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Abstract

This paper introduces a new approach for ma-
chine teaching that partly addresses the (unavoid-
able) mismatch between what the teacher assumes
about the learning process of the student and the
student’s actual process. We analyze several situ-
ations in which such mismatch takes place and we
show that, even in the simple case of a Bayesian
Gaussian learner, the lack of knowledge regarding
the student’s learning process significantly deterio-
rates the performance of machine teaching: while
perfect knowledge of the student ensures that the
target is learned after a finite number of samples,
lack of knowledge thereof implies that the student
will only learn asymptotically (i.e., after an infinite
number of samples). We propose interactivity as a
means to mitigate the impact of imperfect knowl-
edge and show that, by using interactivity, we are
able to attain significantly faster convergence, in
the worst case. Finally, we discuss the implications
of our results in single- and multi-student settings.

1 Introduction
The use of computer and Internet technology in education
has seen an enormous development in recent years, with
the appearance of massive open online courses (MOOCs)
and intelligent tutoring systems (ITS). MOOCs have cre-
ated new opportunities for widespread education, while ITS
provide personalized contents and/or exercises tailored for
each user [Anderson et al., 1995; Koedinger et al., 1997;
Nkambou et al., 2010; Clement et al., 2015; Mota et al.,
2015].

Typically, ITS do not consider the specific structure of
the teaching goal and abstract the teaching experience as
the process of providing a teaching item for which a re-
sponse is received. In contrast, the field of machine teach-
ing (MT) considers directly the task to teach, and seeks to
select the smallest amount of information necessary for a stu-
dent to learn that specific task [Balbach and Zeugmann, 2009;
Zhu, 2013; 2015]. Such quantity is often known as the teach-
ing dimension (TD) of that task [Goldman and Kearns, 1995;
Shinohara and Miyano, 1991].

Machine teaching has the potential to strongly reduce the
effort required from both learner and teacher. For instance,
the structural properties of the chemistry domain can be used
to accurately estimate the knowledge of a student [Davenport
et al., 2012] and use that to drive the selection of new teaching
materials.

The main problem with machine teaching—which may
partly explain its lack of use in actual ITS systems—is that
the assumptions about what is known about the learner are of-
ten not realistic. Most methods assume a perfect knowledge
about the learner, its learning process, and associated parame-
ters. Such assumption is particularly unrealistic when dealing
with human learners, but little work exists in the literature that
explicitly addresses this unavoidable mismatch between what
the machine teaching systems assume about the learners and
the learners themselves.

In this work we take a step towards addressing such prob-
lem. Our contributions are two-fold:

• In the first part of the paper (Section 2), we show that,
even in the simple situation of Bayesian Gaussian learn-
ers, the lack of knowledge regarding the student’s learn-
ing process significantly deteriorates the performance of
machine teaching: while perfect knowledge of the stu-
dent ensures exact learning with a finite number of sam-
ples, incorrect information about the student implies that
the latter will only learn asymptotically (i.e., after an in-
finite number of samples).
The results of such conceptual exercise suggest that the
lack of knowledge about the learner hampers the poten-
tial usefulness of machine teaching even in the simplest
situations and we may expect this effect to be even more
severe when interacting with human learners.

• In the second part of the paper (Section 3) we propose
interactive teaching as a possible avenue to address the
aforementioned mismatch between teacher and learner.
In interactive teaching, the teacher interleaves the pre-
sentation of novel information with moments in which
it seeks to assess the students current state. We show
that, in the case of a Bayesian Gaussian learner, the use
of interactivity significantly gains in terms of learning
performance.

Finally, we conduct a simple study in which human stu-
dents must learn the average price of an apartment in an un-
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known city. Our results confirm the main conclusions of our
conceptual analysis, namely that (i) the assumptions in the
machine teaching system fail to reproduce the students’ ac-
tual learning process; (ii) such mismatch renders machine
teaching no different from a “random sampler”; (iii) the use
of interactivity significantly improves the performance of the
machine teaching system.

2 Teaching the Mean of a Gaussian
Distribution

Let us consider the situation in which a teacher must select
samples, {x1, . . . , xN}, from which a learner then estimates
the mean of a Gaussian distribution N (µ∗, τ), where µ∗ rep-
resents the mean of the distribution and τ represents the cor-
responding precision [Zhu, 2013].1

Throughout our derivations, we assume that the precision
of the distribution, τ , is known. We also assume the learner
is a Bayesian learner with a (conjugate) prior N (µ0, τ0). In
other words, upon receiving a sample x, the learner computes
the updated estimate

µ1 =
τ0

τ0 + τ
µ0 +

τ

τ0 + τ
x.

More generally, upon receiving the nth sample, xn, the
learner computes the updated estimate

µn =
τn−1
τn

µn−1 +
τ

τn
xn,

where τn = τ0 + nτ, n ≥ 0.

2.1 Optimal Teaching with Perfect Knowledge
We start by considering the most favorable situation, in which
the teacher is fully aware of the learner’s model parameters,
µ0 and τ0. In this case, if the teacher provides the sample

x1 =
τ1
τ
µ∗ − τ0

τ
µ0,

the learner’s updated estimate is

µ1 =
τ0
τ1
µ0 + µ∗ − τ0

τ1
µ0 = µ∗.

In other words, if the teacher is perfectly aware of the
learner’s prior, a single sample is sufficient to ensure perfect
learning. Any subsequent samples should take the value

xn =
τn
τ
µ∗ − τn−1

τ
µ∗ = µ∗,

which ensure that µn = µ∗ for all n > 0.
In practice, however, the teacher will not have perfect

knowledge regarding the learner. Let us then consider the
situation in which the learner’s parameters do not correspond
exactly to the values that the teacher assumes.

1Given a normal distribution with mean µ and variance σ2, the
precision, τ , is the inverse of the variance, i.e., τ = σ−2. We use
the precision throughout the document for ease of presentation.

2.2 Teaching with the Wrong Prior Mean
We first consider the situation where the learner’s prior
mean—henceforth denoted as µL0 —differs from the value as-
sumed by the teacher—henceforth denoted as µT0 . Repeating
the derivations in the previous subsection, the sample pro-
vided by the teacher will be

x1 =
τ1
τ
µ∗ − τ0

τ
µT0 ,

leading to the learner’s updated estimate

µL1 =
τ0
τ1
µL0 +

τ

τ1
x1 =

τ0
τ1

∆µ+ µ∗,

where ∆µ = µL0 − µT0 . Following the reasoning in the pre-
vious section, we again conclude the teacher will then select
xn = µ∗, for all n > 1, leading to the learner’s estimates

µLn =
τ0

τ0 + nτ
∆µ+ µ∗, (1)

which asymptotically converges to µ∗ at a rate O( 1
n ).2

We can see that the term ∆µ—corresponding to the mis-
match between the parameters assumed by the teacher and
their actual values—is responsible for the different behavior
of the learner when compared to the previous subsection and,
if ∆µ = 0, we recover our previous result.

2.3 Teaching with the Wrong Prior Precision
Let us now consider an alternative situation, in which it is the
learner’s prior precision, denoted that τL0 , that differs from
the value assumed by the teacher, denoted as τT0 . Repeating
again the derivations in the previous subsections, we get

x1 =
τT1
τ
µ∗ − τT0

τ
µ0, (2)

where τT1 = τT0 + τ . The sample x1 leads to the learner’s
updated estimate

µL1 =
τL0
τL1
µ0 +

τ

τL1
x1 =

µ0

τL1
∆τ +

τT1
τL1
µ∗,

where ∆τ = τL0 − τT0 . We write µL1 to emphasize the fact
that the learner’s estimate after the first sample differs from
that assumed by the teacher—i.e., the teacher assumes that
the learner’s updated mean is µT1 = µ∗. Subsequent samples
by the teacher will thus be xn = µ∗, for n > 1, leading to the
general estimate

µLn =
µ0

τL0 + nτ
∆τ +

τT0 + nτ

τL0 + nτ
µ∗, (3)

which again asymptotically converges to µ∗ at a rate O( 1
n ).

It is interesting to compare expressions (1) and (3), not-
ing that they have, essentially, the same form: a vanishing
term that weights the difference between the learner and the
teacher, plus a term that converges to µ∗. And, once again, if
∆τ = 0, we recover the initial one-step convergence result.

2In other words, µn = µ∗ +O( 1
n

).
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2.4 Teaching with the Wrong Prior and Precision
We now consider the situation where both µT0 6= µL0 and
τT0 6= τL0 . The first sample provided by the teacher is

x1 =
τT1
τ
µ∗ − τT0

τ
µT0 .

This sample results in the updated estimate

µL1 =
τL0
τL1
µL0 −

τT0
τL1
µT0 +

τT1
τL1
µ∗. (4)

Letting µ̄0 = 1
2 (µL0 + µT0 ) and τ̄0 = 1

2 (τL0 + τT0 ), we can
rearrange (4) as

µL1 =
τ̄0
τL1

∆µ+
µ̄0

τL1
∆τ +

τT1
τL1
µ∗.

Since, as before, µT1 = µ∗, subsequent samples verify xn =
µ∗, n > 1 and the updated estimates take the general form

µLn =
τ̄0
τLn

∆µ+
µ̄0

τLn
∆τ +

τTn
τLn
µ∗ (5)

Note that (5) subsumes (1) and (3). For example, if τL0 = τT0 ,
then τ̄0 = τL0 = τT0 and we recover (1). Similarly, if µL0 =
µT0 , then µ̄0 = µL0 = µT0 and we recover (3). Therefore, as
expected, (5) also converges to µ∗ at a rate O( 1

n ).
The expression (5) also evidences the impact of the mis-

match of each parameter on the performance of the learner.

2.5 Teaching with the Wrong Algorithm
Finally, we look at the case where the algorithm used by
the learner does not exactly match the one assumed by the
teacher. In particular, while the teacher assumes that the
learner is a Bayesian learner, in reality the learner uses a stan-
dard Robbins-Monro stochastic algorithm, corresponding to
the update rule

µLn+1 = (1− αn)µLn + αnxn+1,

where {αn} is a non-negative step-size sequence satisfying
the standard conditions

∞∑
n=1

αn =∞,
∞∑
n=1

α2
n <∞.

For our purposes, and following [Polyak, 1977], we consider
a step-size sequence {αn, n ∈ N} such that nαn → K ≤ 1.
As before, the sample provided by the teacher is

x1 =
τT1
τ
µ∗ − τT0

τ
µT0 ,

leading to the updated estimate

µL1 = µL0 − α0∆µ+ α0
τT1
τ

(µ∗ − µT0 ). (6)

To facilitate future analysis, let τd =
τT
0

τ and write (6) as

µL1 = µ∗ + α0τd∆µ+ (1− α0(τd + 1))(µL0 − µ∗).

Subsequent samples verify xn = µ∗, leading to the estimate

µLn+1 = µ∗ + α0τd

n∏
k=1

(1− αk)∆µ

+ (1− α0(τd + 1))
n∏
k=1

(1− αk)(µL0 − µ∗). (7)

We again get asymptotic convergence to µ∗, since the first
and second terms converge to 0 as n → ∞ (see Appendix A
for details).

3 Using Interactivity to Overcome Prior
Mismatch

In this section we discuss how interactivity can be used to
effectively mitigate the impact of a wrong learner model. We
assume that the teacher is able to query the learner at any
point during the learning process. When queried, the learner
responds the value of its current estimate perturbed by noise.
This situation can model, for example, the case where there is
noise in the communication between teacher and learner, or
when the teacher is interacting with a population of learners,
not all of which have the same prior over the target parameter.

Formally, we assume that, when queried, the learner re-
sponds with a value un = µLn + wn, where wn is a random
noise term that is independent of any other entities used in
the interaction (namely, µLn ) and such that wn ∼ N (0, σ2

n),
where {σn, n ∈ N} is a positive, real-valued sequence such
that σn → 0. The teacher assumes that the learner is a
Bayesian learner with prior parameters (µT0 , τ

T
0 ) and pro-

ceeds as follows:
1. Set n = 0.
2. Query the learner. The learner will then respond with the

value un = µLn + wn, where wn is the Gaussian noise.
3. Set µTn = un.
4. Provide the sample

xn+1 = (τTd + n+ 1)µ∗ − (τTd + n)µLn − (τTd + n)wn

where, as before, τTd =
τT
0

τ . Using the sample xn+1, the
learner updates its estimate of the mean, leading to

µLn+1 = (1− αn)µLn + αnxn+1,

where we again consider a learner following a standard
Robbins-Monro stochastic algorithm. Replacing the ex-
pression for xn+1 yields

µLn+1 = µ∗ + (1− αn(τd + n+ 1))(µLn − µ∗)
− αn(τd + n)wn.

5. Set n = n+ 1 and repeat the process from step 2.
Unfolding the recursion, we get

µLn = µ∗ +
n∏
k=0

(1− αk(τd + k + 1))(µL0 − µ∗)

−
n∑
k=0

αk(τd + k)

n∏
`=k+1

(1− α`(τd + `+ 1))wk. (8)

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2569



0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Non-interactive
Interactive

Number of iterations

E
rr
o
r
(a
b
so
lu
te

va
lu
e)

Figure 1: Comparison of the theoretical behavior of the three ap-
proaches (non-interactive, noise-free and sample-based), for the par-
ticular case where αn = 1/(n+ 1), τd = 1 and ∆µ = 0.

The main differences between (8) and (7) are: (i) the term in
∆µ is absent in (8), while the term in wn is absent in (7); (ii)
the coefficient multiplying the term (µL0 −µ∗) takes different
forms in the two equations.

3.1 Rates of Convergence
To analyze the rate of convergence of the interactive ap-
proach, we rewrite (7) and (8) in their incremental form. For
the non-interactive approach, we have that

µLn+1 = µ∗ + (1− αn)(µLn − µ∗).
Letting δn = µLn − µ∗, we get

δNIn+1 = (1− αn)δNIn , n > 0,

where the NI superscript stands for “non-interactive” and

δNI1 = (1− α0(τd + 1))δNI0 + α0τd∆µ.

Considering the interactive approach, we have, for all n,

δIn+1 = (1− αn(τd + n+ 1))δIn − αn(τd + n)wn.

Since nαn → K ≤ 1, we have that
1− αn

1− αn(τd + n+ 1)
→ 1

1−K > 1,

and it follows that, in expectation, δIn converges to 0 faster
than the non-interactive approach. The difference between
the two approaches is illustrated in Fig. 1, for the particular
case where αn = 1/(n + 1), τd = 1 and ∆µ = 0. The
plot clearly illustrates our main conclusion: the interactive
approach significantly outperforms the non-interactive one.

4 Results
This section illustrates how the analysis from the previous
section translates in actual learning performance. We present
two sets of results, the first involving “simulated” students
and the second a learning task involving human students.
Our results compare interactive and non-interactive learning
methods in different scenarios, and showcase the impact that
incorrect information about the students can have in the per-
formance of machine teaching.
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Figure 2: Comparison between an interactive (sample-based) and
non-interactive teacher. (a) Trace of an interactive session. The solid
line corresponds to the estimation error of the student. The triangles
correspond to the successive responses of the student, while the dots
correspond to the samples provided by the teacher. (b) Evolution of
the estimation error for both interactive and non-interactive teaching.

4.1 Simulation Experiments
We consider the Bayesian Gaussian learning setting, in which
the student is a Bayesian learner with a prior that differs
from that of the teacher. Figure 2 presents a comparison be-
tween interactive versus non-interactive learning. The error
of the non-interactive approach after 20 samples is reached
after only 4 samples using interaction. The figure also show
the trace of one run of the algorithm to illustrate what hap-
pens during the interaction. We can observe the effect of
overshooting [Zhu, 2013], where the teaching sample always
compensates the student’s error: if the student over or under-
estimates, the teaching sample will take a value that is below
or above the target value, respectively. Note also that the an-
swer of the student is not the mean estimated by the student,
but a noisy sample thereof, and such noise does not affect the
superior performance of the interactive teaching.

4.2 User Study
We conducted a simple user study to assess whether our con-
clusions from Sections 2 and 3 hold (to some extent) when
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using a machine teaching system with actual human students.

Experimental design In order to conduct our study, we de-
signed an activity which, to some extent, replicates the Gaus-
sian learning scenario discussed throughout the paper. The
task consisted of estimating/learning the average monthly
rent of an 1-bedroom apartment in an undisclosed city some-
where in the USA. The information provided was selected to
balance the impact of the student’s prior knowledge in the
task.

The task proceeds in rounds where, in each round, the stu-
dent is asked its current “guess” for the average monthly rent,
after which it receives an example of a rent presented to the
student as a real rent practiced in the city under considera-
tion. The task continues until the error in the student’s guess
is below 50$ up to a maximum of 30 rounds.

Each student repeats the activity three times, each time
with a different city:

• “City A” corresponds to a target value (average monthly
rent) of 500$;

• “City B” corresponds to a target value of 1000$;

• “City C” corresponds to a target value of 1500$.

The order by which each city is presented to the students is
randomized between students.

We investigated the learning performance of the students
in 3 different conditions:

• Condition 1: The samples are presented to the student
following the interactive teaching approach described in
Section 3. The answers provided by the student are used
to compute the next “example rent” to be shown. In or-
der to make the examples more believable to the student,
we perturb the value prescribed by the algorithm by a
small random amount between 1$ and 10$ and enforce
that such value is never below 100$.

• Condition 2: The samples presented to the student are
selected randomly from a Gaussian distribution with the
prescribed mean and a standard deviation of 300$, ig-
noring the students’ responses.

• Condition 3: The samples are presented to the stu-
dent following the non-interactive machine teaching ap-
proach outlined in Section 2. We use the first three re-
sponses from the student to estimate the prior parameters
used in the algorithm, but subsequent samples ignore the
responses by the student.

The study involved a total of 62 engineering students di-
vided uniformly among the three conditions (see Table 1).
The average age was 23, with 68% males. In analyzing each
activity/condition, we disregarded situations in which the stu-
dents first estimate corresponded to the target value.

Results
The results of our study are summarized in Fig. 3 and prompt
several relevant observations:

• The students were able to learn the target value after 30
rounds in all conditions.

Condition 1 Condition 2 Condition 3

“City A” 20 20 19
“City B” 17 18 16
“City C” 22 20 19

Total 22 20 20

Table 1: Total number of participants per condition/activity.
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Figure 3: Comparison of the learning performance in all conditions,
averaged across all subjects and activities.

• The interactive teaching approach clearly outperforms
the other two approaches—both in terms of the average
error and in terms of standard deviation of the estimates.
In particular, we performed Mann-Whitney U-tests to
compare the distributions obtained by the students after
8 and 30 rounds, and observed that the differences were
significant in all cases.3 This result is in line with our
conclusion in Section 3: even if the teacher’s assump-
tions regarding the student are wrong (which is most
likely the case in our study), interactivity somewhat mit-
igates such mismatch, rendering. Similar results are ob-
served if we consider the three activities (“City A”, “City
B” and “City C”) individually, as illustrated in Fig. 4.
• Finally, the observed difference in performance between

the interactive and non-interactive conditions is larger
than the observed difference in performance between the
non-interactive and random. This result is also in line
with our conclusions in Section 2: when the teacher’s
assumptions regarding the student are wrong, the perfor-
mance of the non-interactive machine teaching system
may not be significantly different than that of random
sampling.

5 Discussion
In this work we investigate the impact that the strong assump-
tions usually made in the machine teaching literature can have

3p-values at round 8: 4.3 × 10−5 (I vs R) and 0.03 (I vs NI).
p-values at round 30: 0.015 (I vs R) and 0.006 (I vs NI).
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(b) City B.
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Figure 4: Comparison of the learning performance in all conditions
per activity.

in the learning performance of the student.
We conduct a conceptual exercise in which we show that,

even in a simple Bayesian Gaussian learning setup, a mis-
match between the values of the parameters of the learner
and the values assumed by the machine teaching system for
those values can have a significant impact on the learning per-
formance of the student. In particular, it renders the machine
teaching approach similar to a random sampler.

We then show that, by “closing the loop” between learner

and teacher—i.e., by allowing the teacher to interactively as-
sess the state of the learner, the impact of the aforementioned
mismatch is significantly mitigated.

A simple user study involving human students confirm
our conclusions, showing that—even with a simple learner
model—an interactive machine teaching system is able to sig-
nificantly outperform non-interactive alternatives.

The idea of interactive teaching is not new. However, pre-
vious works either continued to have too strong assumptions
about the learners or do not provide guarantees on how good
interactive learning is [Zilles et al., 2008]. For instance [Liu
et al., 2017] provides bounds on the teaching dimension for
known learners but not for unknown ones. [Cakmak and
Thomaz, 2011] as well as [Suh et al., 2016] suggest a com-
bination of machine teaching and active learning but without
formal guarantees. [Milli et al., 2017] explore interpretability
in machine teaching.

Our discussion also opens the door for situations with mul-
tiple students and uncertainty about the students. For ex-
ample, [Zhu et al., 2017] considers the teaching dimension
(TD) for teaching multiple students. They show that the
TD grows sub-linearly with the number of students, which
roughly means that the number of teaching examples required
to teach N students grows sub-linearly with N . Extending
our discussion of interactivity to multi-student settings raises
a number of novel very interesting questions—e.g., how to
interact with multiple students? How to deal with the individ-
ual differences between students? How much does the feed-
back from one student inform the teacher about the state of
the class?—thus opening many challenging avenues for fu-
ture research.

A Auxiliary Computations
In Section 2.5, it was stated that the two last terms in the right-
hand side of (7) converged. We now formally establish such
statement.

We have that

lim
n→∞

n∏
`=1

(1− α`) = lim
n→∞

exp

[
n∑
`=1

log(1− α`)
]
.

Using the fact that log(1 − x) ≥ −x, 0 < x < 1, we have
that

lim
n→∞

n∑
`=1

log(1− α`) = −∞,

and hence

lim
n→∞

n∏
`=1

(1− α`) = 0.

This establishes the desired convergence result.
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