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Abstract

A recent success of SAT solving has been the so-
lution of the boolean Pythagorean Triples problem
[Heule et al., 2016], delivering the largest proof yet,
of 200 terabytes in size. We present this and the un-
derlying paradigm Cube-and-Conquer, a powerful
general method to solve big SAT problems, based
on integrating the “old” and “new” methods of SAT
solving.

1 Introduction

We consider the problem of solving very hard concrete prob-
lem instances of a decision problem in NP, like searching for
a specific configuration or for a specific combinatorial design.
An important aspect here is that we want to solve both YES-
and NO-instances, that is, we not only want to find solutions,
but we also want to be able to determine that no solution ex-
ists. The tools at our disposal are

(I) special purpose solvers, typically some form of in-
formed backtracking;

(II) Constraint Satisfaction solvers [Rossi et al., 2006],
based on propagation of inferences by constraints;

(IIT) SAT solvers [Biere et al., 20091, for inputs in CNF, using
less local, but more global forms of inference.

One would assume that the above order correlates to the
amount of specific knowledge we have for the problem: if
there is a lot of intricate knowledge, then (I) should be best, if
there are many different constraint types, with good propaga-
tion properties, then (II) should be best, and for the rest (IIT)
should be best. Surprisingly, SAT solving is getting so strong
that indeed (III) seems today the best solution in most cases.
An example where only a solution by (I) is known is the de-
termination that there is no projective plane of order 10 (a cer-
tain combinatorial design), based on special (relatively com-
plicated) algebraic structure, and pruning the search space by
symmetries and other tricks [Lam, 1991]. Their solution is
similar to the computer proof of the Four Colour theorem
[Wilson, 2013], namely being based on a man-made case-
distinction, where the computer “ticks off possibilities”, but
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the computations are much more involved. For modern stan-
dards their search space is not extremely big, so the special
computations should be rather easy to replicate — but one re-
ally wants to solve just the basic problem formulation. To the
best of our knowledge the effort has not been replicated, and
there is definitely no formal proof.

As general purpose approaches we have (II) and (III). On
small-scale problems, (II) appears more successful, but the
methods seem not to scale well. On the other hand, (III)
seems to scale surprisingly well. An early success for a
very hard problem was [Kouril and Paul, 2008], and two
recent successes are [Konev and Lisitsa, 2015; Codish et
al., 2016], while we will talk here about the story behind
our own [Heule et al., 2016], solving the long outstanding
“Pythagorean Triples Problem”. We explain this problem be-
low in Section 2, while for the moment it suffices to say that
it consists of solving a series of satisfiable problems, which
are relatively easy, and to decide and prove unsatisfiability of
one very hard problem. Different from the above mentioned
usage of special purpose methods (I), for these SAT problems
there is no mathematical structure known, which would allow
to determine a feasible search space in advance, but all what
one can say (currently) about these search spaces is that their
sizes are far beyond the number of particles in the universe
— and thus the magic of SAT solving is needed, based on the
SAT revolution by “modern SAT solvers”.

1.1 Attacking Very Hard SAT Problems

Now how does SAT-solving work? We concentrate in this
article on complete methods, while for incomplete methods
see the overview [Kautz et al., 2009]. The “old method” is
called “look-ahead”, and improves backtracking by estimat-
ing as good as possible what would happen in the different
search directions, and chooses one which seems best; see
Subsection 3.1 for more information. The “new method” is
called “CDCL” (“conflict-driven clause-learning”), and just
tries to find a satisfying assignment using only very basic in-
ferences, just enough so that when the search fails (a “con-
flict” is found), the negation of the “main” assignments made
(note that this is a disjunction of literals, i.e., a clause of a
CNF), when “learned”, prunes the search space; see Subsec-
tion 3.2 for more. For the “SAT revolution” the CDCL solvers
are responsible, very often being able to solve very big prob-
lems. So one would guess, that CDCL would also be the best



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

method for the very hard problems considered in this article.
However it seems that CDCL solvers need a “weak spot”, that
they are very good in finding short proofs, but if none exists,
then they are performing badly. This appears actually to be
rather natural, since their design excludes, for performance
reasons, any kind of global “overview”. Fortunately, this is
precisely the strength of look-ahead solvers.

This motivates our method “Cube-and-Conquer” (C&C),
where both methods, “old and new”, work together to solve
SAT-problems: first the problem is split in an intelligent
way via look-ahead (its speciality) into many subproblems
(the “cubes”), and then these subproblems are “conquered”
by CDCL-solvers (which now works well on these chopped
problems); see Section 4.

1.2 Proofs are Needed!

So we have now strong tools to solve very hard SAT prob-
lems. What about correctness of these results, which can be
affected by hardware and software errors? According to the
general nature of problems in NP, in case of a YES-answer
we typically have short certificates which are easy to check:
in the case of SAT these are typically the satisfying assign-
ments found (or reconstructed). But for the NO-answers there
seem to be no short certificates (if they would exist in general,
then we had NP=coNP). And so extracting proofs from solver
runs and checking them independently is a highly relevant
question, and the construction of the 200TB proof is a major
achievement of [Heule et al., 2016], and will be discussed in
Section 5. This extraction of proofs of unsatisfiability, which
then can be checked by possibly certified checkers on possi-
bly certified hardware, is superior to aim at certified solvers,
since due to the enormous complexity of SAT-solving tasks,
solvers are far more complicated than checkers, and progress
here is also far more rapidly (and needed — although check-
ing a 200TB proof is also a nontrivial task). Furthermore the
extracted proofs are interesting objects of study.

2 Mathematical Applications

Problems coming from Ramsey theory [Graham et al., 1990]
yield very good benchmarks for SAT solving. A basic ques-
tion studied in this theory is as follows: Consider a set X
and some notion of structure between the elements. Origi-
nally there are lots of these structures in X — now can we
partition X into two parts such that all of these structures
are destroyed? Sure there are cases where this is the case,
but Ramsey theory is interested especially in resilience there,
forms of structures where for big enough X there will always
remain at least one such structure untouched. If we trans-
late “structure” as some special subset of X, then we obtain
a hypergraph with vertex set X, and destroying all structures
means to 2-colour the hypergraph, i.e., assigning one of two
col-ORs to every vertex such that no hyperedge is monochro-
matic (every hyperedge has both col-ORs in it). And the in-
teresting case is when X indeed is not 2-colourable. Ram-
sey theory in general considers also infinite settings, but in
many cases w.l.0.g. one can restrict attention to finite X, us-
ing that in many relevant logics inconsistencies have a finite
character. So then it becomes interesting to ask for the size of
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the smallest X exhibiting non-2-colourability, which is then
called some form of “Ramsey number”.

The relevant type of Ramsey problem for the application of
this paper is the “Schur problem”, based on “Schur triples”,
where X = {1,...,n} for a natural number n, and the hy-
peredges are the subsets {a,b,c} C X with a + b = ¢. This
problem was introduced in [Schur, 1917], which showed the
existence of all “Schur numbers”, considering now m > 2
colours: for n large enough we obtain a non-m-colourable
problem. We obtain a much more challenging problem when
restricting the triples to Pythagorean triples a®> + b*> = 2.
This problem was posed by Ronald Graham in the 1980s, of-
fering in the Erd@s-style $100 for its solution. It was even
unknown whether for n large enough we would obtain a non-
2-colourable problem at all [Croot and Lev, 2006, Subsec-
tion 3.9]. This was solved [Heule et al., 2016], showing
that indeed such n exists. Namely for n = 7824 the prob-
lem is still 2-colourable, while for n = 7825 it is non-2-
colourable. The proof for the first statement is easy to show
— just a partitioning of {1,...,7824} into two parts such
that for all Pythagorean triples a? + b? = ¢? for natural num-
bers 1 < a,b,c < 7824 every triple hits both parts. But
the proof of the non-2-colourability is naturally much more
involved, and the already highly compressed extracted proof
had the size of 200TB, the “largest proof ever” [Lamb, 2016].
Indeed, as already mentioned, the extraction of such proofs is
a very interesting question in itself (considered in Section 5)
— unsatisfiability often needs strict verification.

3 Basic Outline of SAT Solving

We now give a short high-level overview on the two main
methods (“old and new”) for SAT solving, to gain a basic
understanding, so that the potential for collaboration between
the two methods can be better understood.

3.1 Look-Ahead

The look-ahead method is a natural further development of
the backtracking method; see [Heule and van Maaren, 2009;
Kullmann, 2009] for a fuller account. Backtracking here
means that for the propositional formula F' to be solved a
variable v is picked according to the branching-heuristics, and
the two cases, setting v to false and true, are considered
recursively. So we obtain a binary (splitting or branching)
tree, with the instantiations of F' at its nodes. If all leaves are
found unsatisfiable, then the original F' is unsatisfiable, oth-
erwise I’ is satisfiable. A very basic backtracking SAT solver
is the DLL-solver [Davis ef al., 1962]. The DLL-algorithm
uses unit-clause propagation (UCP) at each node to find the
most basic inferences for SAT solving. This uses the fact that
the input of (standard) SAT solving is actually a conjunctive
normal form (CNF), a conjunction of disjunction of literals,
where literals are variables or their negations. If now a unit-
clause, a clause of length one, exists, then the single literal in
it has to be set to t rue, and so one variable can be assigned.
Possibly this assignment creates further unit-clauses, and the
whole process of making all such assignments is called UCP.

Now the basic idea of look-ahead is that for the heuris-
tics to choose variable v, it actually should look at the results
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of UCP after setting v to false resp. true, to see what
really happens. Naturally, if one of these two UCPs leads
to a contradiction, then the other branch is forced, and we
found actually a logically valid inference; the underlying gen-
eral reduction is called failed-literal elimination. If we now
add the basic idea for the heuristics choosing v, to minimise
and balance the splitting tree, assuming unsatisfiability as the
worst-case, then we have the rough outline of the look-ahead
method. Due to the relatively heavy processing load at each
node (“in-processing”), look-ahead are not able to solve very
large formulas (it might take days just to reach a leaf once).
Look-ahead SAT-solving in its simplest form as a (non-
deterministic) proof system is nearly exactly tree-resolution:
this proof system will be explained in Section 5, but for the
moment all what matters is that the proofs are trees, i.e., there
is no overlap between different branches, which indeed is the
main advantage and the main weakness of look-ahead solving
— the branches of the computations don’t interact. We note
here that this means that look-ahead solver can run for a long
time, since nothing accumulates (from different branches).

3.2 Conflict-Driven Clause-Learning

The CDCL-method has many subtle points, and for an
overview see [Marques-Silva er al., 2009]. However, from
an abstract point of view it is easy to describe, and that suf-
fices for our purposes (since we want just to see how look-
ahead and CDCL complement each other). We start with
the backtracking tree, but now without look-ahead, just go-
ing down the tree, until a contradiction was found (otherwise
we are done). Then the assignments leading to this conflict
are analysed, and “learned”, i.e., adding the disjunction of
the negated assignments (a clause) to the clause-base. In the
ordinary situation, the solver then backtracks until the point
where the additional clause prunes the search space, but if
current progress is deemed too slow, then a restart is per-
formed, throwing away the backtracking tree altogether (but
keeping the learned clauses). It is important to perform as lit-
tle work as possible to reach a conflict, since very large prob-
lems have to be handled. So very efficient UCP is crucial, not
looking at the whole formula, but only working towards the
conflicts. Furthermore no “overview heuristics” are used (as
for look-ahead), but a dynamic heuristics based on usage of
variables in recently learned clauses. Since learned clauses
are added to the clause-base, and can be re-used, the under-
lying proof system is now dag-resolution (see Section 5); the
details are subtle here, but see [Pipatsrisawat and Darwiche,
2011] for a basic paper here. So in principle a more powerful
proof system is utilised here but this comes at a price: the ef-
ficiency of CDCL solvers depends on removing most learned
clauses during their run (by some heuristics). So their dag (di-
rected acyclic graph) structure, the reuse of learned clauses,
is local, happens only in a relatively short time frame. It
also doesn’t make much sense to run a modern CDCL solver
(which very aggressively deletes clauses) for a long time —
it won’t finish.

4 A Hybrid Method: C&C

Now we can understand the basic of C&C easily: Look-ahead
solvers are very good at splitting problems, while CDCL-
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solvers are very good at solving problems of with local struc-
ture. So use a look-ahead solver initially (the cubing phase),
but cut off the branching tree appropriately, and let then the
CDCL-solver finish the tasks. The following points are im-
portant for the cut-off line:

e The cut-off point along a branch must utilise the look-
ahead solver’s “understanding” of achievement, not just
some simple measure like tree-depth — this makes an
essential difference to typical parallelisation schemes.

e It is important that the number of leaves is large, for hard
problems in the millions. So the subproblems are not
created dynamically, but statically (in advance).

e The CDCL-solver should take for each problem at most,
say, a minute (they can do amazing things in this time).

The idea appeared first in [Ahmed et al., 2014], in the con-
text of solving problems from Ramsey theory. This yields an
evidentiary fact that problems from Ramsey theory are indeed
good benchmarks for SAT solvers, leading to the discovery of
new ideas. The framework was then developed systematically
in [Heule et al., 2012].

4.1 Perfect Parallelisation

Via C&C very good parallelisation is possible with little over-
head and possibly millions of processors (for very hard prob-
lems). For industrial problems, [Heule ez al., 2012] outlines
automatic configuration of the splitting process, while for
truly hard problems it is natural (and important) to fine-tune
the process. For the conquer-phase we already have prepared
many processes (much more than processors), so here there is
no need for load-levelling or other complications. Experience
shows that if the splitting achieves to bring down the run-
time to a minute or less, then CDCL-solving times are stable.
For extremely hard problems, like our boolean Pythagorean
Triples problem, indeed a two-level splitting was needed:

o In this case first on a single processor a splitting (cubing)
into 10 subproblems was done; since such very hard
instances are relatively small (if they are feasible), this
didn’t take much time, in this case about 15 minutes.

o Each of these 106 subproblems was then solved by C&C.

e This can be understood as a second-splitting splitting in
parallel (using 800 processors in this case), to split into
altogether 40 - 10° subproblems.

e So here one might say that actually much shorter CDCL-
runtimes were used. In reality for each of the 10° sub-
problems a refined C&C version was used, using an in-
cremental CDCL-solver, so that the second-level split-
ting was used by the CDCL-solver only for guidance;
but this was not absolutely essential.

Altogether 21,900 hours for cubing and 13,200 hours for con-
quering were needed, altogether roughly 2 days with 800
cores. This example also shows that parallelisation of the
cube-phase can be done easily. Again there is no real need
for load-levelling — if there would be much variation when
splitting, then this would mean that the look-ahead solver is
already doing at least some solving, not just splitting, which
can be observed and avoided by cutting off earlier.
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4.2 An Astounding Observation

This looks alright then: we gave partitioning of the whole
problem to a specialist (the cube-solver), and then achieved
good parallelisation. But actually this is not the end of the
story, but a surprise is waiting. For a typical problem, let NV
be the number of subproblems, the number of leaves of the
cubing tree. If N = 1, then we have pure CDCL, while if N
is large enough, then we have pure look-ahead (no subprob-
lems left to be solved). The typical case is that the optimal
N is somewhere in between (so that the subproblems become
relatively easy for CDCL). However, the observed optimum
in many cases is one order of magnitude (or more) faster than
what the best single method could achieve. So this method
is not just some parallelisation, but the combination of “old
and new” in a sense has a better grasp on the problem. Since
this happens very often, we believe it is something funda-
mental. The rough hypothesis is that most problems have a
“global” tree structure, which can be used to split them up
(and that is what a look-ahead cube-solver is good at), and
a “local” dag structure, which can be solved by the CDCL-
conquer solver. Due to the local dag-structure, look-ahead
on its own performs badly, while the global tree-structure can
not be captured by CDCL-solvers with their “local senses”.

4.3 Specialised Heuristics for Cubing

Before coming to the problem of proving unsatisfiability,
some words on the splitting-heuristics used by the cube-
solver for [Heule et al., 2016]; the basics of the general the-
ory of branching heuristics for look-ahead solvers one finds
in [Kullmann, 2009]. An important idea for the branching-
heuristics for look-ahead solvers is to predict the success of
future UCPs, and to try to maximise these (balancing this
over the two branches). As experimentation shows, together
with similarities to worst-case analysis of algorithms: when
performing the look-ahead, the basic measure is to count the
new clauses (only) — the more the better (unit-clauses come
from shortened clauses), and the shorter a clause the higher its
weight (it’s closer to a unit-clause). [Heule et al., 2016] now
refined this idea by distinguishing the literals within a new
clause, computing some heuristic value for them, which mea-
sures how “likely” it seems that this literal becomes false
via UCP. These ideas have been developed originally for ran-
dom CNFs, and so in a sense the Pythagorean Triples problem
shows behaviour similar to random CNFs (for the splitting).

5 Extracting Proofs

If the essence of the solution of the boolean Pythagorean
Triples problem would be the number “7825”, the numerical
information about the point where unsatisfiability is reached,
then naturally there would be less pressure on actually hav-
ing a verifiable proof, and one would just wait for indepen-
dent re-computations, as is the case currently with all re-
ally big computations outside of the SAT-realm (only here
we have the ability to extract really big proofs). But in this
case, there is (at least currently) no independent “mathemat-
ical” existence proof, i.e., without our result it wouldn’t be
even known whether there exists that turning point at all, and
thus a real proof is needed. Now what is a “proof” here?
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Since the problems considered are very naturally formulated
as SAT problems, we only consider propositional logic; for
the wider context of proving mathematical results see [Ed-
wards, 2016]. The most important proof system in the SAT
context is resolution, which is actually identical to the seman-
tics for clauses: considering two clauses (disjunctions of lit-
erals), the only possibility that a new clause can be inferred
is that these clauses have exactly one clash (one pair of com-
plementary/negated literals), and then their resolvent follows
logically, which is the disjunction of all the literals in both
clauses minus the pair of clashing literals. One distinguishes
between tree-resolution, where the derivation of the contra-
diction has the form of the tree, that is, intermediate results
can not be re-used, but have to be re-derived, and full or dag-
resolution, where the derivation has the form of a dag, that
is, now intermediate results can be re-used. Considering the
close relation between SAT solving and resolution (as men-
tioned in Section 3), extracting resolution proofs is the natu-
ral first step towards efficient extraction of proofs from solver
runs. Now producing such proofs is too expensive for the
solver, and thus UCP has to be integrated into the proof for-
mat, so that basically just the sequence of learned clauses is
needed. However, for fundamental reasons, especially pre-
processing techniques, and also symmetry handling, can not
be simulated efficiently by resolution (provably). A very
powerful proof system is extended resolution (ER), which
can be understood as “Resolution with Definitions”. ER it-
self is not practical, but a combinatorial extension of it based
on “blocked clauses”, also integrating UCP, yields the sys-
tem DRAT [Wetzler et al., 2014], which is the current stan-
dard, allowing to easily extract the proofs from the solver run
(while verification is reasonable efficient in linear time). The
basic proof step is adding a clause, and while resolution only
allows to add clauses which preserve all solutions, DRAT al-
lows to add clauses which might require flipping of satisfying
assignments on single variables.

6 Conclusion and Outlook

We have discussed the C&C method, which might be the
strongest method for many hard combinatorial problems. In
the future C&C needs a solid foundation concerning problem
structure (see the “astounding observation” in Subsection 4.2)
and splitting heuristics. Meanwhile an independent verifica-
tion of the proof took place [Cruz-Filipe et al., 2016]. The-
ory and practice of this important field is likely just at the
beginning; and “proof mining” hopefully at some point will
yield valuable insights, into SAT solving and into the prob-
lem structure. This leads us to the question about the “mean-
ing” of proofs of 200TB size, where, as to be expected, con-
troversies arose; see [Heule and Kullmann, 2017 to appear]
for further discussions. Finally we note, that our application
of SAT to Ramsey theory has the special feature of yielding
the only known proof of a general existence statement (for
higher-order objects, beyond natural numbers). Whether this
is just an accident or a deeper aspect is further discussed in
[Heule and Kullmann, 2017 to appear], and relates to deep
unsolved problems in the foundations of mathematics.
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