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Abstract

In this paper, we focus on how to dynamically al-
locate a divisible resource fairly among n players
who arrive and depart over time. The players may
have general heterogeneous valuations over the re-
source. It is known that exact envy-free and pro-
portional allocations may not exist in the dynamic
setting [Walsh, 2011]. Thus, we will study to what
extent we can guarantee the fairness in the dynamic
setting. We first design two algorithms which are
O(log n)-proportional and O(n)-envy-free for the
setting with general valuations. Then by construct-
ing the adversary instances such that all dynamic
algorithms must be at least 2(1)-proportional and
Qg7 )-envy-free, we show that the bounds are
tight up to a logarithmic factor. Moreover, we intro-
duce a setting where the players’ valuations are uni-
form on the resource but with different demands,
which generalizes the setting of [Friedman erf al.,
2015]. We prove an O(logn) upper bound and a
tight lower bound for this case.

1 Introduction

Initiated by the work of [Steinhaus, 1948], the fair divi-
sion problem has been widely studied in the literature of
economics, mathematics and computer science [Dubins and
Spanier, 1961; Stromquist, 1980; Alon, 1987; Brams and
Taylor, 1995; 1996; Robertson and Webb, 1998; Aziz and
Mackenzie, 2016]. It mainly considers the problem of fairly
allocating a divisible resource among a group of players who
have different preferences over the resource.

To capture fairness, many solution concepts have been
proposed, such as proportionality and envy-freeness [Brams
and Taylor, 1996; Neyman, 1946; Varian, 1974; Dubins and
Spanier, 1961]. An allocation is proportional if each player’s
valuation for his received resource is at least % fraction of his
valuation for the whole resource, where n is the number of
players. An allocation is envy-free if no player values another
player’s allocation more than his own [Steinhaus, 1948]. One
of the difficulties in finding allocations which are proportional
or envy-free is that the resource may not be uniformly struc-
tured, such as time and land, and different players may hold
different valuations over the same part of the resource.
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Most of the previous studies have been focused on the
static fair division problem, which assumes that all play-
ers arrive simultaneously. Recently, the dynamic fair divi-
sion problem has been considered in [Walsh, 2011; Fried-
man et al., 2015; 2017]. A real-life application of the dy-
namic fair division problem is to fairly allocate the resource
on a server among different jobs. In this case, different
jobs arrive and depart at different time, and each job has
different values for the resource allocated to it. The ob-
jective here is to balance the resource allocated to differ-
ent jobs. Unlike the static setting where an envy-free al-
location is guaranteed to exist [Brams and Taylor, 1995;
Su, 1999], [Walsh, 2011] shows that envy-free or propor-
tional allocations may not exist when the players arrive one
by one over time. Therefore, a weak version of envy-freeness
is discussed in [Walsh, 2011], where the only constraint is
that each player does not envy the allocations of the players
who will arrive after him. However, this may not be sufficient
to capture fairness in reality because the players may still ob-
serve the allocations of the previous players and envy their
allocations. For example, an allocation which allocates the
whole resource to the first player is considered to be envy-free
in [Walsh, 20111, which is not plausible. Thus it is natural to
explore to what extent we can approximate the envy-freeness
and proportionality in the dynamic setting. This problem has
been discussed in the literature, but they only considered the
case where the players have uniform valuations. In [Friedman
et al., 2015], there is a single resource, and in [Friedman et
al., 2017], there are multiple resources and the players have
different demands for each resource. The latter one seems a
general problem, but it can still be reduced to the problem
with a single divisible resource while each player has piece-
wise linear valuations. We prove the results for settings with
valuations more general than [Friedman et al., 2015; 2017].

Our Models and Results. In this paper, we aim at design-
ing algorithms for the dynamic fair division (DFD) problem
so that the maximum “dissatisfaction” among all players is
minimized. We allow the players to have arbitrary hetero-
geneous yet additive valuations, which is a general class of
valuations considered in almost all the fair division literature
[Procaccia, 2016]. In our model, different players arrive and
depart at different time, and the decision maker needs to de-
cide each player’s allocation upon his arrival. We say an allo-



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

cation is £-envy-free if at any time, each player’s valuation on
his allocation is at least % fraction of his value on any other

player’s allocation. An allocation is o-proportional if at any
time, each player’s value on his own allocation is at least ﬁ
fraction of his value on the whole resource. We refer to &
and o as the approximation ratio of the allocation.

The algorithms proposed in this paper are 7-recallable al-
gorithms with 7 € Z™, which means when a new player ar-
rives, the decision maker can recall the resource from at most
7 previous players and reallocate it [Friedman et al., 2015].
If reallocation is not permitted, it is easy to see that the ap-
proximation ratio is unbounded, because for any dynamic al-
gorithm, the adversary can always choose the valuation for
the second player such that he is only interested in the allo-
cation of the first player. In this paper, we will focus on the
1-recallable algorithms and at the end of each section, we will
briefly discuss the 7-recallable algorithms for any constant 7,
since they basically share the same idea and the same bound.

Our first contribution is to design two dynamic 1-recallable
algorithms for the general DFD problem which are O(n)-
envy-free and O(log n)-proportional. Then we prove that for
any dynamic 1-recallable algorithm, there exists an adversary
instance such that the approximation ratio of the algorithm

is at least Q(%) even if all the players’ valuations are

piecewise uniform [Chen et al., 2013]. Since the (1) lower
bound for proportionality is already proved in [Friedman et
al., 2015], all our bounds are tight up to a logarithmic factor.

Because of the strong lower bound in the general setting,
no one can hope to improve the fairness for settings with val-
uations more general than the piecewise uniform valuations.
Thus, it is natural to discover the set of valuations with better
dynamic performance. In [Friedman et al., 2015], the au-
thors show that if the players’ valuations are uniform, there
exist O(1)-envy-free algorithms. In this paper, we generalize
their model, by allowing different players to have different
demands over the resource. When the players have uniform
valuations with different demands, an allocation is fair if (1) it
meets all the players’ demands or (2) each player gets at least
his demand divided by total demand [Ghodsi et al., 2011].
As before, in the static setting, a fair allocation always exists.
However, in the dynamic setting, the adversary can manipu-
late the future players to violate the fairness. We say an allo-
cation is 7-fair if each player gets % fraction of his allocated

resource in a fair allocation. We design an O(logn)-fair 1-
recallable algorithm and we prove that the bound is tight by
constructing an adversary instance such that no 1-recallable
algorithm can be better than 2(log n)-fair.

Additional Related Work. The fair division problem with
multiple indivisible resources is also a problem widely stud-
ied in the literature [Budish, 2011; Kurokawa et al., 2018;
Amanatidis et al., 2017; Brandt et al., 2016; Endriss, 2017].
Since the envy-free allocation cannot be guaranteed in this
setting, the notion of fairness is captured by different relaxed
versions, such as envy-free up to one item (EF1), which can
be found in polynomial time [Budish, 2011]. A stronger fair-
ness concept, envy-free up to any item (EFX), is proposed in
[Caragiannis ef al., 2016]. It is shown in [Plaut and Rough-
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garde, 2018] that such an allocation exists for identical valu-
ations, but the existence of EFX allocations is still unknown
for general valuations. However, the authors show that there
exists an allocation which is a 2 approximation to the EFX
allocation. Another solution concept adopted for indivisible
resources is the maxmin share, which can be approximated
within a factor of 2/3 in polynomial time [Kurokawa et al.,
2018]. The approximation ratio of this problem is improved
to 3/4 in [Ghodsi et al., 2017]. The authors in [Ghodsi et
al., 2017] also prove that the maximin fair allocation can be
approximated within a factor of 3 when the valuations of the
players are submodular, a factor of 5 when the valuations of
the players are XOS, and a logarithmic factor when the valu-
ations of the players are subadditive.

2 Preliminaries

Fair Division Problem. The fair division problem is to
divide and allocate a divisible and heterogeneous resource
fairly among n players, where the resource is represented
by the real number interval [0, 1] and the player set is rep-
resented by N = {1,---,n}. Each player 7 has a valua-
tion v;, mapping any subset of the resource to a nonnega-
tive value, representing ¢’s preference over the resource. For-
mally, for any set I C [0, 1], player 4’s value for taking set
Iisv;(I) € Ry U {0}. The valuation profile is denoted by
v = {v1,...,v,} and the set of all possible valuation pro-
files is denoted by V. In this paper, besides the most general
valuations, we also consider two special ones.

One widely studied valuation is piecewise uniform valu-
ation [Chen et al., 2013]. A player has piecewise uniform
valuation if and only if he has uniform valuation over a sub-
set of the resource (which may not be a continuous interval).
That is, for player ¢, the valuation v; is piecewise uniform if
and only if there exists I; C [0, 1] such that v;(I) = |I N I,
for all I C [0,1]. By normalizing each player’s valuation to

range [0, 1], we have that for any I C [0, 1], v;(1) = ‘I‘?fli‘ .

Another valuation studied in this paper is called uniform
with demand. In this model, each player has uniform valu-
ation over the resource and he only cares the size of the re-
sources he gets rather than which part of the resource is allo-
cated to him. In general, different players may have different
demand over the resource, and when the allocated resource
exceeds the player’s demand, his valuation for the allocated
resource will not increase. For player i, we denote his de-
mand as d; € (0, 1], and his valuation v; is uniform with de-
mand if and only if for any I C [0, 1], v;({) = min{|I|,d;}.
By normalizing each player’s valuation to range [0,1], we
have that for any I C [0,1], v;({) = min{%, 1}. In our
paper, we adopt the normalized form of the valuations, but all
the results hold for the valuations without normalization.

An allocation is denoted by a partition of [0,1], A =
(Ag, A1, -+, A,) where Ay is the unallocated resource and
A; is the resource allocated to player ¢ for any ¢ € N. The
set of all such possible partitions of [0, 1] is denoted by U/. A
fair division algorithm (or an allocation rule) 4 is a mapping
from a valuation profile to an allocation, i.e., 4 : V — U.

Two widely adopted fairness solution concept are pro-
portionality and envy-freeness. An allocation A is propor-
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tional if and only if each player gets at least % fraction of
the whole resource, and an allocation A is envy-free if and
only if each player will not envy any other player’s alloca-
tion. In this paper, we care more about the relaxed version of
them. Formally, we say an allocation A is o-proportional if

v;(Ai) > =-v;([0,1]) for any player 4, and an allocation A is
&-envy-free if v;(A;) > %vi(Aj) for any player ¢ and ;.

When players’ valuations are uniform with demand, a fair-

ness solution concept stronger than proportionality is required
here because for a proportional allocation A”, it only guar-
antees that for each player i, v;(AP) > (%1 — 1 Hoy.
ever, in the static setting there exists an allocation A such that
each player ¢ gets % fraction of the whole resource,
where d = > jen dj is the total demand of the players,
and player is value is guaranteed to be v;(4;) = o ta1y-
Since the total demand d might be significantly smaller than
n, v;i(A;) might be significantly larger than v;(AZ"). There-
fore, a stronger notion of fairness is defined as follows for
uniform with demand valuations [Ghodsi et al., 2011]. For-
mally, an allocation A is fair if v;(A;) > m, and A is
n-fair if v;(A;) > anl{dl}
Dynamic Fair Division Problem. Now we extend the fair
division problem to the dynamic setting, where player ¢ ar-
rives at time ¢; and departs at time t¢, with t¢ > ;. Without
loss of generality, we have 0 < t; S ty < ---<t,, where n
is the maximum number of players that could possibly arrive
and is given to the algorithm as an input. However, the algo-
rithm does not know the exact number of arriving players, or
the players’ valuations until their arrival. The algorithm needs
to allocate the resource to each player when he arrives with-
out knowing future events, including his departure time. In
this paper, we will design our algorithms and state our results
for the arrival only model, where t{ =t = ... = t4 > ¢,,.
However, all our lower bounds and upper bounds can be di-
rectly applied for settings where players have arbitrary de-
parture time with the same approximation ratio. See the full
version [Li et al., 2018] for more details.

Formally, the allocation of the algorithm at time ¢; is de-
noted by A* = (A}, A}, , A%) and the total output from
time 0 to time ¢,, is denoted by A = (A%);cq0.1,... .n} Where
A% = {AQ} and AY = [0,1]. An algorithm is called 7-
recallable if for any ¢ € [n—1], there exists s < min{r, ¢} and
a set of players S = {i1, - ,is} C [¢] such that A”rl A;'-
forall j € [i]\S,and A" C Af forall j € S.

In the following we extend the definition for fairness to the
dynamic setting. An allocation A is o-proportional if

e i 1
Vi, Vj < i,v;(Aj) > Evj([o, 1]);

and an allocation A is £-envy-free if

C e . i 1 J
Vi, V3,5 <id,v5(A%) > EUJ(A;")'

For the uniform with demand valuations in the dynamic set-

ting, an allocation A is n-fair if

, 1
1,V] = Z’UJ< J) - n 'maX{Zlgi dlvl}
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In this paper, we say an algorithm .A is o-proportional, &-
envy-free or n-fair for valuation space V if for any valuation
profile v € V, A(v) is o-proportional, £-envy-free or 7-fair.
Note that, since we do not assume that the resource must be
allocated to any player, a trivial envy-free algorithm is that
everyone gets nothing. Such an algorithm is called empty in
this paper.

Remark. In this paper, we only consider deterministic al-
gorithms because there exists a trivial randomized algorithm
which is proportional and envy-free in expectation in the dy-
namic setting [Chen et al., 2013]. This randomized algorithm
is also fair for uniform with demand valuations.

3 Dynamic Fair Division (DFD) Problem

In this section, we consider the players’ values to be addi-
tive. First we state the results for proportionality. In Theorem
6.1 of [Friedman et al., 2015], no 1-recallable algorithm can
be better than (21n 2)-proportional even if the players’ val-
uations are uniform, i.e., v;(I) = |I|, for any ¢ € [n]. In
the following, we design the 1-recallable algorithm A} . 1,
defined in Algorithm 1, which is O(logn)-proportional for
the DFD problem with general valuations. Roughly speak-
ing, when player i arrives, algorithm Al rp divides the pre-
vious players’ allocated resource into 2i(3 + In ¢) subsets and
lets player i choose his favorite bundle of resource from one
player, where the size of the bundle depends on the current
approximation ratio of any player j who arrived before player
i. The performance of algorithm A% .. is formally analyzed
in Theorem 1.

Algorithm 1 1-Recallable Algorithm A}, .,

Input: A sequence of players N = {1,---
departing along time.
1: Initially, A = @ forall 1 <i<mnand0 < j <i.
2: When the first player arrives, setting A} = [0, 1].
3: for any arriving player ¢ > 1 do

,n} arriving and

4:  o0=|2i(34+n7)].

50 forO0<j<ido

6: Partition A;fl into o sets {A; SR AZ 11 with
vi(A570) = = v (A5).

v, (0,1

8:  end for -

9:  (j*,8%) = arg <fnsacx[ {Doresvi(A )}
‘ 4|S|—a o

10 Al = ukeS*AZ‘l

11: AZ* —ngs*A ke
7 1—1 -

12: A] AT Vieli—1] - {"}

13: end for

Output: Allocation A = (A§)0§i§n70§j§i~

Theorem 1. Foranyn > 1, I-recallable algorithm Ak, . is
O(log n)-proportional for the DFD problem with n players.
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Proof. In the following, we prove the theorem by induction.
When there is only 1 player, algorithm A}, . , is proportional
since the player gets the whole resource. Assuming that when
there are i — 1 players, algorithm AL ., is 2(3 + In(i — 1))-
proportional, we show that when player ¢ arrives at time %;,
algorithm A}, -, is 2(3 4 In i)-proportional.

First, we show that for any j < i, player j is 2(3 + lni)-
proportional at time ?;. Note that at least o; elements from

{A] 1 A; L;z(3+1m } is allocated to player j and player

7 has the same value for them. Thus,
v;(A%) ;- vi (A 1
v;([0,1]) ~ [2i(3 +In%)] - v,;([0,1]) ~ 2¢(3+1ni)
Next, note that for player ¢, the worst case happens when
his value for the resource allocated to player j is ﬂ

% In any other cases, by choosing

his favorite bundle, player ¢’s value will increase. Thus,

ey

where p; =

m = 1@%_1 L%Léif n SIJZ)—J o;
s 2 19;21} (203 +1ni)] Em((zs(j—h;;)(é Fln(i—a))]
s 2 1<z;2w 2i(3 + Ini) Qié?th;)i ()3 Fnd) —
= 2 > < 2i(3+Ini)

1sesrigty T BN

The second inequality holds by carefully analyzing the value
o; for each player j who arrived before player ¢. Note that at
any time ¢;, the algorithm can only make the assignment such
that the approximation ratio of the new arriving player and the
player whose resource is recalled is 2j(3 + In j), while the
approximation ratio for all other players remain unchanged.
Thus when player ¢ arrives, there exist at least ¢+ 1 — 2z play-
ers with approximation ratio less than 2(¢ — z)(3+1n(i — x)).
By properly eliminating the rounding in the term, the third in-
equality holds. Therefore, by induction, algorithm A}, ., is
O(log n)-proportional and Theorem 1 holds.

Next we show how to design the O(n)-envy-free algorithm
A% -, which is quite similar to algorithm A}, .. Briefly
speaking, A% .., allocates the whole resource to the first
player. Then, when player ¢ arrives, for each player j < 4,
A2 - uniformly divides the resource allocated to player j
into ¢ equal subsets and let player ¢ chooses his favorite set.
The formal description is omitted here due to the space limit.

Theorem 2. For any n > 1, I-recallable algorithm A% .,
is O(n)-envy-free for the DFD problem with n players.

Proof. Again we prove by induction. When player 1 arrives,
A is exactly [0, 1]. Thatis, A%, is envy-free. Assume that
for player i > 2, A% ., is (i — 1)-envy-free at time ¢;_1.
Now let us prove that all 7 players are i-envy-free at time ¢;
by analyzing their value at time ¢;.
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First, we prove that player ¢ is i-envy-free at time ¢;. As-
sume that the allocation of player j, A“1 is partitioned into ¢

i—1
sets {AJ e

favorite set Al* 1,6* e {A’

Az P Smce player i is allocated with his

k }j<z k<i» for any.] < Z

) >

Next, we show that for any j € [i — 1], player j is i-envy-
free at time ¢;. By induction hypothesis, for any 7, j' € [i—1],

vi(AY) ZUZ(A; i* va(Al H> va(Al) )

i 1 i—
0 (A7) 2 —— (4.

Note that A*~! is partitioned into i sets with equal values, and
at most one of them is allocated to player i. Hence, for any

.jaj/ € [7'_ 1]

v (A7) >

) 1 1
v (45) Z ;UJ(Al H > UJ(Al ). 3
Since the allocation of player ¢ at time ¢; is also a subset of
player 7*’s allocation at time 7 — 1, according to Inequality 3,
we have 1
vi(47) > —vi(A57) > *UJ(AZ) )
Combining Inequalmes 2, 3 and 4, all players are i-envy-
free at time ¢;. By induction, algorithm A% 1., is n-envy-free.

Thus finishes the proof of Theorem 2. O

We have designed an 1-recallable algorithm which is
O(n)-envy-free for the DFD problem with general valua-
tions. Next we show that this bound is almost tight by prov-
ing that all 1-recallable algorithms must be at least {2( 15 gn)
envy-free, even if the players’ valuations are piecewise uni-
form (DFDPU). Formally, we have the following theorem.

Theorem 3. For any I-recallable algorithm A ( except empty
algorithm) for the DFDPU problem, A is Q-2 )-envy-free

with n players.

logn

Proof. Assume there exists an algorithm A which is {-envy-
free and not empty. Consider the following adversary in-
stance where for player 1, v;(I) = |I| and for any player
i—1
i > 2, u(I) = 'ﬂi‘:l‘ 3
whole resource and 1each new arriving player only wants the
resource allocated to the first player by A at time ¢;_;. Since
A is &-envy-free and not empty, we must have A} # () for
any ¢+ < n, and the adversary instance is well defined.

First we consider the envy-freeness for player ¢ > 2. Since
the resource that player ¢ values is exactly the resource allo-
cated to player 1 at time ¢;_;, to ensure that player ¢ is &-
envy-free at time ¢;, the algorithm must recall the resource
from player 1’s and reallocate at least —— fraction of the re-

1+£
source to player ¢. Therefore,

That is, the first player wants the

i 1 i
vi(A}) < (1- 1_’_5)1’1(141 1)7
for any 7 > 2. Accordingly,
n 1 n—
vi(AY) < (1 - m) “v1(AD) )
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When all n players have arrived, to ensure that player 1 is
&-envy-free, we have

1

1
w4} 2 gur(Ap) = ua(4)
1 1
= gD > gy ad = gl ©

The first and the second inequality holds due to the &-
envy-freeness of player 1 at time ¢, and player 2 at time
to. The first equality holds because player 1 is always the
player who needs to be recalled. Therefore, A% = A3 for any
2 < 4 < n. The second and the last equality holds because
by the construction of the valuations of player 1 and player 2,

vi(I) = |Tll|v2(l) forany I C Al
Combining inequalities 5 and 6, we have
1 ,_ 1
1—-—)""2> -
1+¢ &
By solving the above inequality, £ = €( Tog -—) and Theorem 3

holds. [

Remark. Given a valuation profile v, we say an allocation
A is non-wasteful if for all player i, we only allocate the re-
source that he values to him. That is, for any ¢ < j < n and
I C Al, v;(I) > 0. We say an algorithm A is non-wasteful
for valuation space V if for any v € V, A(v) is non-wasteful.
Then if we consider the 7-recallable algorithm where 7 can be
any constant, the adversary instance in the proof of Theorem
3 still shows that no non-wasteful algorithm can be o(—2—)-

envy-free even for piecewise uniform valuations.

logn

4 When the Valuation Function is Uniform
with Demand (UD)

In this section, we study the dynamic fair division problem
with uniform with demand valuations. Since in this model,
the players do not care which part of the resource is allocated
to him, we regard the allocation Al inA= (A )o<i<n,0<j<i
as the size of the allocated resource

For the UD problem, a simple greedy algorithm is 2-envy-
free and 2-proportional. However, our main focus in this
section is its performance under the more demanding fair-
ness solution concept. First we consider the following special
case where the smallest demand is within a constant fraction
of the largest demand. This case will provide enough intu-
ition about solving the general case. In order to make our
algorithm clear, we explicitly write out all the parameters in
A‘g pld, c,n), where the algorithm has those extra parame-
ters as input. Here parameter d is the minimum demand in
the adversary instance and c is the ratio between the largest
and smallest demand. Note that cd < 1. Also, 7 is an extra
parameter representing the total amount of resource can be
allocated to the arriving players. Algorithm A[S} p is formally
defined in Algorithm 2. The general idea of the algorithm is to
treat each arriving player’s demand as the maximum demand,
and the total demand as the sum of the minimum demand.
Then the algorithm only allocates the resource to each arriv-
ing player such that the approximation ratio is not violated.
The performance of the algorithm is analyzed in Lemma 1.
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Algorithm 2 1-Recallable Algorithm A?; ,(d, ¢, )

Input: A sequence of players N = {1,---
departing along time.
1: Initially, A* = 0forall0 <i<n,0<j<i.
2: for any arriving player ¢ > 1 do

,n} arriving and

3 Letj* = argmaxi<j<i {4 '}
4 Set A} = Aj = s @]
500 A=A Vieli—1] - {7}

6: AB—AO de[]Ai‘

7: end for

Output: Allocation A = (A§)O§i§n,0§j§i~

Lemma 1. Forany c,d,n > 0, algorithm A7, is (2cn1n 3)-
fair and at most % [fraction of the resource is allocated.

Proof. We first show that algorithm AE p is well defined by
showing that the reallocation in Step 4 is always feasible and
the total allocated resource is no more than % First note that
m is non-increasing with respect to 7. Next we
divide the analysrs into three cases.
Case1: 7 < |1 j Whenz < %], Al =
Therefore, = g7 Sl < 5 1
resource is recalled and the total allocation never exceed 1
Case 2: [ 1] < < 2| %]. In this case, the first | ] players

still satisfy Case 1, but when the (| 5| -+ [)-th player arrives,
player I’s allocation will be recalled, where 1 < [ < ¢ —
[1]. Then both player [ and (| ] 4 {) will be allocated with

The total allocated resource is

inng forall j <.
< <. In this case, no

2n 1n 3- (L ]+

L
d

1
Z 2nln3 - (

=1

—4 4
277 ln3

1

1 < -
Lzl +0) ~m

G

The above inequality holds by analyzing the monotonicity.

Case 3: i > 2[% J When i > 2|1, all the resource allo-
cated to the first [ § ' | players will be recalled. In Algorithm
AZ 1, whenever the resource is recalled from a player, the al-
gorithm will create two sets of resource with the same size,
and allocate them to both the recalled player and the new ar-
riving player. Thus the total allocated resource in this case is
at most twice of the resource allocated to players from | 5 | to
7, that is,

i

22,

=14

! <
2nIn3 -1 —

1
nln3

Sy

Finally, we analyze the performance of AU p- At anytime
t;, 1 <1 < n, since player ¢’s demand d; < c-d, his value
for allocation A is v;(AY) > m When player
1 arrives, the total demand Zl <;d1 > d -4, and the value of
player i at time ; is B

1

AZ
vil4}) 2 2enInd - max{>>,_; i, 1}
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Similarly, the value of any player j < i satisfies the above
inquality. Therefore, algorithm A% ,, is (2cnIn 3)-fair, and
thus finishes the proof of Lemma 1. O

Next we design the algorithm Ay p for the valuations with
arbitrary demands, which is formally defined in Algorithm 3.
The idea for this algorithm is to classify the players with de-
mands that differ up to a constant factor into the same group
and run the algorithm Ag p for the players in each group. By
analyzing the performance of algorithm Ay p, we have the
following theorem.

Algorithm 3 1-Recallable Algorithm Ay p

Input: A sequence of players N = {1,--- ,n} arriving and
departing along time. Each player ¢ € N has demand d;.
Let m = [logn].

Divide the demand space [0,1] into m -+ 1 sets

(S0,51,...,5m), where Sy = 1[0,27™], S =
(27,2, 1 € [m].

2: for player ¢ with demand d; do

3:  Find j such that d; € S;.

. i_ 2'—J

4 Az T 2nIn3max{}>,, dpl}'

5. Leti* = argmax; {A} 'd; € S;}.

6: AL = Al and A}, = AN Vi #£d,i

8: end for

Output: Allocation (A%)o<i<n 0<j<i-

Theorem 4. For any n > 1, I-recallable algorithm Ay p is
O(log n)-fair for the UD problem with n players.

Proof. Tt is clear that Ay p classifies all players in m + 1
sets. Let N; denote the set of players with demand in Sj.
Then except the players in Ny, the demands of the players in
the same set differ up to a constant factor 2.

First we find the parameter 7 such that algorithm Ay p is
feas1ble For players in Ny, since the maximum demand is at
most - and there are at most n players in total the resource
allocated to those players is bounded by o ln 5. For player ¢

in N;, where j € [m], the total demand when player i arrives
is at least the total demand of the players in N; who arrived
before player . Using the similar argument in Lemma 1 and
applying the case studies, the total resource allocated to play-
ers in N is at most % By settingn = 1+ m = 1+ [logn],
algorithm Ay p is always feasible. Then, similar to Lemma
1, it is easy to get that algorithm Ay p is (47 ln 3)-fair, which
is O(log n)-fair. Therefore, Theorem 4 holds.

Next we construct an adversary instance for the UD prob-
lem to show that the bound of our algorithm is tight. For-
mally, we have the following theorem.

Theorem 5. For any 1-recallable algorithm A for the UD
problem, A is Q(log n)-fair with n players.

Proof. Let A be any 1-recallable algorithm which is n-fair.
Here we consider the following adversary instance. In or-
der to make the instance clear, we describe the arriving play-

380

ers by m = 105” rounds (n is a large enough integer such

that m is also a large enough integer). Formally, within stage
j<m,n; = players arrive one by one and each of

2x45-1
them has demand %. That is, in the first round, % players
arrive one by one and each of them has demand %. For each
of the following rounds, the number of the arriving players
decreases by a multiplicative factor of 4, but the demand of
each player increases by a multiplicative factor of 8. Note
that in the last round the demand of each player is % = 1.
Also, the total number of players in the designed instance is
> j<mMj < n. Thus this instance is well defined, and it is
sufficient to prove that all 1-recallable algorithm is Q2(logn)-
fair for this instance.

In each stage j < m, the total number of players that would
arrive in the future is less than

n

= )/(1==)= —F—.
(2><4J)/( ) 6 x 451
It is easy to see that u = #n;. Therefore, at least 2n;
s547—T players who arrive during the jth round won’t get re-
called by in the future. Then we can lower bound the resource
allocated to those players. First note that the total demand be-

v
.. n 8.7 o SJ
fore stage jis D 51 X S = Dji<j 3471 Lhe

total demand when the :th player in stage j arrives is

S
D

Y
2 x 43'— Tt n
3'<j

n

1

D; =

Since algorithm A is an 1-recallable algorithm, for any in-
teger x < M t1 there exists at least nJ + 1 — 2z players

2
whose allocated resource is at least . Thus the total

nn- D
resource allocated to the players in stage ] is

3

—1

87
n- Dnj—i B

2°
> =
Ui

6
21115
n

Ma

L;
i=1
when we set n — oo. The computation detail of the above

inequality can be found in the full version of this paper [Li ef
al., 2018]. Thus the total allocated resource is

1> Z LJ_Zln;

j<logn

logn
Ui

Therefore, 7 > 2 In ¢ log n and Theorem 5 holds. O

Remark If we consider 7-recallable algorithms here, where
T is a constant, by designing the similar adversary instance,
except that the number of players and the demand change in
the ratio of ﬁ and 87 respectively between each stage, we
can still obtain the Q(log n) lower bound.

5 Conclusion and Future Direction

In this paper, we study the dynamic fair division problem
with a divisible resource. We design O(log n)-proportional
and O(n)-envy-free algorithms for players with general val-
uations. We also show that those bounds are tight up to a
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logarithmic factor. However, for the valuations that are uni-
form with demand, we design an O(log n)-fair algorithm and
we prove that this ratio is tight.

There are a lot of future directions that are worthy explo-
ration. An immediate open question is whether we can find
algorithms with better approximation ratio for 7-recallable al-
gorithms without the non-wasteful assumption when 7 > 2.
Another particularly interesting question is to consider the
problem via a game theoretic view in the dynamic setting.
Moreover, the dynamic version of allocating multiple indi-
visible resources is also worthy of effort.
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