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Abstract
Language communication plays an important role
in human learning and knowledge acquisition.
With the emergence of a new generation of cog-
nitive robots, empowering these robots to learn di-
rectly from human partners becomes increasingly
important. This paper gives a brief introduction to
interactive task learning where humans can teach
physical agents new tasks through natural language
communication and action demonstration. It dis-
cusses research challenges and opportunities in lan-
guage and communication grounding that are crit-
ical in this process. It further highlights the im-
portance of commonsense knowledge, particularly
the very basic physical causality knowledge, in
grounding language to perception and action.

1 Introduction
As AI starts to enter our everyday life, it’s important for end
users who are not technical experts to be able to teach artifi-
cial agents new knowledge and skills. Imagine in the future,
you can purchase or rent a robot assistant. This robot comes
with pre-programed knowledge and pre-trained skills. How-
ever the robot does not know anything about your household.
There is no large amount of data available about your spe-
cific needs. You also cannot wait for the robot to explore
your house by itself (and certainly don’t want to risk the mess
or destruction possibly brought to your kitchen). So what is
ideal is for you to teach the robot the new environment and
tasks as if you were teaching a human assistant.

To address this issue, a new research area on Interactive
Task Learning (ITL) is emerging [Gluck and Laird, 2018].
ITL is broadly defined as “any process by which an agent (A)
improves its performance (P) on some task (T) through expe-
rience (E), when E consists of a series of sensing, effecting,
and communication interactions between A, its world, and
crucially other agents in the world.” [Mitchell et al., 2018]. In
this paper, we discuss a specific form of ITL - communicative
task learning, where humans can teach embodied agents (e.g.,
robots) in a shared physical world through language commu-
nication and action demonstration.

Communication provides a natural way for humans to ac-
quire generic knowledge. Through a single exchange of in-

formation, teachers can selectively manifest the information
to be acquired by learners. Such knowledge transfer can take
the form of linguistic communication and manual demonstra-
tion, and is previously termed as natural pedagogy [Csibra
and Gergely, 2009]. This is a kind of social learning which
can accelerate learning by avoiding trials-and-errors and sta-
tistical generalization based on observations [Thomaz et al.,
2018]. Studies in developmental psychology have shown
evidence of receptiveness and adaptation for natural peda-
gogy in young infants [Csibra and Gergely, 2006]. Through
childhood to adulthood, humans have developed the ability
to learn and teach through natural pedagogy, which appears
universal across cultures and can be traced back to our an-
cestors [Tehrani and Riede, 2008]. As communication plays
an important role in human learning, one question becomes
important: how to enable natural pedagogy between humans
and artificial agents and empower the agents to acquire new
knowledge through communication with humans?

Recent years have seen an increasing amount of work on
teaching robots new tasks through demonstration and in-
struction [Rybski et al., 2007; Mohseni-Kabir et al., 2018].
For example, learning from demonstration (LfD) [Thomaz
and Cakmak, 2009; Argall et al., 2009] learns a mapping
from world states to robots’ manipulations based on the
human demonstration of desired robot behaviors. Recent
work has also explored the use of natural language and di-
alogue to teach robots new actions [Mohan and Laird., 2014;
Scheutz et al., 2017]. We have also applied natural language
communication and action demonstration to teach robots new
tasks [She et al., 2014; She and Chai, 2016; Liu et al., 2016;
She and Chai, 2017]. This paper gives a brief introduction
to this research effort and discusses research challenges and
opportunities.

2 Language Grounding in Learning through
Communication

Language can be used in various ways to teach robots new
tasks. For example, a human can teach a robot how to make
tea by “telling” and “showing” and the robot learns through
observation (shown in Figure 1a), or through its own actions
by following human instruction and/or demonstration (Fig-
ure 1b). During learning, the robot observes how the world
has been changed by the actions either performed by the hu-
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(a) Robot learning from human language 
instruction and action demonstration.

(b) Robot learning through its own actions by 
following human instruction and demonstration

(c) Robot’s perception of the physical world during learning. 

Figure 1: An example setup of teaching a Baxter robot how to make tea.
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H4:	Next	you	add	the	strawberries	into	the	blender.	
R4:	Did	you	open	the	blender	first?	
H5:	…….

(a) (b)
Figure 2: An example dialogue teaching the robot how to make smoothie (a) and the acquired grounded task structure (b).

man or by itself (Figure 1c, produced by YOLO [Redmon
and Farhadi, 2017]). The robot can also communicate with
the human back-and-forth to acquire tasks and task-related
knowledge. Figure 2(a) shows an example dialogue where the
human teaches the robot how to make smoothie. At the end
of communication, the robot generates a grounded task struc-
ture that represents its understanding of this task as shown in
Figure 2(b). Tasks are compositional in nature which can be
captured by grammars [Liu et al., 2016], Hierarchical Task
Networks [Hogg et al., 2009], or internal programming lan-
guage [Wang et al., 2017], etc. An overall task can be broken
down into subtasks with possible constraints (e.g., temporal).
A subtask can be decomposed into atomic actions which is
grounded to the physical world where the agent can perceive
or act. If the robot has the underlying manipulation ability
(e.g., is able to perform the primitive action cut), the grounded
task structure will allow the robot to plan and perform the
learned task.

Enabling such communicative task learning faces many
challenges. As shown in Figure 3, humans and robots are co-
present in a shared environment. They both perceive from the
environment and can potentially act to change the environ-
ment. However, they have significantly mismatched capabil-
ities in perception, action, and reasoning. Their knowledge
about the world is also vastly misaligned. All of these lead
to disparities in their respective representations of the shared

world and the task. The lack of common ground makes lan-
guage communication between them difficult. Humans and
agents will need to make extra collaborative effort to strive for
a joint representation of the task structure. For example, they
will need to keep track of each other’s knowledge, beliefs, and
intention (i.e., the Theory of Mind [Goldman, 2012]) as well
as each other’s abilities and limitations (i.e., user models)
when interpreting or planning for communication. During
this process, the robot acquires task-related knowledge and
task structures to enrich its own knowledge base and also con-
tinuously updates its own representation of the shared world
given the new knowledge. Thus, communicative task learning
is more than just a process of acquiring grounded task struc-
tures. It is also intertwined with language learning (i.e., learn-
ing the grounded meanings of new words or language consti-
tutes) and interactive knowledge acquisition (i.e., acquiring
task-related knowledge and commonsense knowledge).

At the center of this process is the issue of grounding, a
highly ambiguous term used in various context. In language
communication with physical agents, two types of grounding
are essential:
• Semantic grounding refers to the process where seman-

tics of language is grounded to the agent’s internal rep-
resentations of perception from the world and actions to
the world.
• Communicative grounding is the process for commu-
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Figure 3: Semantic grounding and communicative grounding for learning a joint representation.

nication partners to reach a common ground - mutually
agreed knowledge, beliefs, and assumptions. Commu-
nicative grounding is vital to keep partners on the same
page to achieve joint communication goals.

2.1 Semantic Grounding
Semantic grounding relates to the classical concept of sym-
bol grounding [Harnad, 1990] in Cognitive Science which
proposes that meanings of symbols should be connected to
the sensorimotor experience from the physical world. This
notion has a particular significance in language communica-
tion with robots. In order for the robot to understand human
language and act upon it, the meanings of language such as
words, phrases, and utterances need to be grounded to the
robot’s sensors which perceive the environment and to the
actuators which act to the environment.

Grounding to Perception
Grounding language to perception involves connecting mean-
ings of words to machine perception [Roy, 2005; Matuszek
et al., 2012; Kennington and Schlangen, 2015; Thomason et
al., 2016] and grounding language expressions to visual ob-
jects [Liu et al., 2012; Williams and Scheutz, 2018], to phys-
ical landmarks [Tellex et al., 2011] and to actions or activi-
ties [Chen and Mooney, 2011; Artzi and Zettlemoyer, 2013].
In the context of communicative learning, grounding verbs
and their arguments to the perceived world is crucial.

In Linguistics, verb semantics are often captured by seman-
tic roles that specify arguments participating in an action such
as agent (i.e., the one who performs the action), patient
(the object the action is directed upon), instrument (the
instrument used in the action) and so on [Baker et al., 1998;
Palmer et al., 2005]. As shown in Figure 2(a), the verb cut
takes the patient “strawberries” (H1); the verb put takes the
patient “strawberries” and the destination “the cutting board”
(H2). The robot will need to first identify different roles from
linguistic utterances and then ground them to the perceived
environment. Some of these roles such as patient are ex-
plicitly specified in language (i.e., explicit roles), but other
roles, for example, the instrument (i.e., knife) associated
with cut and slice (H2) is not explicitly stated (i.e., implicit
roles). Our previous work [Yang et al., 2016] has shown that,
for a set of commonly used verbs, the role instrument is

almost never explicitly specified in language, however it can
be inferred from perception. For some verbs such as take,
the source (where the things are taken from) is less likely
specified and the destination (where the things taken to)
is almost never explicitly stated. Nevertheless, these implicit
roles are important components of an action. Therefore, the
ability to ground not only explicit roles, but also implicit roles
is vital in order for the robot to fully understand the composi-
tion of an action and possibly perform it.

Grounding to Action
Grounding verb arguments to the environment is not suffi-
cient for the agent to perform corresponding actions. What
controls actions of a robot typically consists of a discrete
planner which captures a space of possible actions and their
associated states, and a continuous planner that computes
the trajectory for the movement. A robotic arm such as
a SCHUNK industrial arm only has specifications for three
primitive actions such as open-gripper, close-gripper, and
move-to. Any higher level actions (e.g., specified by an ac-
tion verb) will need to be translated to a sequence of prim-
itive actions for the agent to perform [Kress-Gazit et al.,
2008]. Recent work has applied deep learning models to di-
rectly map language instructions and raw visual observations
to actions [Misra and Langford, 2017] or action representa-
tions [Arumugam et al., 2017]. These approaches require a
large amount of training data which may not be available for
the task at hand. In addition, to strive for a common ground
in ITL, it is important for the agent to be able to explain its
decision and receive relevant human feedback to update its
model (particularly when an action fails). Thus, approaches
that can connect verbs with the planning system and the abil-
ity to explain the robot’s internal representations and decision
making become important.

2.2 Communicative Grounding
In human-human communication, what enables us to under-
stand each other depends on common ground and shared in-
tentionality [Clark, 1996; Tomasello, 2008]. It is well es-
tablished that communication is a cooperative process where
both parties cooperate with each other to achieve common
communication goals. These findings from human communi-
cation not only provide basis but also have new implications
in human-robot communication.
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Figure 4: Physical causality knowledge of action verbs.

As shown in Figure 3, mismatched representations signif-
icantly jeopardize the common ground between humans and
agents, making language communication difficult. When the
common ground is missing, the intrinsic cooperative motiva-
tion will enable partners to collaborate and strive to estab-
lish a common ground. This is the process of communica-
tive grounding. This cooperative principle brings challenges
and opportunities in human-robot communication. For exam-
ple, to mediate differences in the representation of the shared
world, the speaker often produces language in an episodic
and incremental manner to make sure the listener is fol-
lowing [Liu et al., 2012]. The listener provides immedi-
ate feedback which may prompt the speaker to change lan-
guage production in the middle of the planning. Therefore,
from the robot perspective, algorithms for language interpre-
tation will need to account for collaborative behaviors from
the human, and algorithms for language generation will need
to produce collaborative behaviors from the robot [Chai et
al., 2016]. Different mechanisms can be employed by hu-
mans and robots in communicative grounding such as us-
ing implicit or explicit confirmation [Thomaz et al., 2018].
As shown in our previous work [Chai et al., 2014], enabling
transparency from the agent about its internal representations
can reveal misunderstanding and significantly improve com-
mon ground. Moreover, the nature of embodiment in situ-
ated communication (i.e., non-verbal modalities such as gaze
and deictic gestures) provides additional channels for com-
municative grounding [Chai et al., 2018].

One of the key challenges to communicative grounding
is presupposition. In human-human communication, much
of background knowledge about the world is pre-assumed.
The partners believe they share the same kind of background
knowledge so do not need to explicitly state it in their com-
munication. However artificial agents don’t have the same
kind of commonsense knowledge. To improve communica-
tive grounding, one important solution is to equip the agent
with an ability to acquire commonsense knowledge. Next we
introduce some of our on-going efforts on acquiring common-
sense knowledge, particularly, very basic causality knowl-
edge associated with action verbs that are critical to task
learning and execution.

3 Physical Causality of Action Verbs
Linguistics studies have shown that concrete action verbs can
be divided into two categories manner verbs that “specify as
part of their meaning a manner of carrying out an action”

(e.g., laugh, run, swim), and result verbs that “specify the
coming about of a result state” (e.g., empty, chop, open, en-
ter) [Hovav, 2010]. While manner verbs play an important
role in communicative task learning, our current work has fo-
cused on result verbs, particularly modeling causality - effects
on the world given corresponding actions.

Different from other types of world knowledge (e.g.,
knowledge about places, people, events of the world), ba-
sic causality knowledge and the physics of the world is often
presupposed and rarely explicitly stated in interpersonal or
written communications. Applying NLP techniques to auto-
matically populate knowledge base such as DBPedia, Free-
base, and YAGO is not likely to result in basic causality
knowledge of concrete actions. Existing resources such as
VerbNet, FrameNet, and Propbank provide important infor-
mation about the composition of a verb and its arguments,
but they do not provide details on how the corresponding ac-
tion may change the physical world. Recent work has in-
vestigated learning physics of the world from videos [Fire
and Zhu, 2016] and simulations [Wu et al., 2017]. However,
except for a few works that look into physical properties of
verbs [Forbes and Choi, 2017; Zellers and Choi, 2017], how
verbs and their corresponding actions affect the state of the
physical world is largely under-explored.

Representation. As shown in Figure 4, physical causality
knowledge is represented by a mapping between action and
effect. Symbolically, an action is specified as a verb-noun
pair where a verb is a concrete result verb and a noun is a
concrete noun which serves as a direct patient of the verb.
An effect can be represented in various ways, for example, it
can be as simple as categories to indicate the dimension of
state change caused by the action to the direct object. It can
also be captured by language descriptions (e.g., “the cucum-
ber is chopped into pieces”), phrases (e.g., “cucumber + into
pieces”), or predicate calculus that details the aspects of the
changed world. As discussed in Section 3.1 and Section 3.2,
different effect representations can be used in different tasks.
The physical world captures physical actions (e.g., observed
or manipulated by the agent) and perceived effect states (e.g.,
through vision and haptics). Symbolic actions and effects
are grounded to physical actions and effects to facilitate lan-
guage communication between humans and agents. As ac-
tions cause effects, such causality modeling will provide the
agents basic knowledge about the physical world. Based on
this knowledge, given an action, the agent can anticipate po-
tential effects to the world; and given an effect state, the agent
can reason about potential actions that may have led to that
state. The acquired causality knowledge can be integrated
with more formal models [Pearl, 2009] in the future to endow
the agents more advanced abilities to do causal reasoning.

Acquisition. Causality knowledge can be acquired through
three main channels. First, collective intelligence based on
crowd-sourcing is used to create an initial seed knowledge
base. After agents are deployed, it’s likely they will encounter
new verbs or new actions in a novel context for which there is
no existing effect knowledge. Thus it is important to establish
a process where the robot can incrementally and continuously
acquire physical causality knowledge from collective intelli-
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gence, web data (e.g., for images), and human partners the
robot is working with. Next sections describe a few examples
of our recent work that address acquisition of physical causal-
ity knowledge and how the acquired knowledge is applied to
grounding language to perception and action.

3.1 Action-Effect Knowledge in Perception
Physical Causality in Grounding Verb Arguments. We
first collected a dataset of commonly used verb-noun pairs (in
a kitchen setting) and their effect descriptions using crowd-
sourcing [Gao et al., 2016]. As shown from the data, result
verbs often specify some movement along a scale [Hovav,
2010], which have similar behaviors of scalar adjective (e.g.,
big, small, long, short, etc.). Motivated by the typology for
adjectives [Dixon and Aikhenvald, 2006], we have identified
eighteen dimensions of physical change (i.e., physical causal-
ity categories) such as size, shape, color, texture, visibility, so-
lidity, temperature, and attachment, etc. The changes along
these dimensions can be potentially perceived from the envi-
ronment, e.g., through visual or haptic sensors. Given a verb,
the agent can anticipate the dimension of physical changes
that can occur to the world. Given a noun, the agent can
predict the affordance of the denoted object [Gibson, 1979;
Chao et al., 2015].

One important motivation of modeling physical causality
is to provide top-down guidance for the agent to actively per-
ceive the environment. When humans hear “pick up/take/put
something”, we anticipate the location of that something will
change; when hearing “slice something”, we anticipate that
something will be changed into smaller pieces. Such antici-
pation is driven by the knowledge of the outcome associated
with these result verbs during human language acquisition.
If artificial agents have similar kinds of causality knowledge
and can anticipate what may have happened or what is likely
to happen to the physical environment, they can better per-
ceive the environment and plan for lower level actions.

To validate this hypothesis, we incorporated causality
knowledge into models to ground verb arguments to the en-
vironment [Gao et al., 2016]. For each of the causality cat-
egories related to visual perception, we defined a set of vi-
sual detectors that aim to detect the kind of changes in the
environment. For example, for the attachment category, the
visual detector looks for “one object track breaks into multi-
ple tracks”. We then incorporate causality modeling in two
different approaches. In the knowledge-based approach, the
verb phrase (together with its causality category) from a hu-
man instruction will trigger corresponding visual detectors to
ground arguments of verbs to objects that are most compati-
ble with the detectors. In the learning-based approach, visual
detectors are implemented as intermediate features and the
association between the detectors and argument grounding is
learned based on the training data. Our experimental results
have shown that both approaches significantly improve argu-
ment grounding performance.

Action-Effect Reasoning. Given a verb-noun pair in lan-
guage instruction, the anticipation of potential world change
will enable the agent to better perceive the environment. Sim-
ilarly, given a physical state of the world, the ability to infer

what actions could cause that state of the world is equally
important. For example, when teaching a robot, a human
teacher may not explicitly describe every needed step. In H4
(Figure 2), while the language instruction is “add the straw-
berries into the blender”, but the human demonstrates by first
opening the lid of the blender then putting the strawberries
into the blender. When observing such a demonstration, the
robot should ideally be able to infer that add-strawberry fol-
lows the step open-blender (i.e., R4) although this step is not
explicitly instructed by the human. Partly inspired by this
observation, our recent work has introduced a new task on
naive physical action-effect prediction: given an effect state
depicted by an image, predict actions (in the form of verb-
noun pairs) that can potentially cause such effect [Gao et al.,
2018]. One problem of learning action-effect prediction mod-
els is the lack of training data. It is very expensive to have a
large amount of image data (effect) which is annotated with
corresponding causes (i.e., actions). To address this problem,
we have applied a bootstrapping approach that harnesses web
data through distant supervision for model training.

Although the performance on action-effect prediction is yet
to be improved, our empirical results have shown that the
web data can be used to complement a small number of seed
examples (e.g., three images for a verb-noun pair in our ex-
periments). This opens up possibilities for agents to learn
physical action-effect relations for tasks at hand through com-
munication with humans with a few examples. Given recent
advances in distributional semantics, word embedding, and
deep learning, our recent work has shown that there is a great
potential the causality knowledge for known verb-noun pairs
can be extended to new verb-noun pairs that may be encoun-
tered during task learning.

3.2 Action-Effect Knowledge in Planning
Incremental Acquisition of Grounded Verb Semantics.
As discussed in Section 2.1, when following a natural
language command, a robot needs to translate the action
specified by a verb phrase to the lower-level primitive ac-
tions. Such translation often involves planning (e.g., clas-
sical STRIP or PDDL based planners or probabilistic plan-
ning based on Markov Decision Process). The core to these
planners is action schemas or transition models which spec-
ify how primitive actions can cause the change of the world
from one state to another. Therefore, another direction of our
work is learning grounded verb semantics which explicitly
models verb semantics (particularly for result verbs) as the
desired goal states [She et al., 2014; She and Chai, 2016].
Then given a verb and their arguments, planning algorithms
can be applied to search for a sequence of primitive actions.

As social learning plays a pivotal role in child language
acquisition [Tomasello, 2003], we developed an interac-
tive learning framework where the agent can incrementally
acquire grounded verb semantics by following the human
teacher’s instructions step by step. For example, a human can
teach the agent the meaning of “fill the cup with water” by
breaking it down into a sequence of steps, e.g., “pick up the
cup, move to the sink, put down the cup, turn on the faucet,
etc.” As the robot performs each step, the teacher monitors
its outcome. If the robot does not know how to perform a
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particular step, additional instructions will be given, e.g., un-
til all the way down to the primitive actions. At the end of
teaching, after experiencing a sequence of changes in the en-
vironment, the robot will connect the state changes (i.e., a
conjunction of predicates) with the new verb. In this case,
the grounded semantic meaning for fill(cup,water) is
λxλyλo1λo2 isa(x, cup) ∧ isa(y, water) ∧ isa(o1, sink) ∧
isa(o2, table)∧ has(x, y)∧ in(x, o1)∧¬on(x, o2). The hy-
pothesis learned from this instance includes cup in the sink
(i.e., in(x, o1)) and cup not on the table (¬on(x, o2)). It is
very specific and may not be relevant to a new situation. Our
recent work thus extends a single hypothesis to form a hy-
pothesis space to represent grounded verb semantics. The
hypothesis space captures the specific-to-general hierarchy
of all possible hypotheses applicable from this teaching in-
stance [She and Chai, 2016]. During learning/teaching, a
new hypothesis space can be acquired for each new verb (or
new use of an existing verb) encountered. Existing hypothesis
spaces are also combined, pruned, and updated given new ex-
perience. During execution, if there exists a hypothesis space
for the verb in a language command, the robot will select the
best hypothesis which is most relevant to the current situation
(this selection can be learned through experience as well) and
performs the action. If there is no knowledge of that verb or if
the action is not correctly performed, a new teaching process
as described above is initiated. This learning and execution
form a loop which potentially allows the agent to continu-
ously learn and acquire grounded verb semantics from human
partners in the field. Using the data made available by [Misra
et al., 2015], our empirical results have shown the hypothe-
sis space representation of grounded semantics significantly
outperforms the single hypothesis representation.

Collaboration in Interactive Learning. As mentioned in
Section 2.2, communication is a cooperative process. When
humans and agents have mismatched capabilities and repre-
sentations, both parties will make extra collaborative effort
to achieve communication goals. For example, in our ear-
lier work on teaching robots new verbs in a simplified blocks
world [She et al., 2014], we had human teachers perform two
types of teaching: (1) teach one step at a time and make
sure every step is correctly followed before moving to the
next step; and (2) provide a complete instruction with mul-
tiple steps. Our empirical studies have shown that, as ex-
pected, the time taken for teaching is significantly higher in
the one-step-at-a-time setting. However, when the agent ap-
plied the learned verb semantics in novel situations, the rep-
resentations acquired from the one-step-at-a-time setting led
to higher performance in action planning. These results have
demonstrated that teaching style affects learning outcome, no
exception for robots. Then the question is, how to make hu-
man teachers aware of the agent’s abilities and limitations so
that teachers can be more cooperative, for example, by pro-
viding the right kind of scaffolding in the teaching process.
This makes explainable AI particularly important. The agent
needs to communicate to the human teacher to explain its pre-
diction, decision making, and action so that the teacher can
provide the right kind of feedback (e.g., correction, additional
instructions, etc.).

Agents should also be proactive in learning, especially
when there are many levels of uncertainties. For example,
the perceived world is full of uncertainties and is error-prone.
How to make the agent to learn a reliable model of grounded
verb semantics given the noise from the environment be-
comes an important question [She and Chai, 2017]. Moti-
vated by previous work on interactive robot learning of new
skills [Cakmak and Thomaz, 2012], we identified a set of
questions for the agent to inquire about the state of the envi-
ronment. We used an existing dataset [Misra et al., 2015] to
simulate different levels of noise of the environment and sim-
ulate interaction with a human teacher through question an-
swering. Reinforcement Learning (RL) was applied to learn
when to ask what question in order to maximize the long-term
reward. Our results have shown that the policy learned from
RL leads to not only more efficient interaction but also bet-
ter models for the grounded verb semantics. Although this
is encouraging, how to apply the learned policy to real world
interaction across different tasks remains a challenging and
important research question.

4 Conclusion
Language communication provides an efficient and natural
means for artificial agents to acquire new tasks and task-
related knowledge directly from humans. This paper gives a
brief introduction to the key challenges in language and com-
munication grounding to enable communicative task learn-
ing. What’s presented here is only the tip of the iceberg.
There are many research challenges ranging from common-
sense reasoning, knowledge acquisition and sharing, to ex-
plainable AI, and human-agent collaboration. And many
more problems are yet to be discovered. Given recent ad-
vances in language, vision, robotics, cognitive modeling, ma-
chine learning, and many other related disciplines, it has
never been a better time to explore this exciting, highly multi-
disciplinary, and less studied territory.
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