to the target q;.
F={f(i)}i=1,---,m,j=1,--- nisaflow-network
matrix, and f(i, j) denotes the amount of earth moved from
the source p; to the target q;.

Let wp = [wp, Wy, wp,] € R”, wq =
[Wqy, Wgy, - -+, Wy, ] € R™, then F(P, Q) can be written as

F(P,Q) = {F|F ¢ R™*" F'1,, = wq,
F]-n = WpyFij Z O,VZ,]}

Optimizing Wasserstein distance problem is actually solv-
ing several costly optimal transport problems. Furthermore,
the Wasserstein itself is not a smoothed function of its ar-
guments because of a minimum of affine function, which
limits the application of Wasserstein distance. To overcome
the above problems, some researchers proposed to smooth
the optimal transport problem with an entropic term [Cuturi,
2013]

®)

min  Tr(DTF) — yh(F), (6)

P.O) =
Wy (P,Q) pomtn

where h is the (strictly concave) entropy function
h(F) = —(F,logF). @)

and v > 0 is a balance parameter. In this paper, we call
Eq. (6) as smoothed Wasserstein distance.

2.2 New Multi-Level Metric Learning Model
Using Smoothed Wasserstein Distance

The ground distance in Eq. (6) is usually Euclidean, cosine or
Sparse L;-norm distances. However, these distances can nei-
ther admit arbitrary linear scalings and rotations of the feature
space nor exploit the discriminative information that exists in
data space. Therefore, in this paper, we use the Mahalanobis
distance as the ground measurement to improve the discrim-
inative capability of W,. The squared Mahalanobis distance
between the i-th bin of P and the j-th bin of ) can be ex-
pressed as

dm(i,3) = (pi — q;) M(pi — q; ), ¥

where M is a global linear transformation of the underlying
space, and Dy; = {dn(4, 5)} is the ground distance.

On the basis of Eq. (8), we can construct a Mahalanobis
smoothed Wasserstein distance (W, v for short). Let the
smoothed Wasserstein distance between signatures P and @
be W, m(P, Q) and the triplet be (P, Q,S) € R. Then, re-
placing the Mahalanobis distance in Eq. (3) with W, 1, a
novel LMNN model based on W, np is obtained as follows

min (1—p) > WomPQ) +p Y. &k

MeS, L
(P,Q)eS (i,5,k)ER )
s.t. W’y,M(P; R) - W’y,M(Pa Q) >1- gmka
V(P,Q,R) € R.
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As we can see, model (9) only uses a global W, \p1, thus
it is hard to capture the local discriminative information
of samples. To further improve the performance of (9),
we model the commonalities between various classification
through a shared Mahalanobis distance matrix My > 0 and
the classification-specific idiosyncrasies with additional ma-
trices M1, Moy, - - -, M¢ > 0 in the ground distance, where
C denotes the number of classes in samples. As a result, we
can rephrase Eq. (8) as

dai(is§) = (pi — ) (Mo +My)(pi —q;), (10

wheret =1,2,---,C.
Additionally, we can easily prove that each \/dn1 (4, j) is

indeed a pseudo-metric. Using Eq. (10) as the ground dis-
tance, problem (6) can be rewritten as

min Tr(DMt )

— ~h(F). 11
pomtn Yh(F) (1)

WM, =

where Dy = {dwm,¢ (i, )}, Vi, J.
In modeling, we have to ensure that the learning algorithm
does not put too much emphasis onto the shared parameters

M, or the individual parameters My, My, ---, M. To ensure
this balance, we use the regularization term stated below

c

min My —I||5% + M, ||%, 12
Mo Mo pol Mo — 1|7 ;Ptﬂ % 12)

where I is an identity matrix and the trade-off parameter p,
controls the regularization of M, for all ¢t = 0,1,- - -, C.
Therefore, model (9) is further rewritten as

c
i pol Mo — T %+ (o1 ML[3
t=1
+ Z 17 "/Mt(PQ +p Z gzyk (13)
(P,Q)ES (i,9,k)ER
s.t. W’Y;M:t(P) R) - W’Y,M,t(P7 Q) Z 1 - El]]m
V(P,Q,R) € R.

Different from the existing metric learning methods, which
use a global Mahalanobis metric to measure the differences
between samples, we use multiple smoothed Wasserstein dis-
tances to adaptively learn global and local structures of data
space, which is helpful for practical multi-classification prob-
lems. However, solving problem (13) is very challenging
since it needs to optimize multiple Wasserstein distance prob-
lems. This may lead to high computation complexity. In the
next section, we will propose an efficient algorithm to solve
model (13).

3 Optimization Algorithm

There are two groups of variables that need to be
learned in model (13), i.e., flow-network F and matri-
ces Mo, Mq,--- ,Mc. When flow-network F is fixed,
model (13) turns into the Mahalanobis-like metric learning
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problem, i.e.,
c

i polMo —T|[% + > (pe|IMy |5
t=1

+ Y (A=mTr(Dme(PQ)TF) +p > &jr)

(P,Q)esS (i,4,k)ER
st. Tr(Dp+(P,R)"F) —Tr(Dm«(P,Q)"F) > 1 — &,
V(P,Q,R) € R.

(14)
Though the above problem is non-convex, we can compute
its sub-gradient with
) D Gra

V —Q[JQ(Mo—I)‘f‘C 1—

(P,Q)ES
+u > (Grq-—Gpr)),
(P,Q,R)ER’
C
Vm, = 2pMi+(1—p) Y Grg
t=1 (P,Q)eS

"H‘Z

(P,Q,R)ER’
R =R~ {(P,Q,R)|tr(G}zM) — tr
Gpqg=Gpo—Gro
G}DQ = Pdiag(Fe)P"
G2, = PFQ'

(Gpq — GpR)),

(GJTD,QM) > v}

+ Qdiag(eTF)QT,
+QF'P".
(15)
wheret =1,2,---,C.
Next, we can update each My (¢t = 0,1, - -
gradient method, i.e.,

Mt<:PS+(Mt_TVMt)7 (16)

where Ps, () denotes the projection operator and 7 > 0 is a
step size. In our method, we set pg = 1, and p; = é,t =
1,---,C. We can use the similar technique as in [Wein-
berger and Saul, 2009] to reduce the computation complexity
of (16).

When My, t = 0,1,- - -,C are fixed, problem (13)
can be splited into some independent traditional smoothed
Wasserstein distance sub-problems, which can be solved by
the method in [Rolet ef al., 2016]. Here we omit the de-
tailed process for solving smoothed Wasserstein distance sub-
problems. Algorithm 1 summarizes the main steps of the pro-
posed method.

-, C') using sub-

4 Experimental Results
In this section, to prove the effectiveness of the proposed
method, we apply it to three kinds of computer vision applica-

tions, i.e., person re-identification, facial kinship verification
and video classification.

4.1 Person Re-identification

During this part, we evaluate the proposed method on per-
son re-identification task, which aims to match a given probe
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Algorithm 1 Optimization Algorithm for solving Prob-
lem (13)

1: Input: Training data set, and parameters kq, k;, po,
{pe,t=1,---,C}, v, Aand

2: Output: Global distance matrix M and local distance
matrices M;,t =1,--- ,C

3: Initialize: M; =1,t =0, --- ,C

4: Calculate the smoothed Wasserstein distance between
each pair of signatures.

5: Construct the set S and R by selecting k; target neigh-
bors and k4 imposters for each training instance.

6: Initialize the learning rate «

7: repeat

8: Fix M, t =0,--- ,C, solve for the Wasserstein dis-
tance flow-network F.

9: Fix F.

10: repeat

11: Compute the gradient VM,,t = 0,---,C by
Eq. (15).

12: Update My, ¢ =0,--- ,C by Eq. (16).

13: until Converge

14: until Converge

image against a collection of gallery images. We use two
challenge person re-identification datasets at multi-shot sce-
nario, i.e., PRID 2011 dataset [Hirzer et al., 2011] and iLIDS-
VID dataset [Office, 2008]. Some example pairs appeared in
different camera views from these two datasets are shown in
Fig. 2.

e PRID 2011 dataset - The PRID 2011 dataset includes
385 persons showed in camera view A and 749 persons
in camera view B, with 200 persons of them appeared in
both camera views [Hirzer et al., 2011].

e iLIDS-VID dataset - The iLIDS-VID dataset involves
300 different pedestrians observed across two disjoint
camera views in public open space [Office, 2008].

Compared Methods: We compute Wasserstein distance,
also called Earth Mover’s Distance (EMD) directly as a base-
line. Besides, we also compare the proposed method against
four representative methods, including Pairwise Constrained
Component Analysis (PCCA) [Mignon and Jurie, 2012],
KISSME [Koestinger et al., 2012], Local Fisher Discrimi-
nant Analysis (LFDA) [Pedagadi ef al., 2013] and Marginal
Fisher Analysis (MFA) [Yan et al., 2007].

Experiment Settings: In the experiment, we split each
dataset into two folds. In each time, one fold of data is for
training and the other fold is used as testing data. We ran-
domly generate five splits, and the average results are as final
performance. Specifically, for PRID 2011 dataset, there are
200 person image pairs. Half of them are randomly selected
for training and the rest are for testing. To evaluate the test
set, we follow the same procedure described in [Hirzer et al.,
20111, i.e., camera A is used as probe set and camera B is as
gallery set. Thus, each of the 100 persons in the probe set
is searched in a gallery set of 649 persons. For iLIDS-VID
dataset, there are 300 person image pairs. All these pairs are
randomly divided into two folds of the same size.
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Method [ PUR | rank=1 | rank=10 | rank=20 |

PCCA 21.69 4.88 24.68 35.06
KISSME | 2791 | 15.62 38.16 48.52
LFDA 2130 | 16.94 48.64 59.88
MFA 20.84 | 16.26 48.44 59.00
EMD 31.81 | 10.80 31.20 39.60
Proposed | 46.58 | 43.80 78.20 85.60

Table 1: CMC at rank = 1, 10, 20 and PUR scores on PRID 2011
dataset with 100 test individuals searched in a gallery set of 649
individuals. Red and blue numbers are the best and second best
results, respectively.

| Method | PUR | rank=1 | rank=10 [ rank=20 |

PCCA 14.08 9.36 42.88 61.64
KISSME | 8.05 7.22 35.22 50.72
LFDA 22.01 16.28 58.22 74.80
MFA 22.86 | 16.06 58.86 75.36
EMD 12.31 6.93 23.73 33.20
Proposed | 43.18 | 35.47 79.60 90.93

Table 2: CMC at rank = 1, 10, 20 and PUR scores on iLIDS-
VID dataset with 300 test individuals searched in a gallery set of
300 individuals. Red and blue numbers are the best and second best
results, respectively.

We focus on multi-shot scenario. 26960-d Local Maximal
Occurrence (LOMO) feature is extracted for each frame of
both datasets [Liao et al., 2015]. PCA is further applied to re-
duce the feature dimension to 100-d for our method and 65-d
for KISSME method. In addition, to decrease the quantity of
calculation of flows in our method, we cluster each sequence
into several frames and use clustering centers to represent the
corresponding sequence. For those only applicable to single-
shot scenario methods, we average the centers as features. We
choose linear kernel for MFA method.

Experiment Results: To measure the performance of per-
son re-identification task, we report the widely used Cumu-
lative Match Characteristic (CMC) performance curves aver-
aged across the experiments in Fig. 3. It is obvious that our
method always outperforms other compared methods, espe-
cially for PRID 2011 dataset. Because our method not only
tries to learn a global distance matrix, but also takes advan-
tage the local information. LFDA also achieves good perfor-
mance because it does a better job at selecting the features
with no need of PCA pre-processing step while making full
use of the locally scaled affinity matrix. MFA obtains com-
parable results to LFDA. In contrast to LFDA, the advantage
of MFA is its ability to maximize the marginal discriminant
even when the assumption of a Gaussian distribution for each
class is not true. With the increase of the rank value, LFDA
and MFA catch up the proposed method. Simply use Wasser-
stein distance without metric learning couldn’t take advantage
of the prior knowledge in training data, thus performs worse
in all compared methods.

In addition, we also report the Proportion of Uncertainty
Removed (PUR) scores [Pedagadi et al., 2013]:

_ log(N) + ¥2,0, M(r) log(M(r))

PUR
log(N)

)
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(a) PRID 2011

(b) iLIDS-VID

Figure 2: Example pairs of image sequences of the same person appearing in different camera views from (a) the PRID 2011 dataset, (b) the

iLIDS-VID dataset.
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Figure 3: CMC curves for each method on two datasets: (a) PRID
2011 dataset; (b) iLIDS-VID dataset.

where N is the size of the gallery set, r is the rank. The rank
of the correct match was recorded and accumulated to gen-
erate the match characteristic M (). The PUR scores of two
datasets along with the CMC values at rank = 1, 10, 20 are
summarized in Table 1 and Table 2. The highest and second
highest CMC and PUR scores in every experiment at every
ranking were highlighted in red and blue, respectively. As
shown in the table, the overall PUR score is higher for the
PRID 2011 dataset, probably because the iLIDS-VID dataset
is very challenging due to clothing similarities among peo-
ple, cluttered background, viewpoint and lighting variations
across camera views as shown in Fig. 2.

4.2 Facial Kinship Verification

In this section, we evaluate our methods on facial kinship
verification task, which is to determine whether there is a
kin relation between a pair of given face images. We use
KinFaceW-II dataset, and some example pairs are shown in
Fig. 4 [Lu et al., 2014].

o KinFaceW-II dataset - KinFaceW-II dataset consists of
four representative types of kin relations: Mother-Son
(M-S), Father-Son (F-S), Mother-Daughter (M-D) and
Father-Daughter (F-D), respectively. Each relation con-
tains 250 pairs of kinship images.

Compared Methods: We compute Euclidean and EMD
distance between a pair of faces directly as a baseline. Also,
traditional Mahalanobis distance between images of a pair
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is computed, where the metric matrix is inverse of covari-
ance between two vectors. We compare the proposed meth-
ods against two representative metric learning methods, i.e.,
KISSME [Koestinger et al., 2012] and LDML [Guillaumin et
al., 2009].

Experiment Settings: As a benchmark for comparison, we
use the pre-specified training/testing split, which is generated
for 5-fold cross validation [Lu et al., 2014]. We use the given
Local Binary Patterns (LBP) and Histogram of Oriented Gra-
dients (HOG) from image blocks. Each kind of feature is as
one feature vector of a signature. For other methods, we sim-
ply concatenate these two features. PCA is further employed
to reduce dimensionality of each vector to 100 dimension.

Experiment Results: To measure the kinship verification
accuracy for all these compared methods, we report a Re-
ceiver Operator Characteristic (ROC) curve in Fig. 5. It seems
that our method achieves best results on M-S and M-D rela-
tions. For other two relations, our method can get compara-
ble results. Since it is difficult to distinguish which performs
better, we compute Equal Error Rate (EER) of the respective
method, and use 1 — F'E'R as evaluation criterion, as shown
in Fig. 5.

4.3 Video Classification

In this section, we evaluate our methods on video classifica-
tion task, which is assigning an video to a predefined class.
We use traffic video database. Several frames of different
videos from the database are shown in Fig. 6.

o Traffic video database - Traffic video database con-
sists of 254 video sequences of highway traffic in Seat-
tle [Chan and Vasconcelos, 2005]. As in [Chan and
Vasconcelos, 2005], each sequence was converted to
grayscale, resized to 80 x 60 pixels, and then clipped
to a 48 x 48 window over the area with the most total
motion. For each frame, we use gray values as feature
representation

Compared Methods: We compare our method with five
widely used classification methods, including K-nearest
Neighbor method (KNN) [Peterson, 2009], Support Vector
Machine (SVM) [Fan et al., 2008], LMNN [Weinberger and
Saul, 20091, and LMNN with capped trace norm [Huo et al.,
2016] and Fantope norm [Law er al., 2014].

Experiment Settings: For our method, we simply use pixel
intensities of each frame as feature vectors. Since each video
sequence contains 42 to 52 frames, to reduce the amount of
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Figure 5: Facial kinship verification results on all kinship relations of KinFaceW-II dataset: (a) Mother-Son kinship relation; (b) Father-Son
kinship relation; (c) Father-Daughter kinship relation; (d) Mother-Daughter kinship relation.

|

Figure 6: Examples from the traffic video database.

computation, we cluster every sequence into several frames.
We treat each video as a signature, and the cluster centers are
its feature vectors. The weights of each signature are deter-
mined by the proportion of samples in each cluster. For other
methods, we follow the same procedure described in [Chan
and Vasconcelos, 2005], i.e., for each video clip, the mean
image is subtracted and the pixel intensities were normalized
to have unit variance. For LMNN with capped trace norm
and Fantope norm methods, the regularization parameters are
tuned from range {10~%,1073,1072,10~%,1, 10,102}, and
parameter rank of matrix M is from [30 : 5 : 70].

Experiment Results: We compute classification accuracy
for each method as evaluation criterion. As shown in Fig. 7,
KNN method using Euclidean distance works worst on this
task. SVM method increases the performance of KNN
method by about 2 ~ 3%. When we use LMNN method with
or without norm to learn Mahalanobis distance, we choose
KNN classifier (X = 1). The proposed method does a better
job than other compared methods in this task, which proves
the effectiveness of using smoothed Wasserstein distance.

100
I <NN

90 I svM 4
9 [ LMNN
= [ capped
© 80 [IFantope
3 [ IProposed
Q
< 70 4

60

Methods

Figure 7: Classification accuracy of different methods on traffic
video database.

5 Conclusion

In this paper we proposed a novel multi-level metric learning
algorithm. In our method, the errors between two samples are
characterized using the smoothed Wasserstein distance. We
consider the ground distance as a Mahalanobis distanc and
automatically learn the corresponding matrices by the alterna-
tive iterative approach. To enhance the robustness of model,
we further learn the global distance with regard to all samples
and the local distance with regard to samples with specific
class label. It is noteworthy that our method can be extended
to other metric learning models. We verify the abilities of our
method on several real-world datasets. The experimental re-
sults show that the proposed method consistently outperforms
some related methods and obtains better classification results
than traditional Mahalanobis metric learning approaches.
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