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Abstract
The inconsistent distribution and representation of
image and text make it quite challenging to mea-
sure their similarity, and construct correlation be-
tween them. Inspired by neural machine transla-
tion to establish a corresponding relationship be-
tween two entirely different languages, we attempt
to treat images as a special kind of language to pro-
vide visual descriptions, so that translation can be
conduct between bilingual pair of image and text to
effectively explore cross-modal correlation. Thus,
we propose Cross-modal Bidirectional Translation
(CBT) approach, and further explore the utilization
of reinforcement learning to improve the translation
process. First, a cross-modal translation mecha-
nism is proposed, where image and text are treated
as bilingual pairs, and cross-modal correlation can
be effectively captured in both feature spaces of
image and text by bidirectional translation train-
ing. Second, cross-modal reinforcement learn-
ing is proposed to perform a bidirectional game be-
tween image and text, which is played as a round to
promote the bidirectional translation process. Be-
sides, both inter-modality and intra-modality re-
ward signals can be extracted to provide comple-
mentary clues for boosting cross-modal correlation
learning. Experiments are conducted to verify the
performance of our proposed approach on cross-
modal retrieval, compared with 11 state-of-the-art
methods on 3 datasets.

1 Introduction
Heterogeneous data of different modalities, such as image
and text, have been widely available with huge quantity on
the Internet, and they commonly coexist. For example, an
image often co-occurs with its corresponding text description
on a web page to describe the same semantics such as ob-
jects or events. While cross-modal correlation naturally ex-
ists between image and text data to describe specific kinds
of statistical dependencies. However, the inconsistent rep-
resentations of different modalities make it very challenging
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to establish correlation and measure the semantical relevance
between them. For addressing the above issue, some works
have been done for bridging the gap between heterogeneous
data, such as cross-modal retrieval [Rasiwasia et al., 2010;
Peng et al., 2017a], where the data of different modalities
can be retrieved flexibly by giving a query of any modality at
the same time, which is extremely useful for users to retrieve
whatever they want across multiple media types.

Most of existing methods [Feng et al., 2014; Peng et al.,
2016; Rasiwasia et al., 2010] follow an intuitive idea to map
the data of different modalities into one common space to
learn the common representation, so that the general distance
metrics can be directly adopted to calculate the similarities
between them, and further establish correlation among the
heterogeneous data. Traditional methods [Hardoon et al.,
2004; Rasiwasia et al., 2010] learn mapping matrices by op-
timizing the statistical values to project the data of different
modalities into the common space. Recently, with the great
progress of deep learning, many methods [Feng et al., 2014;
Peng et al., 2017b] utilize the strong learning ability of deep
neural network to perform cross-modal correlation learning.
However, the aforementioned methods mainly project the fea-
ture of each modality into one common space, which cannot
fully capture the complex cross-modal correlation with such
unidirectional projections. Thus, we attempt to conduct bidi-
rectional transformation between image and text, which not
only transforms from image to text, but also transforms back
to text from image, so as to mine the intrinsic characteristic
in each modality and further enhance the cross-modal corre-
lation through the bidirectional learning process.

Inspired by the recent progress of neural machine transla-
tion [Cho et al., 2014; He et al., 2016], whose key problem
is to establish a corresponding relationship and make arbi-
trary conversion between two or more entirely different lan-
guages, we can intuitively treat images as a special kind of
language, where each pixel or each region in one image can
be taken as a visual word, and all of them weave together to
provide rich visual descriptions. Therefore, we can conduct
bidirectional translation between the bilingual pair of image
and text to exploit the intrinsic characteristic in each modality
and further learn the cross-modal correlation. Besides, deep
reinforcement learning has recently attracted much attention.
However, most of them mainly focus on video or board games
[Mnih et al., 2015], it is still a challenging problem to apply it
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into other scenarios with no pre-defined rules and explicit re-
ward signals. While the bidirectional cross-modal translation
process can be treated as a bidirectional game between image
and text, which is a promising way to obtain reward signals
for reinforcement learning. Thus we can utilize the power
of reinforcement learning to promote cross-modal correlation
modeling. Overall, in this paper, we propose Cross-modal
Bidirectional Translation (CBT) approach with the following
contributions:

• Cross-modal translation mechanism. We treat image
and text as bilingual sequence pairs, and utilize recur-
rent neural network to exploit both fine-grained local and
context information within each modality. Furthermore,
bidirectional translation training strategy is adopted to
translate from one modality to another and also translate
back, which can fully capture the intrinsic characteristic
in each modality and further enhance the cross-modal
correlation through the bidirectional learning process.

• Cross-modal reinforcement learning. We construct a
bidirectional game between image and text, which can
be played as a round to promote the cross-modal bidi-
rectional translation process through reinforcement pro-
cedure. Two kinds of reward signals are designed to ex-
tract from inter-modality correlation learning error and
intra-modality reconstruction error in both two feature
spaces of image and text, which can mutually boost for
the cross-modal correlation learning.

To verify the performance of cross-modal correlation learn-
ing, we conduct extensive experiments on the cross-modal
retrieval paradigm, and our proposed approach achieves the
best retrieval accuracy compared with totally 11 state-of-the-
art methods on 3 cross-modal datasets.

2 Related Works
2.1 Cross-modal Correlation Learning
Traditional cross-modal correlation learning methods [Rasi-
wasia et al., 2010; Li et al., 2003; Zhai et al., 2014] mainly
learn linear projections to map the features of different
modalities into one common space, where the similarity of
heterogeneous data can be directly calculated by general dis-
tance metric on the learned common representations. A class
of representative methods utilize canonical correlation anal-
ysis (CCA) to optimize the statistical values for the cross-
modal correlation learning [Rasiwasia et al., 2010]. Besides,
another kind of methods construct graphs to correlate the het-
erogeneous data in the common space, such as joint repre-
sentation learning (JRL) proposed by Zhai et al. [Zhai et al.,
2014] to adopt graph regularization as well as utilize semi-
supervised information.

Recently, deep learning based methods [Feng et al., 2014;
Peng et al., 2017b] have become mainstream for cross-modal
correlation learning. Correspondence autoencoder (Corr-AE)
[Feng et al., 2014] is proposed to jointly model the cross-
modal correlation and reconstruction information. Andrew
et al. [Andrew et al., 2013] integrate CCA with deep net-
work to propose deep canonical correlation analysis (DCCA).
Wei et al. [Wei et al., 2017] utilize convolutional neural

network to learn strong representation for image and per-
form deep semantic matching (Deep-SM). Besides, Peng et
al. [Peng et al., 2016; 2017b] propose cross-modal multiple
deep networks (CMDN) and cross-modal correlation learn-
ing (CCL) methods to fully exploit inter-modality and intra-
modality correlation and further model fine-grained informa-
tion for better performance. Inspired by the recent progress
of generative adversarial networks, there are some attempts
[Wang et al., 2017] to adopt adversarial learning for cross-
modal correlation modeling.

2.2 Neural Machine Translation
As a classical research topic in natural language process, ma-
chine translation aims to establish a corresponding relation-
ship between different languages with both structural and vo-
cabulary differences. Most of the recent works adopt deep
neural network to achieve promising results in neural ma-
chine translation. Cho et al. [Cho et al., 2014] propose
recurrent neural network (RNN) based encoder-decoder ar-
chitecture, where one RNN encodes a sequence of symbols
into a intermediate representation, and the other decodes it
into another sequence of symbols. Similarly, Sutskever et al.
[Sutskever et al., 2014] propose sequence to sequence learn-
ing with neural networks with a general end-to-end method
that makes minimal assumptions on the sequence structure.
Bahdanau et al. [Bahdanau et al., 2015] improve the ba-
sic encoder-decoder architecture by joint learning to align
and translate. He et al. [He et al., 2016] adopt dual learn-
ing mechanism with reinforcement learning process to auto-
matically learn from unlabeled data. Inspired by the recent
progress in neural machine translation, we take images as a
special kind of language to conduct bidirectional translation
between image and text for cross-modal correlation learning.

2.3 Reinforcement Learning
Reinforcement learning generally address the problem of how
the agents learn to optimize their control that maximizes cu-
mulative reward through interactions with the environment.
Mnih et al. [Mnih et al., 2015] integrate traditional Q-
learning algorithm with multi-layer network to propose deep
Q network (DQN). However, most of the existing methods
mainly focus on video or board games [Mnih et al., 2013]. It
is still quite challenging to apply it into other scenarios. There
are some attempts to perform object detection [Caicedo and
Lazebnik, 2015] or image caption [Ren et al., 2017]. Inspired
by these, we treat the cross-modal bidirectional translation
process as a bidirectional game between image and text to
obtain the reward signals, and utilize policy gradient methods
for reward maximization, which is widely used in reinforce-
ment learning tasks [Sutton et al., 1999].

3 Our CBT Approach
As shown in Figure 1, we propose cross-modal translation
mechanism to effectively model cross-modal correlation by
bidirectional translation training, taking the translation pro-
cess as a bidirectional game between image and text, and
inter-modality and intra-modality reward signals can be ex-
tracted from correlation learning error and reconstruction er-
ror to utilize the power of reinforcement learning. We first
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Figure 1: An overview of our proposed CBT approach. Cross-modal correlation can be modeled by bidirectional translation training, where
the translation process is treated as a bidirectional game between image and text to perform reinforcement learning.

introduce the formal definition on the multimodal dataset, de-
noted as D = {I, T} to conduct correlation learning, where
I = {ip}np=1 and text T = {tp}np=1 with totally n instances
in each modality. ip and tp are the p-th instance of image and
text with the semantic category label cp.

3.1 Cross-modal Translation Framework
Inspired by the sequence to sequence model in neural ma-
chine translation [Cho et al., 2014], we construct cross-modal
sequence model with convolutional recurrent network for
both image and text, which can fully exploit the fine-grained
local and spatial context information simultaneously.

For the image data, each image ip is fed into 19-layer VG-
GNet [Simonyan and Zisserman, 2014] to generate separate
feature vectors for different regions that contain fine-grained
local information, which are obtained from the response of
each filter over the a 7 × 7 mapping in the last pooling layer
(pool5). These regions are composed as a sequence, which
can be regarded as the eye movement result when glancing
at the image, and denoted as {vi1, ..., vin} with totally n re-
gions. Then, long short term memory (LSTM) network is
adopted on these image sequence to model the fine-grained
spatial context information of image. The LSTM is updated
recursively with the following equations:{

it
ft
ot

}
= σ

({
Wi

Wf

Wo

}
xt +

{
Ui
Uf
Uo

}
ht−1 +

{
bi
bf
bo

})
(1)

ct = ct−1�ft + tanh(Wuxt + Uuht−1 + bu)� it (2)
ht = ot � tanh(ct) (3)

where i, f, c and o denote the activation vectors of input, for-
get, memory cell and output respectively. x is the input image
sequences, and h is the output from the hidden units. W and
U are the weight matrices and b is the bias term. � denotes
the element-wise multiplication. And σ is the sigmoid nonlin-
earity to activate the gate. Then, the output sequence can be

obtained from LSTM and averaged as Hi = 1/n
∑n
k=1 h

i
k.

Besides, we also generate image feature representation Gi
from the last fully-connected layer of VGGNet to exploit the
global information of image. The final encoded image repre-
sentation is the averaged outputsHi concatenated with global
image representation Gi, denoted as Si = {sip}.

For the text data, each input text tp is represented as an
n × k matrix, where n is the number of words in tp, and
each word has a k-dimensional vector extracted by Word2Vec
model, which is pre-trained on billions of words in Google
News. Then Word CNN is adopted on the input matrix fol-
lowing [Kim, 2014], which is similar with the CNN for im-
age except the 2D convolution and spatial max-pooling are
replaced by temporal (1D) convolution and temporal max-
pooling. We still generate the features of text fragments from
the activation of last pooling layer, and split as a sequence de-
noted as {vt1, ..., vtn}, which contains rich fine-grained local
information of text. To further exploit the context informa-
tion, we also adopt LSTM to model the temporal dependency
along the input text sequence, which is updated following
the equations (1) to (3), where x denotes the text sequence
{vt1, ..., vtn}. Similarly, the output sequence from LSTM is
averaged as Ht = 1/n

∑n
k=1 h

t
k, and we also extract the

global text representation Gt from the last fully-connected
layer of the above Word CNN. They are concatenated as the
final encoded text representation, denoted as St = {stp}.

To conduct cross-modal translation between image and
text, we construct two-pathway networks, which consist of
several fully-connected layers on each pathway. Specifically,
image-to-text pathway translates image representation sip to
its corresponding text representation stp, which aims to make
the translated representation from image as far as possible
to be similar with stp. While text-to-image pathway tends to
translate text representation stp back to image, which gener-
ates the translated representation close to sip. Besides, the
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translated representations of image and text are also translated
back to their original feature space through the other pathway.
Furthermore, we also connect the two-pathway networks at
the middle layer, which have the shared weights and are fol-
lowed by a softmax loss layer as semantic constraints, aim-
ing to make image-to-text pathway and text-to-image path-
way fully interact and keep semantic consistency.

Algorithm 1 Reinforcement training process of CBT

Require: Image training data Itr, text training data Ttr,
batchsize N , hyper-parameter α, learning rate γ.

1: repeat
2: Sample N encoded image representations from the

CNN-RNN based network.
3: Generate N translated representations for each image

sip with P (·|s; θIT ) as simid,1, ..., s
i
mid,N , and translate

back with P (·|s; θTI) as siori,1, ..., s
i
ori,N .

4: for k = 1, ..., N do
5: Set inter-modality reward rinterp for the k-th sample

with equation (7).
6: Set intra-modality reward rintrap for the k-th sample

with equation (8).
7: Set the total reward of the k-th sample rp.
8: end for
9: Compute stochastic gradient of θIT by equation (9)

10: Compute stochastic gradient of θTI by equation (10)
11: Model updates:

θIT ← θIT + γ 5θIT E(r),
θTI ← θTI + γ 5θTI

E(r).
12: Go through the above process from step 2 to 11 sym-

metrically for the game beginning from text stp.
13: until CBT converges
14: return Optimized CBT model.

3.2 Reinforcement Learning Procedure
We design a bidirectional game between image and text,
which is played as a round to realize the bidirectional trans-
lation process with reinforcement learning. Specifically, the
two-pathway networks mentioned in Section 3.1 for cross-
modal translation are denoted as P (·|s; θIT ) and P (·|s; θTI)
respectively, where θIT and θTI are their parameters.

For the game begins with one image sip in Si, the first state
is to translate it into text feature space to get the translated
representation simid,p, and we can extract the inter-modality
reward rinterp , which can be obtained from correlation error
that indicates the similarity between simid,p and a sampled
text instance stp. Then, the second state is to conduct transla-
tion from simid,p back to original image space as siori,p, which
can generate intra-modality reward rintrap from reconstruc-
tion error. Thus, the total reward is calculated as follows:

rp = αrinterp + (1− α)rintrap (4)

where α is the parameter to balance the two rewards. The
two-pathway networks are trained through policy gradient
methods for maximizing reward, which is widely used in re-
inforcement learning. The reinforcement learning process is

defined as follows:

max
θIT ,θTI

E(r) = max
θIT ,θTI

Ep∼P (simid,p|Si;θIT )rp

= max
θIT ,θTI

N∑
p=1

P (simid,p|Si; θIT )

×
(
αrinterp + (1− α)rintrap

)
(5)

P (simid,p|Si;θIT ) =
exp(rinterp )∑N
k=1 exp(rinterk )

(6)

Note that we translate image to text and generate N candi-
date translated representations from Si to form a mini-batch,
and each of them is sampled with one text representation.
The probability P (simid,p|Si; θIT ) indicates the relevance be-
tween the p-th candidate and its sampled target text, which
means those candidate pairs consisting relevant image and
text in same category can get higher rewards compared with
other irrelevant pairs. Similarly, we conduct the game be-
ginning with text stp with two states, namely to translate into
image first, and then translate back to text. Thus the rein-
forcement learning process is symmetric with equation (5).

Then, taking the game beginning from image as an exam-
ple, the details of objective function are introduced in the fol-
lowing parts. First, two kinds of rewards rinterp and rintrap in
the above equation are defined as:

rinterp =log(norm(
simid,p · stp∥∥∥simid,p∥∥∥

2

∥∥stp∥∥2 )) (7)

rintrap =log(norm(
sip · siori,p∥∥sip∥∥2 ∥∥siori,p∥∥2 )) (8)

where ‖·‖2 denotes the 2-norm, and “norm” means to normal-
ize the similarity score to [0, 1], which can be represented as
the probability that indicates how similar the translated rep-
resentation is with its corresponding sample, and those rele-
vant candidate pairs would have larger similarities than oth-
ers. With the objective function defined in equation (5), we
calculate the stochastic gradient of θIT and θTI according to
policy gradient theorem as follows:

5θITE(r) = 5θITEp∼P (simid,p|Si;θIT )rp

=
N∑
p=1

5θITP (simid,p|Si; θIT )rp

≈ 1

N

N∑
p=1

5θIT log
(
P (simid,p|Si; θIT )

)
rp (9)

5θTI
E(r) = 5θTI

Ep∼P (simid,p|Si;θIT )rp

= Ep∼P (simid,p|Si;θIT ) 5θTI
(1− α)rintrap

≈ 1

N

N∑
p=1

5θTI
(1− α)rintrap (10)

Finally, we summarize the reinforcement training process of
proposed CBT in Algorithm 1. Besides, the gradient from se-
mantic constraint is summed with policy gradient to preserve

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2633



semantic consistency during reinforcement learning process.
Specifically, we obtain the intermediate representation from
the middle shared layer to establish correlation between im-
age and text, which can preserve the semantic constraints and
get benefit from both inter-modality and intra-modality re-
wards from the cross-modal reinforcement learning process.

3.3 Implementation Details
Our proposed CBT approach is implemented by Tensor-
Flow. The Word CNN contains 3 convolution layers, fol-
lowed by ReLU activation and max-pooling. Their param-
eters are (384,15)→(512,9)→(256,7), where the first means
the number of convolution kernels and the second is the
kernel width. For image, the pre-trained CNN of 19-layer
VGGNet is adopted to obtain the for image representa-
tions. The LSTM for image and text have two units in se-
ries, whose output has the same dimension with input as
300. Besides, the global image representation has 4,096 di-
mensions from VGGNet and global text representation has
300 dimensions from Word CNN respectively. Each of
them are concatenated with the output from LSTM. Finally,
two-pathway network consists of 5 fully-connected layers
(4,396→3,000→2,000→1,000→600) from image to text on
each pathway. The two pathways are tied at middle layer fol-
lowed by softmax function for semantic constraints.

4 Experiments
4.1 Datasets
The brief introduction of 3 cross-modal datasets adopted in
the experiments is given in the following paragraphs.

Wikipedia dataset [Rasiwasia et al., 2010] has 10 cate-
gories with 2,866 image/text pairs. We follow [Peng et al.,
2016; Feng et al., 2014] to split it into 3 subsets, namely 2,173
pairs for training, 231 for validation and 462 for testing.

Pascal Sentence dataset [Rashtchian et al., 2010] contains
1,000 images with totally 20 categories, and each image has
5 independent sentences. Following [Peng et al., 2016; Feng
et al., 2014], 800 image/text pairs are selected for training,
while 100 pairs for testing and 100 pairs for validation.

XMediaNet dataset [Peng et al., 2017a] is a large-scale
cross-modal dataset with 200 categories, and has 40,000 im-
age/text pairs, which are divided into 3 subsets, 32,000 pairs
for training, 4,000 for testing and 4,000 for validation.

Method MAP scores
Image→Text Text→Image Average

Our CBT Approach 0.516 0.464 0.490
CCL 0.505 0.457 0.481

ACMR 0.468 0.412 0.440
CMDN 0.487 0.427 0.457

Deep-SM 0.478 0.422 0.450
LGCFL 0.466 0.431 0.449

JRL 0.479 0.428 0.454
DCCA 0.445 0.399 0.422

Corr-AE 0.442 0.429 0.436
KCCA 0.438 0.389 0.414
CFA 0.319 0.316 0.318
CCA 0.298 0.273 0.286

Table 1: The MAP scores of cross-modal retrieval for our CBT ap-
proach and 11 compared methods on Wikipedia dataset.

Method MAP scores
Image→Text Text→Image Average

Our CBT Approach 0.602 0.583 0.592
CCL 0.576 0.561 0.569

ACMR 0.538 0.544 0.541
CMDN 0.544 0.526 0.535

Deep-SM 0.560 0.539 0.550
LGCFL 0.539 0.503 0.521

JRL 0.563 0.505 0.534
DCCA 0.568 0.509 0.539

Corr-AE 0.532 0.521 0.527
KCCA 0.488 0.446 0.467
CFA 0.476 0.470 0.473
CCA 0.203 0.208 0.206

Table 2: The MAP scores of cross-modal retrieval for our CBT ap-
proach and 11 compared methods on Pascal Sentence dataset.

Method MAP scores
Image→Text Text→Image Average

Our CBT Approach 0.577 0.575 0.576
CCL 0.537 0.528 0.533

ACMR 0.536 0.519 0.528
CMDN 0.485 0.516 0.501

Deep-SM 0.399 0.342 0.371
LGCFL 0.441 0.509 0.475

JRL 0.488 0.405 0.447
DCCA 0.425 0.433 0.429

Corr-AE 0.469 0.507 0.488
KCCA 0.252 0.270 0.261
CFA 0.252 0.400 0.326
CCA 0.212 0.217 0.215

Table 3: The MAP scores of cross-modal retrieval for our CBT ap-
proach and 11 compared methods on XMediaNet dataset.

4.2 Evaluation Metric and Compared Methods
To comprehensively evaluate the performance of cross-modal
correlation, we perform two cross-modal retrieval tasks as:
retrieving text by image query (Image→Text) and retrieving
image by text query (Text→Image). We adopt mean aver-
age precision (MAP) as the evaluation metric, which is cal-
culated on all returned results for comprehensive evaluation.
It should be noted that not only top 50 returned results are cal-
culated in Corr-AE [Feng et al., 2014] and ACMR [Wang et
al., 2017], while the rest returned results are not considered.

The proposed CBT approach is compared with 11 state-of-
the-art cross-modal retrieval methods to fully verify its effec-
tiveness, including 5 traditional cross-modal retrieval meth-
ods, namely CCA [Rasiwasia et al., 2010], CFA [Li et al.,
2003], KCCA [Hardoon et al., 2004], JRL [Zhai et al., 2014]
and LGCFL [Kang et al., 2015], and 6 deep learning based
methods, namely Corr-AE [Feng et al., 2014], DCCA [An-
drew et al., 2013], CMDN [Peng et al., 2016], Deep-SM [Wei
et al., 2017], CCL [Peng et al., 2017b] and ACMR [Wang et
al., 2017]. For fair comparison, all the compared methods
adopt the same CNN features for both image and text, which
are extracted from the CNN architectures used in our ap-
proach. Specifically, the CNN feature for image is extracted
from the fc7 layer in 19-layer VGGNet [Simonyan and Zis-
serman, 2014] with 4,096 dimensions. While the CNN fea-
ture for text is extracted from Word CNN with the same con-
figuration of [Kim, 2014] with 300 dimensions.
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Figure 2: Experiments on the influence of the parameter α in the reward function, on Wikipedia, Pascal Sentence and XMediaNet datasets. It
should be noted that we report the average MAP score of Image→Text and Text→Image tasks.

Dataset Method MAP scores
Image→Text Text→Image Average

Wikipedia

CBT 0.516 0.464 0.490
CBT-inter 0.505 0.443 0.474
CBT-intra 0.499 0.434 0.466

CBT-baseline 0.483 0.426 0.455

Pascal
Sentence

CBT 0.602 0.583 0.592
CBT-inter 0.595 0.572 0.583
CBT-intra 0.589 0.570 0.580

CBT-baseline 0.577 0.560 0.569

XMediaNet

CBT 0.577 0.575 0.576
CBT-inter 0.572 0.567 0.569
CBT-intra 0.568 0.561 0.564

CBT-baseline 0.557 0.554 0.555

Table 4: Baseline experiments on performance of two rewards.

4.3 Comparisons with State-of-the-art Methods

The experimental results are shown in Tables 1, 2 and 3,
which include the MAP scores of two retrieval tasks and
their average results on 3 datasets. Obviously, our proposed
CBT approach achieves the best retrieval accuracies. Among
all the compared methods, we can draw the follow observa-
tions: First, most deep learning based methods achieve bet-
ter retrieval accuracies than the traditional methods, where
CCL has the best performance, which verifies the effective-
ness of deep network. Second, traditional methods benefit
from the CNN feature to get better performance than their
original works with hand-crafted features, and even some of
them have close accuracy with deep learning based methods,
such as JRL and LGCFL. Compared with the state-of-the-
art methods, our proposed CBT approach achieves promis-
ing improvement with following 2 reasons: (1) Cross-modal
translation strategy to conduct bidirectional transformation
between image and text to capture the cross-modal correla-
tion in the original feature space of each modality, while the
compared methods mainly model the cross-modal correla-
tion through unidirectional projections that limit their perfor-
mance. (2) Cross-modal reinforcement learning is adopted to
extract intra-modality and inter-modality rewards in a bidirec-
tional game, which can model correlation and reconstruction
information in both two feature spaces of image and text si-
multaneously, while the compared methods only model them
in single intermediate transformation.

4.4 Parameter Analysis and Baseline Comparisons
We conduct parameter experiment on the effect of key param-
eter α in reward function 4. The value of α ranges from 0.1
to 0.9, and results are shown in Figure 2. We further evaluate
the performance with only single reward in Table 4, where
“CBT-inter” means that only inter-modality reward extracted
from correlation learning error is adopted, while “CBT-intra”
means only intra-modality reward from reconstruction error.

From the above results, we have the following obser-
vations: (1) Compared with “CBT-baseline” which only
adopts semantic constraint between two-pathway network,
the two rewards can further promote the cross-modal corre-
lation learning. (2) The retrieval accuracy becomes highest
when α is larger than 0.5, and “CBT-inter” also has better per-
formance than “CBT-intra”, which indicates that correlation
learning plays a more important role than modeling recon-
struction information. (3) Compared with “CBT-inter” that
only considers the unidirectional translation from one to an-
other, CBT outperforms it with bidirectional translation to
fully capture the cross-modal correlation. (4) CBT outper-
forms all the baseline methods, which verifies the effective-
ness on the integration of two rewards to further promote the
accuracy of cross-modal retrieval.

5 Conclusion
In this paper, we have proposed Cross-modal Bidirectional
Translation (CBT) approach to conduct bidirectional transla-
tion between image and text. First, a cross-modal translation
mechanism is designed to model the cross-modal correlation
as well as exploit the fine-grained local and context informa-
tion in original feature space of each modality. Second, cross-
modal reinforcement learning is proposed to jointly model the
correlation and reconstruction information as two kinds of re-
wards in the bidirectional game played as a round between
image and text. Extensive experiments verify the effective-
ness of our proposed CBT approach. In the future work, we
attempt to perform unsupervised learning to exploit unlabeled
data for practical applications.
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