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Abstract

New constraint-based algorithms have been re-
cently proposed to solve Multi-Objective Combina-
torial Optimization (MOCO) problems. These new
methods are based on Minimal Correction Subsets
(MCSs) or P-minimal models and have shown to
be successful at solving MOCO instances when the
constraint set is hard to satisfy. However, if the con-
straints are easy to satisfy, constraint-based tools
usually do not perform as well as stochastic meth-
ods. For solving such instances, algorithms should
focus on dealing with the objective functions.

This paper proposes the integration of stratifica-
tion techniques in constraint-based algorithms for
MOCO. Moreover, it also shows how to diversify
the stratification among the several objective crite-
ria in order to better approximate the Pareto front
of MOCO problems. An extensive experimental
evaluation on publicly available MOCO instances
shows that the new algorithm is competitive with
stochastic methods and it is much more effective
than existing constraint-based methods.

1 Introduction

In Multi-Objective Combinatorial Optimization (MOCO) ap-
plications such as scheduling [Tturriaga et al., 2017] or green
computing [Zheng et al., 2016], there is more than one ob-
jective to be optimized, but there is no pre-defined hierarchy
among the objective functions. Hence, there may exist mul-
tiple optimal solutions, known as Pareto optimal solutions,
each of them favoring certain objectives at the expense of
others. Several approaches have been proposed [Jackson et
al., 2009] that try to identify the Pareto front, i.e., all Pareto
optimal solutions. However, this is known to be very hard for
large MOCO instances, and most algorithms are just able to
provide an approximation to the Pareto front.

There is a wide plethora of stochastic algorithms that try
to approximate the Pareto front [Deb et al., 2000; Xu and
Fortes, 2010], and these methods are known for exhibiting a
very good performance when the problem instances are not
tightly constrained. However, their performance usually de-
teriorates when the constraint set becomes harder to satisfy.
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On the other hand, constraint-based methods are able to deal
with large constraint sets, but have a hard time in integrating
information from the several objectives to be optimized.

Lately, it has been shown that one can find the Pareto front
of a MOCO instance by enumerating the set of Minimal Cor-
rection Subsets (MCSs) [Terra-Neves et al., 2017] or the P-
minimal models [Soh et al., 2017] of a propositional for-
mula. The main strength of these methods is on being able
to quickly satisfy a large constraint set, but in several cases
produce lower quality solutions than stochastic algorithms.

Constraint-based solvers for single objective problems are
known to use different techniques on how to deal with the
objective function. One example is to partition the terms in
the objective function according to its weights. To this end,
stratification techniques have been proposed [Ansétegui et
al., 2012]. In this work, we improve constraint-based MOCO
algorithms by focusing on the optimization of several objec-
tive functions. In particular, we first propose a new solver
that uses stratification in solving MOCO instances. Our main
contributions are as follows: (1) formalization of the usage of
stratification in MCS algorithms; (2) incorporation of strat-
ification in solving MOCO instances; (3) a new stratifica-
tion heuristic and (4) an extensive experimental evaluation
on green computing MOCO instances that shows a huge im-
provement in performance enabled by stratification.

In this paper we start by defining MOCO and MCSs in
section 2. Section 3 explains how to integrate stratification
in MCS algorithms. Section 4 proposes the use of stratifica-
tion in a constraint-based MOCO solver. Moreover, different
stratification strategies are discussed and a new heuristic is
also described. Experimental results showing the effective-
ness of the newly proposed techniques are presented in sec-
tion 5. Finally, the paper concludes in section 6.

2 Definitions

This section starts by describing Pseudo-Boolean Optimiza-
tion (PBO) and Multi-Objective Combinatorial Optimization
(MOCO). Next, Minimal Correction Subsets (MCSs) are de-
fined. Finally, we review how MCSs can be used to find so-
lutions for PBO and MOCO problems.

2.1 Multi-Objective Combinatorial Optimization

Let X = {z1,...,2,} be a set of n Boolean variables. A
literal is either a variable x; or its complement —z;. Given a
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Table 1: Satisfiable assignments and respective costs for the instance
in example 2.2.

set of m literals [, ...,[,, and their respective coefficients
wi,...,wy € IN, a Pseudo-Boolean (PB) expression is a
weighted sum of literals > w; - I;. Given an integer k € IN, a
linear PB constraint has the form:

D wiclivak, aef{<,>, =} e

Consider a set ' = {c1,...,c,} of m PB constraints
and a cost function f defined over a set of X Boolean vari-
ables. The PBO [Boros and Hammer, 2002] problem con-
sists of finding a complete assignment o : X — {0,1} that
satisfies all constraints in F', denoted a(F') = 1, and min-
imizes the value of f, denoted f(«). If F' is unsatisfiable,
then «(F') = 0 for any assignment «. Analogously, given a
PB constraint ¢, a(c) = 1 (a(c) = 0) denotes that « satisfies
(does not satisfy) c.

Example 2.1. Consider a PBO instance defined over X =
{z1, 22,25} where F = {(x1 + 2o + x5 > 2)} is the set
of PB constraints and f(X) = 4x1 + 229 + 33 is the cost
function. In this case, o = {(x1,0), (x2,1), (z3,1)} is an
optimal assignment with a cost of 5. All other assignments to
X either do not satisfy F, or result in a higher value of f(X).

In this paper, the negation operator — can also be applied
to a given PB constraint c. In this case, —c represents that ¢
cannot be satisfied. Observe that —c can be easily converted
into an equivalent PB constraint by updating the relational
operator and the right-hand side. Finally, note that, by def-
inition, all coefficients are required to be positive, but con-
straints with negative coefficients can easily be converted to
equivalent ones with all positive coefficients. The same can
be applied for the cost function.

A MOCO [Ulungu and Teghem, 1994] instance is com-
posed of two sets: a set F' = {c1, ..., ¢y, } of constraints that
must be satisfied and a set O = {f1,..., fi} of cost func-
tions to minimize. In this work, we focus on the special case
where ¢, ..., ¢, are PB constraints and f1, ..., fx are PB
expressions over a set X of Boolean variables.

Given two complete assignments «, &’ such that a # o’
and a(F) = o/(F) = 1, we say that o dominates o/,
written a < &, if, and only if, Vieof(a) < f(¢/) and
Jpecof(a) < f/(¢). « is said to be Pareto optimal if,
and only if, no other complete assignment o exists such that
o/ (F) =1and ¢ < a. In MOCO, the goal is to find the set
of Pareto optimal solutions, also referred to as Pareto front.

Example 2.2. Let F' = {(x1 + z2 + x3 > 2)} be the set of
constraints and O = {(2z1 + x2), (2-x2 + 2x3)} the set of
cost functions of a MOCO instance. The costs for each pos-
sible satisfiable assignment to F' are shown in Table 1. The
lines that correspond to Pareto optimal solutions are high-
lighted in bold, while the other are dominated. For example,
{(21,1), (x2,0), (x3,1)} is not Pareto optimal because it is
dominated by {(z1,0), (x2,1), (x3,1)}.

For most problems, finding all Pareto optimal solutions in
a reasonable amount of time is extremely hard. Hence, our
focus is on finding the best approximation of the Pareto front.

2.2 Minimal Correction Subsets

Let F' be an unsatisfiable set of PB constraints. A Minimal
Correction Subset (MCS) of F'is a subset C C F such that
F'\ C is satisfiable and C' is minimal, i.e., (F'\ C) U {c} is
unsatisfiable for all c € C.

Example 2.3. Consider the unsatisfiable set of PB con-
straints F = {(x1 + 22 =1),(x1 > 1),(xz2 > 1)}. F has
three MCSs C1 = {(z1 > 1)}, Co = {(z2 > 1)} and
Cs = {(xl + o = 1)}

There are several algorithms described in the literature for
finding MCSs [Bailey and Stuckey, 2005; Felfernig ef al.,
2012; Marques-Silva et al., 2013; Mencia et al., 2015]. Op-
tionally, these algorithms can receive as argument a set of
hard constraints 'y that must be satisfied and a set Fg of soft
constraints for which we want to find an MCS C' C Fs. In
this case, C' is an MCS if Fy U (Fs \ C) is satisfiable and
Fy U (Fs \ C) U{c} is unsatisfiable for all ¢ € C. For sim-
plicity, we assume that F' is always satisfiable, but this can
be checked using a single call to a satisfiability solver.

MCSs can be used to find approximate solutions of PBO
instances. Let F' be the set of constraints and f(X) =
> w; - l; the cost function of a PBO instance. Let L(f)
be the set of all literals in f and L™(f) the set of clauses
built from the negation of the literals in L(f), i.e., L™ (f) =
User(p{(=li)}. Applying an MCS algorithm with Fiy = F
and F's = L7(f), produces an MCS C of L™(f). We abuse
notation and denote as f(C') the cost of C, defined as:

f0)y= %" w )

(~l)eC

Any assignment that satisfies F'U L™ (f) \ C will have a cost
of f(C), which provides an approximation to the optimum of
the PBO instance. Actually, the PBO problem can be reduced
to finding the MCS C' C L™(f) that minimizes f(C) [Birn-
baum and Lozinskii, 2003].

MCSs can also be used to find the Pareto front of MOCO
instances. Let F' and O be the constraint and cost function
sets, respectively, of a MOCO and L™(0) = U;co L7(f).
Terra-Neves et al. [2017] proved that one can find the Pareto
front by enumerating all MCSs of L™(O).

Example 2.4. Consider F' = {(x1 + 2 + x3 > 2)} and
O = {(2z1 + z2), (2-x2 + 223)} from example 2.2. In
this case, we have L™(0) = {(—-x1), (mx2), (z2), (—z3)}.
As a result, there are three MCSs: C1 = {(—x2), (—x1)},
Cy = {(—x2), (—x3)} and C5 = {(—x1), (z2), (—x3)} with
costs (3,0), (1,2) and (2, 4), respectively. Observe that these
MCSs include all the Pareto optimal assignments highlighted
in table 1.

3 Stratification

Stratification has been successfully applied to boost
the performance of Maximum Satisfiability (MaxSAT)
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Algorithm 1: Generic stratified MCS algorithm

Algorithm 2: Stratified MCS-based MOCO algorithm

Input: Fy, Fs
1 (P, Py,...,P;) < Partition (Fy)
2 (51,0) — (FH,Q))
3 fori <+ 1tokdo
4 Ci<—MCS (Sz’ Pz)
5 Sit1 < SiU(Pi\ Ci) UU.co, {—c}
6 OeC’UC’q

7 return C

solvers [Ansétegui er al., 2012]. Its use has been suggested by
Mencia er al. [2015] for approximating MaxSAT with MCSs,
but stratified MCS enumeration has not been properly de-
scribed in the literature yet. In this section, we describe a
generic stratified approach that can be used to find lower cost
MCSs faster with any MCS algorithm. Given a cost function
f(X) = > w; - 1;, the main goal of stratification is to focus
the search on satisfying the literals in L™ (f) with larger co-
efficients. The procedure starts by partitioning L™ (f) into k
sets Py, Ps, ..., Py such that all literals in P; have larger co-
efficients than those in P;4; forall 1 < ¢ < k. Next, an MCS
algorithm is applied considering all hard constraints and just
the literals in P; (the ones with larger coefficients) as soft. In
the next iteration, P is added to the set of soft constraints.
At each iteration, a new partition is added and the procedure
ends when all partitions have been considered.

The pseudo-code for the generic MCS stratified approach
is presented in algorithm 1. It receives as input a set of hard
constraints 'y and a set of soft constraints F's and it returns
an MCS C of Fg. First, it starts by partitioning Fg into a set
of k partitions such that Fg = Ule P;. At each iteration,
S; denotes the set of constraints that are to be satisfied. In
the first iteration, all hard constraints are considered (line 2).
On the other hand, C' denotes the set of unsatisfied soft con-
straints. Then, for each partition F;, it computes an MCS C;
of P; with S; as the set of hard constraints (line 4). Since the
constraints in P; \ C; are satisfied, these are added to S; 1
(line 5). Moreover, the negation of the constraints in C; is
also added to S;; to further restrict the search space in the
next MCS call. This is safe since C; is an MCS of P;, so
satisfying P; \ C; entails that the constraints in C; cannot be
satisfied. Finally, the constraints in C; are added to C' (line 6).
Next, we prove that, after all k iterations, C' is an MCS of FJ.

Proposition 1. Algorithm 1 returns an MCS C' = Uf’:l C; of
Fs =", P.

Proof. Suppose that C' is not an MCS of Fs. The two possi-
ble scenarios are: (1) Fy U (Fg \ C) is unsatisfiable, or (2)
there exists ¢ € C' such that Fy U (Fs \ C) U {c} is sat-
isfiable. Consider the first scenario!. Cj, is an MCS of P,
considering Sy as hard constraints, so S, U (Py \ Cy) is sat-
isfiable. Note that, for any 1 < 4,5 < k, C; C P; and if
c € C;and ¢ € P, then ¢ € C} [Terra-Neves et al., 2017].

'Note that we can ignore the negation of the constraints added in
line 5, since these are entailed by the remainder of the formula.

Input: I, O = {f1, f2,..., fi}
1 fori < 1toldo

2 L (PﬂPg,...,P,ii) +— Partition (L7(f;))
(Py...P,) < Combine ((P!...PL)...(P}. ..P,él))
(51,C) + (F,0)
fori < 1topdo

C; < MCs (S;, P;)

Sit1 = S;U(P\ Ci) Ul e, {c}

C+ CUC;
9 return C'

® N U A W

Therefore, we have S, U (P \ Cy) = Fyg U Ule (P\C;) =
Fy U (Fg \ C), contradicting scenario (1). Now let us con-
sider the second scenario. Let C; be an MCS of P; such that
¢ € C;. Then, S; U (P; \ C;) U{c} is unsatisfiable. We have
S; U (Pl \ CZ) U {C} =FyrU U;:l(Pj \ C]) U {C} thatis a
subset of Fy U(Fg\ C)U{c}, contradicting scenario (2). O

Algorithm 1 computes a single MCS C, but it can be used
to find another MCS. This can be done by adding a blocking
constraint to F'i such that at least one constraint in C' must be
satisfied and re-executing the algorithm. Hence, algorithm 1

can be used to enumerate all MCSs of Ule P; by blocking
previous MCSs in subsequent invocations of the algorithm.

4 Stratification for Multi-Objective
Combinatorial Optimization

Stratification for MOCO is not straightforward for two rea-
sons: (1) unlike the single-objective case, a good MOCO al-
gorithm should not only converge fast but also produce an
approximation with high diversity in regard to costs; (2) cost
functions can be very different in nature. This section de-
scribes how stratification can be extended to MOCO in order
to find better approximations of the Pareto front and faster.

Algorithm 2 presents the pseudo-code for the usage of
stratification for solving MOCO instances. The algorithm
has as input a constraint set F' and a cost function set O =
{f1,-.., fi}. The algorithm starts by using stratification for
each cost function f; (line 2). Hence, the set of soft clauses
L™(f;) is split into k; partitions P{ P ... P} . Next, a single
partition sequence is built by mixing the partitions of each
cost function (line 3), where we have p = 22:1 k;. For ex-
ample, assuming we have two cost functions f; and fy with
partitions P Py and P} PjP3, a possible sequence could be
P} P2PZ P} P%. Finally, the sequence of partitions is solved
as in algorithm 1, generating an MCS of U, co L™ (f;).

Recall that the Pareto front can be identified using MCS
enumeration. Therefore, using algorithm 2 to enumerate all
MCSs enables the generation of the Pareto front of a MOCO
instance. However, for most pratical instances, generating the
complete Pareto front is not feasible in a reasonable amount
of time. Hence, our goal is to use this approach to find the
best possible approximation of the Pareto front by generating
a diverse set of good quality solutions in a given time limit.
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In our algorithm, the partitioning of cost functions is per-
formed separately, since the cost functions can be very dif-
ferent in nature. Observe that if we repeatedly use the same
sequence for MCS enumeration, some cost functions can be
favored at the expense of others. For example, if our parti-
tion sequence is P} P2 P2 P} P2, algorithm 2 will focus on
satisfying the high cost literals of L™(f;) first, which might
entail higher costs for f5. Therefore, f; will be favored at the
expense of fo, which violates the diversity requirement. In or-
der to promote diversity, the combination procedure (line 3)
should generate a different partition sequence in each call to
algorithm 2. In our implementation, partitions are mixed by
selecting the next partition of a cost function with uniform
probability at each iteration. For instance, assuming we are
building a sequence and we already have P} PZ, the next par-
tition would be P5 or P#, each having a probability of 3 of
being selected.

4.1 Partitioning Heuristics

The partitioning heuristic is an important component of the
stratified approach and can have a significant impact on per-
formance. In general, given a cost function f, we sort the
literals in L™ (f) in decreasing order of their respective co-
efficients. Then, for each literal [ € L™(f), we add [ to the
current partition P and check whether P is a good partition
according to some criteria. If so, P is saved and the next
partition is generated using the remaining literals.
Partitioning heuristics differ in the criteria for deciding if P
is a good partition. One possibility is to simply split each cost
function into a fixed number p of partitions. In the FIXED
heuristic, P is considered a good partition if p-| P| > |L™(f)|-
This heuristic is used in Microsoft’s SMT solver Z3 [Bjgrner
et al., 2015] for solving MaxSAT problems. In this paper we
propose the Literal-Weight Ratio (LWR) heuristic that is a
variant of the heuristic proposed by Ansétegui et al. [2012].
In LWR, P is a good partition if the ratio between the number
of literals in P and the number of distinct coefficients among

those literals is above a given threshold g, i.e., % > 3,

where W is the set of coefficients of the literals in P.

In both heuristics, our implementation does not produce
partition sets where literals with the same weight are assigned
to different partitions, i.e. we handle all literals with the same
weight in the same step when generating new partitions.

4.2 Combining Stratification and Division
Reduction

It was recently proved that, in the presence of a cost function
f of the form f(X) = Zle 518?) f can be replaced by
k cost function pairs g; and —h;, as long as ¢;(X) > 0 and
hi(X) > 0forall 1 <4 < k, without sacrificing Pareto-
optimal solutions of the original problem [Terra-Neves er al.,
2018]. This technique is known as division reduction and the
set of g; and —h; functions is referred as reduction product.
Suppose that we have a MOCO with cost functions f; and
f2, where f7 is a sum of & divisions and f5 is a regular PB ex-
pression. The reduced MOCO will have 2k+1 cost functions,
where 2k of them are the reduction product of f;. The strat-
ification process, as described in the previous section, would
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assign a uniform probability of selection to each function, re-

sulting in an overall probability of % of selecting a parti-
1

tion of f1, which is much larger than f»’s probability of .
Therefore, stratification is very likely to favor f;, violating
the diversity requirement. To prevent this behavior, the parti-
tioning process must be aware that some cost functions may
be the product of division reduction.

We implemented two strategies for combining stratifica-
tion and division reduction. The first strategy, referred to
as MERGE, merges the 2k literal sets L™(g;), L™ (—h;) of
the reduction product of f into a single set L7(f), i.e.,
L™(f) = UL, (L™(g:) U L™(~h;)) Then, L™(f) is parti-
tioned as described in section 4.1, with the exception that the
coefficients in the reduction product are considered instead of
the ones in f. The second strategy relies on adapting the se-
lection probabilities of reduced cost functions instead of con-
sidering them as one. Recall the previous example with f;
and f5, where f is a sum of k divisions. Initially, both have a
selection probability of % After the division reduction of f1,
we split f1’s probability uniformly among the 2k functions in
its reduction product, resulting in a probability of % . 2—116 = ﬁ
for each function, while fs maintains a probability of % In
what follows, we refer to this strategy as SPLIT.

5 Experimental Results

In this section, the performance of the stratified MCS ap-
proach for MOCO is evaluated on instances of the Virtual
Machine Consolidation (VMC) problem. In VMC, we have
several servers with fixed resource capacities and Virtual Ma-
chines (VMs) with requirements of those same resources.
Each VM must be placed in some server, but server capac-
ities cannot be exceeded and some VMs cannot be placed in
the same server. There exists an initial placement, i.e., a VM
can be associated with an initial server, incurring a migration
cost if the VM is placed in a different one. A migration bud-
get constraint can be used to enforce an upper limit on the
migration costs, and is specified as a percentile bp of the total
memory capacity of the servers. The goal is to find a place-
ment for all VMs that satisfies the constraints and simultane-
ously minimizes (1) energy consumption in the data center,
(2) migration costs and (3) resource wastage. The latter is a
measure of the imbalance of server resource usage.

A detailed description of the VMC problem and the MOCO
formulation, can be found in the literature [Terra-Neves et al.,
2017; Zheng et al., 2016]. Note that the resource wastage cost
function is a sum of divisions, which is handled using division
reduction. The evaluation is performed on publicly available
VMC benchmarks2, based on subsets of workload traces ran-
domly selected from the Google Cluster Data project®.

In order to evaluate the quality of the approximations to
the Pareto front, two quality indicators are used. The Hy-
pervolume (HV) quality indicator [Zitzler and Thiele, 1999]
provides a combined measure of convergence and diversity.
Larger values of HV mean that the solution set is composed
of solutions of better quality and/or diversity. The Inverted

Zhttp://sat.inesc-id.pt/dome/
*http://code.google.com/p/googleclusterdata/
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Figure 1: HV distributions for partitioning
strategies (bp = 100%).

Generational Distance (IGD) indicator [Zhang and Li, 2007]
measures the average Euclidean distance, in the cost space,
between the Pareto optimal solutions and the approximation
returned by the algorithm, and a smaller value is preferred.
Since the Pareto front is unknown, we use instead the combi-
nation of the solutions produced by all algorithms evaluated.

In our approach, any MCS algorithm can be used. How-
ever, in order to make a proper evaluation and comparison
with the work of Terra-Neves et al. [2017], we also use the
ClauseD (CLD) algorithm [Marques-Silva et al., 2013] to
compute MCSs. All algorithms are implemented in Java and
Sat4j-PB v.2.3.4 [Le Berre and Parrain, 2010] is used as sat-
isfiability checker. Moreover, we merge partitions whenever
the satisfiability checker reaches a fixed number of conflicts
(200000 in our experiments). This results from the fact that
some calls might be too constrained. When this occurs, we
relax the formula by adding the next partition. For example,
if the satisfiability algorithm reaches the conflict limit when
computing an MCS of P;, the MCS algorithm stops, P, is
added and the search continues for an MCS of P; U P ;. If
all partitions have been added, there is no conflict limit.

Each algorithm was ran with a memory limit of 4 GB and
a time limit of 1800 seconds. Randomized algorithms were
executed with 10 different seeds for each instance, and the
analysis is performed using the median values over all exe-
cutions. Finally, it was observed that algorithms with better
performance have lower standard deviation values than algo-
rithms with worse performance. This occurred for both hy-
pervolume and IGD indicators.

5.1 Partitioning Heuristics

First, we evaluate the impact of the partitioning heuristics
(section 4.1) on the performance of algorithm 2. Figures 1
and 2 show the distributions of the HV and IGD values, re-
spectively, obtained by the different heuristic configurations
with a migration budget of 100%. A point (z,y) in the HV
(IGD) distribution plot indicates that the given configuration
obtained an HV (IGD) equal to or greater (lower) than y for
x instances. For example, the point (50, 0.56) on line "'LWR
(8 = 15)’ in figure 1 indicates that, using the LWR heuristic
with 5 = 15, the algorithm obtained HVs equal to or greater
than 0.56 for 50 instances.

Different configuration values were tried for the LWR and
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Instances

Figure 2: IGD distribution for partitioning
strategies (bp = 100%).

Instances

Figure 3: Distribution of number of MCSs
for division handling (bp = 100%).

FIXED heuristics. In particular, LWR was configured with
values of § € {2,5,10,15,20,30} and FIXED with p €
{10, 20, 40, 80, 160}. In order to improve readability, results
are shown solely for representative values. However, all best
configurations are included. Additionally, in figure 2, IGD
values larger than 1.6 are not displayed. This is done also for
readability of the IGD plots.

Observe that LWR is strictly better than FIXED both in
terms of HV and IGD, except when 5 = 2 in the IGD plot.
However, with 5 = 2 was the worst configuration of LWR.
For all other values of 3, the LWR performance is very sim-
ilar. The same also occurs for different configurations of the
FIXED heuristic. Hence, it was observed that both heuristics
are robust, and that the partitioning strategy itself has a much
higher impact in performance than parameter fine tuning.

5.2 Handling Division Reduction

This section evaluates the MERGE and SPLIT strategies pro-
posed in section 4.2 for handling the division reduction of the
wastage optimization criteria. Both were run using the LWR
partitioning heuristic with different values of 3.

MERGE and SPLIT showed very similar IGD and HV dis-
tributions, i.e. they produced approximations of very similar
quality of the Pareto front. However, the number of MCSs
found was very different. Therefore, we choose to show the
number of MCSs found for representative configurations in
figure 3. Note that the number of MCSs is a relevant metric
since it can be seen as a measure of progress. The more MCSs
an algorithm is able to find, the closer it is to proving that the
Pareto front was found instead of an approximation. Figure 3
clearly shows that MERGE is able to find many more MCSs
than SPLIT. At best, SPLIT with 8 = 15 is able to find close
to 230 MCSs for one instance, while MERGE is able to find
at least as much for close to 20 instances. Actually, MERGE
is able to find close to 500 MCSs for some instances.

5.3 Comparison with State-of-the-Art

In this section, we compare SCLD, our new stratified ap-
proach for MOCO, with the simple CLD enumeration al-
gorithm and the MCSEnumPD variant that incorporates an
MCS diversification technique [Terra-Neves et al., 2018]. We
also compare with the VMPMBBO [Zheng et al., 2016] al-
gorithm for VMC and with the general purpose evolutionary
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Figure 5: IGD distributions (bp = 100%).

algorithms NSGAII [Deb et al., 2000] and MOEAD [Zhang
and Li, 2007]. SCLD was configured with the LWR parti-
tioning heuristic (8 = 15) and the MERGE division reduc-
tion strategy. MCSEnumPD, VMPMBBO and NSGAII were
configured as suggested in the literature [Zheng et al., 2016;
Terra-Neves et al., 2017; 2018]. The only difference is in
how we encoded the individuals in NSGAII’s population. In
this work, the regular integer encoding is used instead of the
binary integer encoding, since it produces better results on
the VMC problem. Further details on encodings for evolu-
tionary algorithms can be found in the literature [Rothlauf,
2006]. MOEAD was configured with crossover and mutation
rates of 0.8 and 0.05 respectively, a population size of 100, a
neighborhood size of 20, a 0.9 probability of crossover with
individuals from the neighborhood and a maximum of 2 indi-
viduals that can be replaced by a single offspring.

Figures 4 and 5 show the HV and IGD distributions of each
algorithm for VMC instances with bp = 100%. Observe
that the new techniques proposed in this paper allow SCLD
to obtain a huge performance improvement when compared
with previous state-of-the-art constraint-based algorithms for
MOCO, CLD and MCSEnumPD. Moreover, considering the
hypervolume indicator, SCLD is competitive with stochastic
algorithms NSGAII, MOEAD and VMPMBBO for these in-
stances. Nevertheless, stochastic algorithms are still able to
obtain better results measured by IGD. These results are in-
dicative that NSGAII is able to converge faster, but SCLD
finds approximations with higher diversity.

Figures 6, 7, 8 and 9 present the results when migra-
tion budgets of VMC instances are constrained to 5% and
1%. Observe that NSGAII’s, MOEAD’s and VMPMBBO’s

Figure 7: IGD distributions (bp = 5%).

Figure 9: IGD distributions (bp = 1%).

performance degrades considerably as the budget decreases
because these algorithms have a much harder time dealing
with more tightly constrained instances. On the other hand,
constraint-based methods for MOCO thrive in such scenar-
ios. Nevertheless, note that SCLD is still able to improve
considerably on both CLD and MCSEnumPD, thus confirm-
ing that our approach still improves previous algorithms even
on tighter instances. Overall, SCLD is the first constraint-
based algorithm to be competitive with stochastic approaches
for the VMC instances where bp = 100%, and is the best
performing algorithm when bp < 5%.

6 Conclusion and Future Work

Interest has been surging in solving MOCO formulations us-
ing constraint-based methods. Until recently, the state of the
art was mostly populated by stochastic methods, which are
able to find good approximations fast, but are unsuitable for
constrained problems. On the other hand, constraint-based
methods are able to quickly satisfy tightly constrained prob-
lems, but have a harder time producing good quality approx-
imations. This paper proposes the use of stratification as a
means to guide MCS-based MOCO algorithms towards good
quality solutions more effectively. Experimental results in a
large set of MOCO instances show that stratification provides
a very significant performance improvement for MCS algo-
rithms, being now able to compete with (and often outper-
form) stochastic methods in terms of approximation quality.
As future work, we propose to improve the diversity of the
approximation by dynamically adapting the cost function se-
lection probabilities, and to exploit these in order to account
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for user preferences [Deb and Sundar, 2006]. Moreover, re-
cent work in high-school timetabling problems has shown
that significant improvements can be obtained by combin-
ing stochastic and constraint-based methods [Demirovic and
Musliu, 2017]. Such a combined algorithm for MOCO could
reap the benefits of both worlds with none of the weaknesses.
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