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Abstract
Guided sparse depth upsampling aims to upsam-
ple an irregularly sampled sparse depth map when
an aligned high-resolution color image is given as
guidance. When deep convolutional neural net-
works (CNNs) become the optimal choice to many
applications nowadays, how to deal with irregular
and sparse data still remains a non-trivial problem.
Inspired by the classical normalized convolution
operation, this work proposes a normalized convo-
lutional layer (NCL) implemented in CNNs. Sparse
data are therefore explicitly considered in CNNs by
the separation of both data and filters into a sig-
nal part and a certainty part. Based upon NCLs,
we design a normalized convolutional neural net-
work (NCNN) to perform guided sparse depth up-
sampling. Experiments on both indoor and outdoor
datasets show that the proposed NCNN models
achieve state-of-the-art upsampling performance.
Moreover, the models using NCLs gain a great gen-
eralization ability to different sparsity levels.

1 Introduction
Guided sparse depth upsampling aims to reconstruct a dense
depth map from irregularly sampled sparse measurements
under the guidance of a high-resolution color image. This
task has received considerable attention since the joint use
of 3D laser scanners and visual cameras became popular in
autonomous driving. Due to the limitation of hardware de-
velopment, state-of-the-art range sensors still acquire much
lower-resolution data when compared to visual images. Even
for Velodyne HDL-64e [Velodyne, 2018], when projecting
sparse 3D point clouds into an aligned 2D image, it obtains
only approximately 5% valid depth values in the projected
image. Such a high sparsity level makes it challenging to per-
form subsequent tasks such as RGB-D based object detection
and road scene understanding.

Guided depth upsampling has been studied for decades.
Traditional methods often rely on either local or global tech-
niques. The former, such as joint bilateral filtering meth-
ods [Tomasi and Manduchi, 1998; Petschnigg et al., 2004],
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Figure 1: Various convolutional results. (a) is an original depth map.
(b) and (c) are randomly sampled depth maps at a sampling rate of
10% and 50%, respectively. (d) is a kernel learned from a CNN
framework. (e-g) are the results obtained by convolving (d) with
(b) using standard, sparse, and normalized convolutions respectively.
(h) is a Gaussian kernel with ω = 21, σ = 3. (i-k) are the results ob-
tained by convolving (h) with (b). (l-n) are the results of convolving
(h) with (c).

predicts unknown depth values according to their neighbour-
hood. The latter, e.g. Markov random fields [Diebel and
Thrun, 2006; Park et al., 2011], formulates the task as a
global energy minimization problem. In these methods, struc-
tral similarity is measured in terms of hand-crafted features,
which limit the upsampling performance. Recently, deep con-
volutional neural networks (CNNs) [Riegler et al., 2016a;
Hui et al., 2016; Li et al., 2016b] are applied to this task. But
they all assume that input data is complete and defined on reg-
ular 2D grids. When applying CNNs for guided sparse depth
upsampling, we have to tackle a particular problem. That is,
how to deal with irregular and sparse inputs in CNNs?

For this problem, a naive solution is to fill missing values
with 0 and feed the input into standard CNNs. When the in-
put data are dependent and the underlying distribution keeps
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the same, the standard CNNs are able to deduce the missing
values. However, these models lack the generalization ability
when the sparsity level is changed. To overcome this disad-
vantage, Uhrig et al. [Uhrig et al., 2017] propose a sparse
convolutional layer in CNNs that takes the certainty of data
into account, by which sparsity invariance is achieved. Our
work is close to theirs but inspired by normalized convolu-
tion [Knutsson and Westin, 1993], which was proposed for
filtering incomplete or uncertain data in 1990s. Figure 1 illus-
trates some typical results obtained by applying three convo-
lution operations, i.e. standard, sparse, and normalized con-
volutions, directly on sparse depth maps when using differ-
ent kernels and different sampling rates. The results show
that normalized convolution outperforms the others no matter
which kernel or sampling rate is taken.

The above phenomenon draws our attention to the factors
that might affect the performance of sparse depth upsampling.
We think there are three key factors: (1) Filter. Better fil-
ters, better performance. That’s why learning filters in CNNs
can be expected to outperform most explicitly defined filter-
ing methods. (2) Convolution operation. The conducted ex-
periments show that normalized convolution alone, even if it
is not used in the CNN framework, can get acceptable up-
sampling results. (3) Extra information for guidance. The
integration of a high-resolution color image may help to re-
cover high frequency components in depth maps based on the
co-occurrence assumption.

Therefore, in this work we opt to combine the advantages
of CNNs and normalized convolution to perform the sparse
depth upsampling task, while integrating high-resolution
color images as guidance. To better perform the guided sparse
depth upsampling task, we make the following contributions:

• Based upon normalized convolution, we propose a
normalized convolutional layer (NCL) implemented in
CNNs to deal with sparse and irregular input data. Dif-
ferent from the existing sparse convolution, NCL takes
both the certainty of data and the applicability of fil-
ters into account. As evidenced by experiments, our
trained model not only gains the ability to adapt to var-
ious sparsity levels, but also achieves increasing perfor-
mance when more certain data are input.

• Base upon NCL, we propose a new architecture named
normalized convolutional neural network (NCNN) to
perform guided sparse depth upsampling. The frontend
of NCNN consists of two streams: one uses standard
convolutional layers to cope with a dense guidance im-
age, and the other applies NCLs to deal with a sparse
depth map. The backend of CNN fuses the outputs of
two streams together to predict the dense upsampling re-
sult. Experiments on various datasets demonstrate that
our approach outperforms the state-of-the-arts.

2 Related Work

Our work is most related to the techniques dealing with sparse
inputs and depth upsampling. Thus, this section makes a brief
review on these aspects.

2.1 CNNs with Sparse Inputs
The input of standard CNN models is supposed to be dense.
How to deal with sparse and irregular data in CNNs is a non-
trivial problem. A naive solution is set missing values to be
0 and feeds the input into a standard CNN, as done in [Chen
et al., 2017] [Li et al., 2016a]. Another alternative way is
passing the sparse input together with an additional binary
certainty mask to CNNs [Zweig and Wolf, 2017]. Both op-
tions leave the standard convolutional networks unchanged.
An exception is the work done by Uhrig et al. [Uhrig et al.,
2017], who propose a sparse convolutional layer to consider
data’s certainty within the convolution operation.

Our work is close to [Uhrig et al., 2017] but inspired by
normalized convolution (NC) [Knutsson and Westin, 1993].
NC is a classical technique proposed to filter sparse or incom-
plete data by separating both data and convolutional operator
into a signal part and a certainty part. We implement NC as
a layer in CNNs for sparse inputs. Benefited from the least
square optimality property that NC holds, our model gains
better performance.

2.2 Depth Upsampling and Prediction
According to whether we use extra information for guidance
or not, depth upsampling can be classified into non-guided
and guided techniques.
Non-guided depth upsampling is close to image super-
resolution. Early methods are often based on interpola-
tion [Hou and Andrews, 1978], sparse representation [Yang
et al., 2010] and other traditional techniques. Recently,
deep learning based methods have demonstrated a great suc-
cess in depth [Riegler et al., 2016b; Uhrig et al., 2017] or
color [Dong et al., 2016; Kim et al., 2016; Dahl et al., 2017]
image super-resolution. Except [Uhrig et al., 2017], all above
mentioned techniques cope with regular low-resolution im-
ages and have no concerns particular to irregularly sampled
sparse data.
Guided depth upsampling takes a high-resolution image
as guidance. It is based on an observation that depth dis-
continuities often co-occur with color or intensity changes.
Traditional methods mainly rely on local filtering techniques
such as joint bilateral filtering [Tomasi and Manduchi, 1998;
Petschnigg et al., 2004], and global optimization techiniques
such as Markov random fields [Diebel and Thrun, 2006;
Park et al., 2011]. These methods are able to deal with
both regularly and irregularly sampled data, but they use
hand-crafted features that limit their performance. In re-
cent years, researchers have come up with various deep
learning methods [Riegler et al., 2016a; Hui et al., 2016;
Li et al., 2016b] for guided upsampling. Again, these meth-
ods only deal with regular low-resolution depth maps.
Depth prediction from a monocular color image based on
deep learning methods [Laina et al., 2016; Godard et al.,
2017] is attracting considerable attention nowadays. In addi-
tion, sparse laser measurements are also integrated by Kuzni-
etsov et al. [Kuznietsov et al., 2017] and Ma et al. [Ma
and Karaman, 2018] to regularize depth prediction results.
All above depth prediction methods can be viewed as a
domain transfer problem that regresses depth values from
color/intensity values. They rely more on color images but
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take sparse depth maps as guidance. Conversely, color im-
ages are used to guide depth upsampling in our work.

3 The Proposed Method
In this section, we first introduce the concept of normalized
convolution for the purpose of self-containedness. We then
present the implementation of normalized convolution as a
layer in CNNs, upon which a normalized convolutional neural
network (NCNN) is designed for guided depth upsampling.

3.1 Normalized Convolution
Normalized convolution was first introduced by Knutsson and
Westin [Knutsson and Westin, 1993]. It is based on the sep-
aration of both data and operator into a signal part and a cer-
tainty part, through which irregular sampled data can be han-
dled by setting the certainty to 1 in the sampling points and
0 elsewhere. Therefore, it is applicable to perform operations
on incomplete or uncertain data.

Let u be the global spatial coordinate and i be the coordi-
nate in a local window. X(u) denotes a tensor representing
an input signal. c(u) is a positive scalar value indicating the
certainty of X(u). When considering a convolution, we use
a tensor B(i) to represent the filter basis and a positive scalar
value a(i) to represent the applicability of B(i).

Definition of Standard Convolution
Following the definitions in [Knutsson and Westin, 1993], a
generalized form of convolution is defined by

Y(u) =
∑
i

a(i)B(i)� c(u− i)X(u− i), (1)

where� denotes some multilinear operation (in standard con-
volution this operation is scalar multiplication). For compact-
ness, it can be written as

Y = {aB�̂cX} (2)

whereˆover the multilinear operation indicates that the oper-
ation is involved in the convolution.

Definition of Normalized Convolution
Normalized convolution of aB and cX is then defined by

YN = {aB�̂cX}N = N−1D (3)

where

D = {aB�̂cX} (4)
N = {aB�B∗ ·̂c}, (5)

in which · denotes standard scalar multiplication and ∗ de-
notes complex conjugate.

Property of Normalized Convolution
As shown in [Knutsson and Westin, 1993], normalized con-
volution produces a description of the neighbourhood that is
optimal in a least square sense. Again, for self-containedness,
we show this property here.

Let us consider a neighbourhood d. If a set of basis func-
tions, denoted by a matrix B, are given, we normally get

d′ = Bx, (6)

which approximately represents the neighbourhood. By min-
imizing the least square error ||d′ − d||22, we get the coeffi-
cients x to be:

x =
[
BTB

]−1
BTd. (7)

Considering a weighted least square error ||W (d′ − d)||22,
in which W is a diagonal weighing matrix, the error is mini-
mized by choosing x to be:

x = [(WB)TWB]−1(WB)TWd. (8)

It can be rewritten and split into two parts as follows:

x = [BTW 2B]︸ ︷︷ ︸
N

−1
BTW 2d︸ ︷︷ ︸

D

, (9)

in which N and D are shown to be identical to the corre-
sponding terms defined in normalized convolution.

In normalized convolution, the diagonal weighing matrix
for a neighbourhood centered on u0 is given by

W 2
kk(u0) = a(ik)c(u0 − ik), (10)

which depends on the certainty of data and the applicability
of the convolution kernel. Therefore, normalized convolution
can be viewed as a method for obtaining a local weighted
least square error description of the input signal. When bet-
ter applicability or more certain data are considered, we can
reconstruct the original dense signal better.

3.2 Normalized Convolutional Layer
Standard convolutional layer is a key component for CNNs
to achieve giant success. It inspires us to implement normal-
ized convolution as a layer in CNNs to deal with irregularly
sampled images. To this end, we consider a 2D sparse depth
map as the input signal, then the global and local spatial co-
ordinates can be explicitly represented as u = (u, v) and
i = (i, j), respectively. We further use the set of impulses
located at each pixel as the basis to represent the convolution
filter. Then, normalized convolution can be rewritten as:

YN (u, v) =

K∑
i,j=−K

w(i, j)c(u− i, v − j)X(u− i, v − j)

K∑
i,j=−K

w(i, j)c(u− i, v − j) + ε

+ b.

(11)

Here, regarding to the filter basis that we chose, we get
w(i, j) = a(i, j)B(i, j) = a(i, j). The filter size is (2K +
1)×(2K+1). b is a bias commonly added in a convolutional
layer and ε is a small value placed to avoid dividing by zero.

For dealing with 2D sparse depth maps, another technique
named sparse convolution [Uhrig et al., 2017] was proposed
recently. It considers the certainty of the input signal but has
no concern on the applicability of the filters. It is defined in
the form of

YS(u, v) =

K∑
i,j=−K

w(i, j)c(u− i, v − j)X(u− i, v − j)

K∑
i,j=−K

c(u− i, v − j) + ε

+ b.

(12)
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Figure 2: An overview of the proposed network architecture for guided sparse depth upsampling.

In contrast to normalized convolution, the above defined
sparse convolution does not hold the least square optimality
property. Moreover, normalized convolution can preserve the
range of the signal during convolution while sparse convolu-
tion can not.

When implementing normalized convolution as a layer in
CNNs, we take a 2D signal and its corresponding certainty
map as the inputs. The 2D input signal might be a single-
channel sparse depth map or multi-channel sparse feature
maps. The corresponding certainty map is initially set to be
1 at the measured pixels and 0 otherwise. As a layer used
in CNNs, it is necessary to update the certainty map when
the measured information are propagated to neighbours dur-
ing convolution, and pass the updated certainty map into next
layers. The update can be implemented via the max-pooling
operation defined by

cupdate(u, v) = max
i,j=−K···K

c(u− i, v − j), (13)

which sets the certainty of the pixels to 1 if at least one mea-
sured pixel is into the filter and 0 otherwise.

Figure 3 illustrates the network structure of our normalized
convolutional layer. As mentioned above, it takes a 2D signal
and the associated certainty map as the inputs, and outputs
a feature map and an updated certainty map. Moreover, it
consists of two streams: one implements the normalized con-
volution defined in Equation (11) and the other is for certainty
map update.

3.3 NCNN for Guided Depth Upsampling
Based upon above implementations, we propose a normalized
convolutional neural network (NCNN) to perform guided
sparse depth upsampling. Figure 2 illustrates the entire ar-
chitecture. It consists of three major components: color
feature extraction sub-network, depth feature extraction sub-
network, and feature fusion sub-network.

The Color Feature Extraction Sub-network
This sub-network takes a guidance image, which is dense and
in color, as the input. When designing its architecture, we
have the following concerns: (1) As validated in many appli-
cations, standard convolutional layers (SCLs) are powerful to

Figure 3: The network structure of a normalized convolutional layer.
Here, · denotes element-wise multiplication, ∗ denotes standard con-
volution, + is element-wise addition and 1/x is the reciprocal of x.
Moreover, stride 1 and zero padding are taken in this convolution.

extract features from regular images. Thus, this sub-network
uses a stack of SCLs for feature extraction. (2) In contrast to
other applications such as image classification or object de-
tection, the depth upsampling task needs finer scale features.
Thus, instead of using large size filers and max-pooling op-
erations, each convolutional layer adopts filters in the size
of 3 × 3 and is followed only by ReLU activations but no
max-poolings. Moreover, zero padding is used before convo-
lutions to keep the size of all feature maps the same as the
input. (3) As shown in [Kim et al., 2016], taking large con-
text into account benefits super-resolution results. Therefore
this sub-network empirically stacks 10 convolutional layers
to gain large receptive fields.

The Depth Feature Extraction Sub-network
This sub-network takes a sparse depth map and its certainty
map as the inputs. This sub-network has the same architecture
as the previous one, but replacing all SCLs by our normalized
convolutional layers. The NCLs play two roles: on one hand,
they are able to extract features directly from an irregularly
sampled sparse depth map; on the other hand, the NCLs also
perform interpolation or upsampling for sparse data so that
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the produced feature maps are dense.

The Feature Fusion Sub-network
This sub-network takes the concatenation of the outputs from
previous two streams as the input. Considering that the fea-
ture maps from both streams are dense, we therefore use
SCLs the same as in the color stream to perform feature fu-
sion. When choosing the layer number, we find out that a
shallow architecture is prone to transfer unnecessary structure
details from the guidance image to depth prediction results. A
deep architecture can highly reduce such effects but increases
computational costs. Thus, we experimentally set 9 layers for
fusion. In the end a 1 × 1 convolutional layer followed by
Sigmoid is connected to predict a dense depth map.

Network Training
In the training phase, we are given N training samples
{Di

sparse, I
i
color, D

i
gt}Ni=1, in whichDi

sparse denotes a sparse
depth map, Iicolor represents the aligned color image for guid-
ance, and Di

gt is the ground truth dense depth map. Let F
represent the mapping function over the whole network and
ω be the collection of all network parameters, then the out-
put of the network Di

pred, which is the predicted dense depth
map, is represented by

Di
pred = F (Di

sparse, I
i
color|ω). (14)

Then, we define the entire training loss function as below.

L =
1

2N

N∑
i=1

‖Di
pred −Di

gt‖22 + λ‖ω‖22, (15)

where λ is a scalar to balance two terms. The former term is a
square error of all pixels and theL2 regularization term of ω is
added to avoid overfitting. The whole network is trained end-
to-end. The loss function is optimized by ADAM [Kingma
and Ba, 2014].

4 Experimental Results
In this section, we first introduce implementation details, to-
gether with the datasets and the metric used for evaluation.
Experimental results evaluated on different datasets are then
demonstrated to validate the effectiveness of our approach.

4.1 Experimental Setup
Our approach is implemented based on Tensorflow [Abadi et
al., 2016]. In experiments, we do not use any pre-trained
models but initialize weight parameters via Xavier [Glorot
and Bengio, 2010] and set the initial bias to be 0. We empir-
ically set the hyper-parameter λ in Equation (15) as 10−4 by
referring to other models [Kim et al., 2016] and fix it through-
out all the experiments. We train all experiments enough
epochs till convergence with a batch size of 4. Learning rate
is initially set to 10−4.

In order to have dense depth maps, we conduct our exper-
iments on two synthetic datasets: SceneNet RGB-D [McCor-
mac et al., 2017] and Virtual KITTI [Gaidon et al., 2016].
• SceneNet RGB-D is a dataset for indoor scenes. It con-

tains 5 million rendered RGB-D images in the resolu-
tion of 320× 240. In experiments, we randomly sample

15000 training images from its training set and 2000 test
images from its validation set.

• Virtual KITTI is an outdoor dataset synthetically cloned
from the real-world KITTI benchmark [Geiger et al.,
2012]. It contains 21260 RGB-D images with 5 se-
quences and 10 different rendering variations. In our
experiments, we use 8 variations by leaving out fog and
rain weather scenarios. 4 sequences are chosen for train-
ing and 1 sequence for testing, by which we get 13432
training samples and 3576 test images.

Both datasets provide us with dense depth maps and
aligned color images. For experiments we synthetically gen-
erate sparse depth maps by randomly sampling a percentage
of points from the provided depth maps. Experimental results
are evaluated with respect to root-mean-square error (RMSE).

4.2 Ablation Experiments

We run a number of ablation experiments to analyze our pro-
posed models. To investigate the effectiveness of NCL, we
compare our models with those replacing NCLs with either
standard convolutional layers or sparse convolutional layers.
These models are, respectively, denoted using the suffixes
‘ Norm’, ‘ Stand’ and ‘ Sparse’. To investigate the effec-
tiveness of guidance, we compare our full model with the
one without the color feature extraction stream, and use ‘G’
and ‘NG’ to distinguish them. To check the effectiveness of
NCNN architecture, we compare our ‘NG’ models with Spar-
seConvNet [Uhrig et al., 2017], which is a network architec-
ture designed for non-guided sparse depth upsampling.

In experiments, we train all models at a single sampling
rate (5%) and test them at various rates. Experiments are
conducted on both datasets, from which consistent phenom-
ena can be observed. We present the results on the SceneNet
RGB-D dataset in Table 1 and the results on the Virtual KITTI
dataset in Table 2. Experimental results on both datasets con-
sistently demonstrate the following phenomena: (1) Contrary
to the results in [Uhrig et al., 2017], in our experiments, the
models using standard convolution gain the best performance
when test data has the same or close sampling rate. But their
performance degenerates dramatically as the sampling rate
goes up, indicating that these models lack of generalization
ability. (2) Both normalized convolution and sparse convolu-
tion have great generalization abilities. The least square opti-
mality of NC can be viewed as placing an implicit constraint
on each NCL, which makes the NCL-based models achieve
better upsampling performance. Moreover, although the dis-
tribution of test data is quite different from that of training
data, NC achieves increasing performance as more certain
data are input. (3) The models using guidance information
perform better than those without guidance. (4) The compar-
ison between our ‘NG’ models and the SparseConvNet mod-
els show that our network architecture is superior.

In addition, we also tried to compare the training efficiency
of three convolutional operations by checking the curves of
training loss. In our experiments all the models converge fast
and the one using NCL only shows a slight advantage.
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hhhhhhhhhhModels
Sampling rate 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SparseConvNet Stand 2.115 1.722 2.053 3.029 4.483 6.195 7.973 9.798 11.837 14.333 17.895

SparseConvNet Sparse 2.145 1.777 1.704 1.690 1.687 1.685 1.684 1.683 1.683 1.683 1.683

SparseConvNet Norm 1.947 1.576 1.420 1.372 1.350 1.337 1.329 1.323 1.319 1.316 1.313

NCNN NG Stand 1.774 1.323 1.165 1.238 1.476 1.922 2.686 3.873 5.554 7.861 11.618

NCNN NG Sparse 1.944 1.510 1.342 1.296 1.281 1.272 1.266 1.264 1.262 1.260 1.259

NCNN NG Norm 1.833 1.362 1.155 1.092 1.070 1.057 1.048 1.043 1.039 1.036 1.034

NCNN G Stand 1.166 1.017 0.945 1.009 1.200 1.508 1.879 2.252 2.571 2.808 2.939

NCNN G Sparse 1.265 1.120 1.057 1.045 1.043 1.044 1.045 1.045 1.046 1.047 1.047

NCNN G Norm 1.212 1.069 0.985 0.955 0.939 0.930 0.924 0.919 0.916 0.914 0.912

Table 1: RMSE on SceneNet RGB-D with the models trained at 5% while tested at various sampling rates. (Top 2 results are marked with
underlines and the best one is also highlighted in bold.)

hhhhhhhhhhModels
Sampling rate 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SparseConvNet Stand 2.344 2.033 1.944 2.051 2.241 2.357 2.449 3.155 5.672 11.021 16.632

SparseConvNet Sparse 2.482 2.285 2.202 2.174 2.160 2.151 2.145 2.140 2.136 2.132 2.130

SparseConvNet Norm 2.350 2.012 1.799 1.725 1.690 1.669 1.656 1.647 1.640 1.634 1.630

NCNN NG Stand 2.129 1.796 1.606 1.576 1.611 1.695 1.830 1.995 2.148 2.254 2.289

NCNN NG Sparse 2.290 2.000 1.851 1.808 1.790 1.781 1.775 1.771 1.768 1.766 1.764

NCNN NG Norm 2.172 1.839 1.638 1.569 1.534 1.513 1.500 1.492 1.486 1.482 1.480

NCNN G Stand 1.153 0.993 0.895 0.887 0.989 1.235 1.586 1.972 2.348 2.674 2.821

NCNN G Sparse 1.298 1.195 1.173 1.173 1.175 1.177 1.179 1.180 1.181 1.182 1.182

NCNN G Norm 1.186 1.041 0.982 0.970 0.965 0.963 0.962 0.961 0.960 0.959 0.959

Table 2: RMSE on Virtual KITTI with the models trained at 5% while tested at various sampling rates. (Top 2 results are marked with
underlines and the best one is also highlighted in bold.)

4.3 Visualization of Feature Maps
In our network, we use standard convolutional layers to ex-
tract features from dense RGB images while employ the pro-
posed NCLs to extract features and perform upsampling for
sparse dense maps, and use standard convolution again in the
fusion sub-network. It is interesting to see whether such de-
sign is appropriate. To this end, we demonstrate some typi-
cal intermediate features generated in different sub-networks
in Figure 6. From it we can observe that the feature maps
obtained from the color feature extraction sub-network pro-
vide structured information, while those maps from the depth
sub-network seem more like coarsely upsampled dense depth
maps. The fusion of both transfers the structured features
from color images to recover high frequency components of
depth maps. These phenomena provide supporting evidence
for our network design.

4.4 Comparison to Other Methods
We then compare our full model ‘NCNN G Norm’ to other
guided depth upsampling techniques, including 5 represen-
tative non-deep-learning methods: JBF [Petschnigg et al.,
2004], MRF [Harrison and Newman, 2010], WMF [Min et
al., 2012], TGV [Ferstl et al., 2013], SDF [Ham et al., 2015],
and 1 deep learning approach DJF [Li et al., 2016b]. Ta-
ble 3 and 4 report the experimental results at five sampling
rates (5%, 20%, 50%, 80% and 100%) on both datasets. For
training based methods, experiments are trained and tested at
the same rate. For comparison, we also include the results of
‘NCNN G Norm’ trained at 5% while tested at all the rates.

hhhhhhhhhhMethods
Sampling rate 5% 20% 50% 80% 100%

JBF[Petschnigg et al., 2004] 1.509 1.156 1.036 0.993 0.975

MRF[Harrison and Newman, 2010] 1.723 1.187 0.853 0.648 0.529

WMF[Min et al., 2012] 1.680 1.261 1.089 1.020 0.989

TGV[Ferstl et al., 2013] 1.671 1.030 0.665 0.382 0.000
SDF[Ham et al., 2015] 2.006 1.296 0.868 0.570 0.390

DJF[Li et al., 2016b] 1.842 1.251 0.922 0.640 0.176

NCNN G Norm�(ours) 1.212 0.985 0.930 0.916 0.912

NCNN G Norm(ours) 1.212 0.930 0.714 0.465 0.103

Table 3: RMSE on SceneNet RGB-D with models trained/tested on
the same sampling rate. Note: NCNN G Norm�(ours) lists the re-
sults of our model trained at 5% but tested at all sampling rates.

hhhhhhhhhhMethods
Sampling rate 5% 20% 50% 80% 100%

JBF[Petschnigg et al., 2004] 2.152 1.439 1.197 1.123 1.096

MRF[Harrison and Newman, 2010] 2.380 1.602 1.089 0.768 0.563

WMF[Min et al., 2012] 2.356 1.606 1.329 1.241 1.208

TGV[Ferstl et al., 2013] 2.236 1.493 0.991 0.556 0.000
SDF[Ham et al., 2015] 2.888 1.782 1.147 0.774 0.718

DJF[Li et al., 2016b] 2.113 1.425 0.874 0.631 0.189

NCNN G Norm�(ours) 1.186 0.982 0.963 0.960 0.959

NCNN G Norm(ours) 1.186 0.832 0.527 0.347 0.072

Table 4: RMSE evaluated on Virtual KITTI with mod-
els trained/tested on the same sampling rate. Note:
NCNN G Norm�(ours) lists the results of our model trained
at 5% but tested at all sampling rates.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2288



(a) Color Image (b) Ground Truth (c) JBF (d) MRF (e) WMF

(f) Sparse Map (g) TGV (h) SDF (i) DJF (j) NCNN(ours)

Figure 4: Upsampling results obtained by different guided methods on the SceneNet RGB-D dataset. All methods are applied to (f) that is
randomly sampled from (b) at a rate of 5%.

(a) Color Image (b) Ground Truth (c) JBF (d) MRF (e) WMF

(f) Sparse Map (g) TGV (h) SDF (i) DJF (j) NCNN(ours)

Figure 5: Upsampling results obtained by different guided methods on the Virtual KITTI dataset. All methods are applied to (f) that is
randomly sampled from (b) at a rate of 5%.

(a) (b) (c)

Figure 6: The visualization of intermediate features generated in the
proposed network. (a) presents the typical feature maps output from
the color feature extraction sub-network. (b) shows the feature maps
from the depth feature extraction sub-network. (c) shows the final
outputs from the fusion sub-network.

From Table 3 and 4 we get the following observations: (1)
When training and testing at the same sampling rate, our pro-
posed model outperforms both traditional and deep learning
methods in most cases, especially when the sampling rate is
low. (2) Even if our model is trained only at 5% sampling rate,
its performance at other sampling rates is still competitive to
the others. Figure 4 illustrates qualitative results obtained by
these methods on the SceneNet RGB-D dataset. As shown

in the regions marked by green and red boxes, our approach
can better prevent from transferring unnecessary structural
details from guidance to the upsampled depth map. On the
other hand, our approach keeps object boundaries sharper, as
shown in the region within the blue box. The qualitative re-
sults obtained by these methods on the Virtual KITTI dataset
are also presented in Figure 5. The region marked by the
blue box shows that our approach can keep object boundaries
sharper and recover slim objects (the pole) better. Our ap-
proach also prevent unnecessary structural details, see the re-
gions marked by the red box.

5 Conclusion
Inspired by the classical normalized convolution operation,
in this work we proposed a normalized convolutional layer
in CNNs to deal with irregular and sparse data, and pre-
sented a normalized convolutional neural network to perform
guided sparse depth upsampling. Experiments on both in-
door and outdoor datasets show that our NCNN models out-
perform other guided depth upsampling methods. Moreover,
supported by the least square optimality property of NC, the
models using NCLs gain a great generalization ability to dif-
ferent levels of sparsity. This ability is desirable in applica-
tions where range sensor configurations might be changed.
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