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Abstract

Gibbs sampling is a Markov chain Monte Carlo
technique commonly used for estimating marginal
distributions. To speed up Gibbs sampling, there
has recently been interest in parallelizing it by
executing asynchronously. While empirical re-
sults suggest that many models can be efficiently
sampled asynchronously, traditional Markov chain
analysis does not apply to the asynchronous case,
and thus asynchronous Gibbs sampling is poorly
understood. In this paper, we derive a better un-
derstanding of the two main challenges of asyn-
chronous Gibbs: bias and mixing time. We show
experimentally that our theoretical results match
practical outcomes.

1 Introduction
Gibbs sampling is one of the most common Markov chain
Monte Carlo methods used with graphical models [Koller and
Friedman, 2009]. In this setting, Gibbs sampling (Algorithm
1) operates iteratively by choosing at random a variable from
the model at each timestep, and updating it by sampling from
its conditional distribution given the other variables in the
model. Often, it is applied to inference problems, in which
we are trying to estimate the marginal probabilities of some
query events in a given distribution.

Algorithm 1 Gibbs sampling

Require: Variables xi for 1 ≤ i ≤ n, and distribution π.
for t = 1 to T do

Sample s uniformly from {1, . . . , n}.
Re-sample xs uniformly from Pπ(Xs|X{1,...,n}\{s}).

end for

Gibbs sampling is often applied to sparse graphical mod-
els, where each of these updates needs to read the values
of only a small subset of the variables; therefore each up-
date can be computed very quickly on modern hardware.
Because of this and other useful properties of Gibbs sam-
pling, many systems use Gibbs sampling to perform infer-
ence on big data [Newman et al., 2007; Lunn et al., 2009;

McCallum et al., 2009; Smola and Narayanamurthy, 2010;
Theis et al., 2012; Zhang and Ré, 2014].

Since Gibbs sampling is such a ubiquitous algorithm, it is
important to try to optimize its execution speed on modern
hardware. Unfortunately, while modern computer hardware
has been trending towards more parallel architectures [Sutter,
2005], traditional Gibbs sampling is an inherently sequential
algorithm; that is, the loop in Algorithm 1 is not directly par-
allelizable. Furthermore, for sparse models, very little work
happens within each iteration, meaning it is difficult to ex-
tract much parallelism from the body of this loop. Since tra-
ditional Gibbs sampling parallelizes so poorly, it is interesting
to study variants of Gibbs sampling that can be parallelized.
Several such variants have been proposed, including appli-
cations to latent Dirichlet allocation [Newman et al., 2007;
Smola and Narayanamurthy, 2010] and distributed constraint
optimization problems [Nguyen et al., 2013].

In one popular variant, multiple threads run the Gibbs sam-
pling update rule in parallel without locks, a strategy called
asynchronous or HOGWILD! execution—in this paper, we
use these two terms interchangeably. This idea was previ-
ously proposed [Smola and Narayanamurthy, 2010], but not
analyzed theoretically, and has been shown to give empiri-
cally better results on many models [Zhang and Ré, 2014].
But when can we be sure that HOGWILD! Gibbs sampling
will produce accurate results? Except for the case of Gaus-
sian random variables [Johnson et al., 2013], there is no exist-
ing analysis by which we can ensure that asynchronous Gibbs
sampling will be useful for a particular application. Even the
problems posed by HOGWILD!-Gibbs are poorly understood,
and their solutions more so.

In the following sections, we will identify two main issues
when analyzing asynchronous Gibbs sampling. Firstly, we
will show by example that, surprisingly, HOGWILD!-Gibbs
can be biased—unlike sequential Gibbs, it does not always
produce samples that are arbitrarily close to the target distri-
bution. Secondly, we will show that the mixing time (the time
for the chain to become close to its stationary distribution) of
asynchronous Gibbs sampling can be exponentially greater
than that of the corresponding sequential chain.

To address the issue of bias, we need some way to describe
the distance between the target distribution π and the distri-
bution of the samples produced by HOGWILD!-Gibbs. The
standard notion to use here is the total variation distance, but
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for the task of computing marginal probabilities, it gives an
overestimate on the error caused by bias. To better describe
the bias, we introduce a new notion of statistical distance, the
sparse variation distance. While this relaxed notion of statis-
tical distance is interesting in its own right, its main benefit
here is that it uses a more local view of the chain to more
tightly measure the effect of bias.

Our main goal is to identify conditions under which the
bias and mixing time of asynchronous Gibbs can be bounded.
One parameter that has been used to great effect in the
analysis of Gibbs sampling is the total influence α of a
model. The total influence measures the degree to which
the marginal distribution of a variable can depend on the
values of the other variables in the model—this parameter
has appeared as part of a celebrated line of work on Do-
brushin’s condition (α < 1), which ensures the rapid mixing
of spin statistics systems [Dobrushin, 1956; Dyer et al., 2006;
Hayes, 2006]. It turns out that we can use this parameter to
bound both the bias and mixing time of HOGWILD!-Gibbs,
and so we make the following contributions:
• We describe a way to statistically model the asyn-

chronicity in HOGWILD!-Gibbs sampling.
• To bound the bias, we prove that for classes of models

with bounded total influence α = O(1), if sequential
Gibbs sampling achieves small sparse variation distance
to π in O(n) steps, where n is the number of variables,
then HOGWILD!-Gibbs samples achieve the same dis-
tance in at most O(1) more steps.
• For models that satisfy Dobrushin’s condition (that is,
α < 1), we show that the mixing time bounds of se-
quential and HOGWILD!-Gibbs sampling differ only by
a factor of 1 +O(n−1).

1.1 Related Work
Much work has been done on the analysis of parallel Gibbs
samplers. One simple way to parallelize Gibbs sampling is
to run multiple chains independently in parallel: this heuris-
tic uses parallelism to produce more samples overall, but
does not produce accurate samples more quickly. Addi-
tionally, this strategy is sometimes worse than other strate-
gies on a systems level [Smola and Narayanamurthy, 2010;
Zhang and Ré, 2014] because it requires additional memory.

The HOGWILD!-Gibbs sampling algorithm was inspired
by a line of work on parallelizing stochastic gradient de-
scent (SGD) by running it asynchronously [Niu et al., 2011;
Liu et al., 2015; De Sa et al., 2015; Mania et al., 2015;
Liu and Wright, 2015]. Several of these results suggest mod-
eling the race conditions inherent in HOGWILD! SGD as
noise in a stochastic process; in this paper, we will apply a
similar stochastic process model to Gibbs sampling.

2 Modeling Asynchronicity
In this section, we describe a statistical model for asyn-
chronous Gibbs sampling by adapting the hardware model
outlined in [De Sa et al., 2015]. We will focus on the case
where our target distribution π ranges over a discrete space.

Any HOGWILD!-Gibbs implementation involves some
number of threads each repeatedly executing the Gibbs up-

date rule on a single copy of the model (typically stored in
RAM). We assume that this model serializes all writes, such
that we can speak of the state of the system after t writes have
occurred. We call this time t, and we will model the HOG-
WILD! system as a stochastic process indexed by t. Let xi,t
denote the value of variable i at time t. For HOGWILD!-Gibbs
sampling, the sampler does not get to use exactly the values of
xi,t; rather it has access to a cache containing potentially stale
values. To model this, we define ṽi,t = xi,t−τ̃i,t to be the po-
tentially stale model state used to compute the update at time
t, where τ̃i,t ≥ 0 is a delay parameter that represents how old
the currently-cached value for variable i could be. The distri-
bution of these delays τ̃i,t depends on the number of threads
and the specifics of the hardware [Niu et al., 2011]. To make
our results general, we will not assume any particular distri-
bution on the delays. Instead, we require only a bound on
the expected delay, E [τ̃i,t|Ft] ≤ τ for a hardware-dependent
constant τ , and a very weak bound on its magnitude τ̃i,t ≤ n,
where n is the number of variables in the model.

3 The First Challenge: Bias
Perhaps the most basic result about sequential Gibbs sam-
pling is the fact that, in the limit of large numbers of samples,
it is unbiased. Unfortunately, this is not the case for HOG-
WILD! Gibbs sampling, because the race conditions from the
asynchrony add bias to the samples. To understand why, we
can look at a simple example. Consider running HOGWILD!
Gibbs on a model with two variables X1 and X2 each taking
on values in {0, 1}, and having distribution

p(0, 1) = p(1, 0) = p(1, 1) = 1
3 p(0, 0) = 0.

Suppose that the state is currently (1, 1) and two threads,
T1 and T2, simultaneously update X1 and X2 respectively.
Since T1 reads state (1, 1) it will update X1 to 0 or 1 each
with probability 0.5; the same will be true for T2 and X2.
Therefore, after this happens, every state will have probabil-
ity 0.25; this includes the state (0, 0) which should never oc-
cur! Over time, this race condition will produce samples with
value (0, 0) with some non-zero frequency; this is an exam-
ple of bias introduced by the HOGWILD! sampling. Worse,
this bias is not just theoretical: Figure 1 illustrates how the
measured distribution for this model is affected by two-thread
asynchronous execution. To measure the amount of this bias,
it is standard to use the total variation distance.

Definition 1 (Total Variation Distance). The total variation
distance [Levin et al., 2009] between two probability mea-
sures µ and ν on probability space Ω is defined as

‖µ− ν‖TV = maxA⊂Ω |µ(A)− ν(A)| ,

that is, the maximum difference between the probabilities that
µ and ν assign to a single event A.

Here, we observe a total variation distance of 9.8% be-
tween the measured and the true distribution. Unlike in the
sequential case, this bias doesn’t disappear as the number
of samples goes to infinity. This example shows that asyn-
chronous Gibbs sampling will not necessarily samples that
approach the target distribution. Instead, the samples may
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Figure 1: Bias introduced by HOGWILD! (106 samples).

approach some other distribution, which we hope is suffi-
ciently similar for some practical purpose. Often, the pur-
pose of Gibbs sampling is to estimate the marginal distribu-
tions of individual variables or of events that each depend on
only a small number of variables. To characterize the accu-
racy of these estimates, the total variation distance is too con-
servative: it depends on the difference over all the events in
the space, when most of these are events that we do not care
about. To address this, we introduce a new metric.

Definition 2 (Sparse Variation Distance). For any event A in
a probability space Ω over a set of variables V , let |A| denote
the number of variables upon which A depends. Then, for
any two distributions µ and ν over Ω, we define the ω-sparse
variation distance to be

‖µ− ν‖SV(ω) = max|A|≤ω |µ(A)− ν(A)| .

For the wide variety of applications that use sampling for
marginal estimation, the sparse variation distance measures
the quantity we actually care about: the maximum possible
bias in the marginal distribution of the samples. As we will
show, asynchronous execution seems to have less effect on
the sparse variation distance than the total variation distance,
because sparse variation distance uses a more localized view
of the chain. For example, in Figure 1, the total variation
distance between the sequential and HOGWILD! distributions
is 9.8%, while the 1-sparse variation distance is only 0.4%.

This definition suggests the question: how long do we have
to run before our samples have low sparse variation distance
from the target distribution? To answer this question, we in-
troduce the following definition.

Definition 3 (Sparse Estimation Time). The ω-sparse estima-
tion time of a stochastic sampler with distribution P (t)µ0 at
time t and target distribution π is the first time t at which, for
any initial distribution µ0, the estimated distribution is within
sparse variation distance ε of π,

tSE(ω)(ε) = min{t ∈ N | ∀µ0, ‖P (t)µ0 − π‖SV(ω)≤ ε}.

When analyzing Gibbs sampling, we can bound the sparse
estimation time (and bias) using a parameter called the total
influence. While we arrived at this condition independently,
it has been studied before in the context of Dobrushin’s con-
dition, which ensures rapid mixing of Gibbs sampling.

Definition 4 (Total Influence). Let π be a distribution over
some set of variables I . LetBj be the set of state pairs (X,Y )
which differ only at variable j. Let πi(·|XI\{i}) denote the
conditional distribution in π of variable i given the other vari-
ables in state X . Then define α, the total influence of π, as

α = max
i∈I

∑
j∈I

max
(X,Y )∈Bj

∥∥πi(·|XI\{i})− πi(·|YI\{i})
∥∥

TV
.

We say the model satisfies Dobrushin’s condition if α < 1.
One way to think of total influence for factor graphs is as a

generalization of maximum degree; indeed, if a factor graph
has maximum degree ∆, it can easily be shown that α ≤
∆. It turns out that if we can bound both this parameter and
the sparse estimation time of sequential Gibbs sampling, we
can prove a simple bound on the asymptotic sparse estimation
time for asynchronous Gibbs sampling.
Theorem 1. Assume that we have a class of distributions with
bounded total influence α = O(1). For each distribution π
in the class, let t̄SE−seq(ω)(π, ε) be an upper bound on the
ω-sparse estimation time of its sequential Gibbs sampler, and
assume that it is a convex, decreasing function of ε. Further
assume that, for any fixed ε, across all distributions,

t̄SE−seq(ω)(π, ε) = O(n),

where n is the number of variables in the model.1 Then, for
any fixed ε, the sparse estimation time of HOGWILD!-Gibbs
across all models is bounded by

tSE−hog(ω)(π, ε) ≤ t̄SE−seq(ω)(π, ε) +O(1).

Roughly, this means that HOGWILD!-Gibbs sampling
“works” (in the sense of producing output with arbitrarily
small bias ε) asymptotically on all classes of problems for
which we know marginal estimation is “fast” and the total in-
fluence is bounded. Since the sparse estimation times here
are measured in iterations, and the asynchronous sampler is
able, due to parallelism, to run many more iterations in the
same amount of wall clock time, this result implies that HOG-
WILD!-Gibbs can be much faster than sequential Gibbs for
producing estimates of similar quality.

4 The Second Challenge: Mixing Times
Even though the HOGWILD!-Gibbs sampler produces biased
estimates, it is still interesting to analyze how long we need
to run it before the samples it produces are independent of
its initial conditions. To measure the efficiency of a Markov
chain, it is standard to use the mixing time.
Definition 5 (Mixing Time). The mixing time [Levin et al.,
2009] of a stochastic process with transition matrix P (t) at
time t and target distribution π is the first time t at which, for
any initial distribution µ0, the estimated distribution is within
TV-distance ε of P (t)π. That is,

tmix(ε) = min
{
t | ∀µ0,

∥∥P (t)µ0 − P (t)π
∥∥

TV
≤ ε
}
.

1In many practical systems [Neubig, 2014; Shin et al., 2015],
Gibbs sampling is naively run a fixed number of passes through the
dataset, which works for exactly those models for which accurate
marginal estimates can be achieved after O(n) samples. This sug-
gests that models with sparse estimation timeO(n) are practical and
commonly occurring.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4813



Unfortunately, as was the case with bias, the mixing time
can also be greatly affected by running asynchronously. We
can prove that there are classes of models for which asyn-
chronous execution disastrously increases the mixing time.
Lemma 1. There exist classes of distributions for which the
mixing time of sequential Gibbs sampling is O(n log n) but
the mixing time of HOGWILD!-Gibbs sampling, even with de-
lay τ = O(1), can be exp(Ω(n)).

This Lemma shows that fast mixing of the sequential sam-
pler alone is not sufficient to guarantee fast mixing of the
HOGWILD! chain. Consequently, we look for classes of mod-
els for which we can say something about the mixing time of
both sequential and HOGWILD!-Gibbs. Dobrushin’s condi-
tion is well known to imply rapid mixing of sequential Gibbs,
and it turns out that we can leverage it again here to bound
the mixing time of HOGWILD!-Gibbs.
Theorem 2. Assume that we run Gibbs sampling on a distri-
bution that satisfies Dobrushin’s condition, α < 1. Then the
mixing time of sequential Gibbs will be bounded by

tmix−seq(ε) ≤ n

1− α
log
(n
ε

)
.

Under the same conditions, the mixing time of HOGWILD!-
Gibbs will be bounded by

tmix−hog(ε) ≤ n+ 2ατ

1− α
log
(n
ε

)
.

Dobrushin’s condition holds for a wide variety of prob-
lems, including the Ising model at high temperatures. We
can compare these two mixing time results as

tmix−hog(ε) ≈
(
1 + 2ατn−1

)
tmix−seq(ε); (1)

the bounds on the mixing times differ by a negligible factor of
1 +O(n−1). This result shows that, for problems that satisfy
Dobrushin’s condition, HOGWILD!-Gibbs sampling mixes in
about the same time as sequential Gibbs sampling, and is
therefore a practical choice for generating samples.

5 Experiments
Now that we have derived a theoretical characterization of
the behavior of HOGWILD!-Gibbs sampling, we examine
whether this characterization holds up under experimental
evaluation. Specifically, we want to check whether increasing
the expected delay parameter τ actually increases the mixing
time as predicted by Equation 1.

To do this, we simulated HOGWILD!-Gibbs sampling run-
ning on a random synthetic Ising model graph of order n =
1000, degree ∆ = 3, and inverse temperature β = 0.2. This
model has total influence α ≤ 0.6, and Theorem 2 guarantees
that it will mix rapidly. To estimate the mixing time, which
is difficult to calculate experimentally, we use a technique
called coupling to the future, which produces asymptotically
tight upper-bound estimates of the mixing time. The blue se-
ries in Figure 2 displays the estimate of tmix(1/4) across a
range of τ 2. The red line in Figure 2 shows the mixing time

2We sampled the delays τ̃i,t to be i.i.d. according to the
maximum-entropy distribution supported on {0, 1, . . . , 200} consis-
tent with a particular assignment of τ .
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Figure 2: Comparison of estimated mixing time and theory-
predicted (by Equation 1) mixing time as τ increases for a synthetic
Ising model graph (10000 trials).

that would be predicted by naively applying Equation 1 us-
ing the estimate of the sequential mixing time as a starting
point—we can see that it is a very good match for the exper-
imental results. This experiment shows that, at least for one
archetypal model, our theory accurately characterizes the be-
havior of HOGWILD! Gibbs sampling as the delay parameter
τ is changed, and that using HOGWILD!-Gibbs doesn’t cause
the model to catastrophically fail to mix.

6 Conclusion

We analyzed HOGWILD!-Gibbs sampling, a heuristic for
parallelized MCMC sampling, on discrete-valued graphical
models. First, we constructed a statistical model for HOG-
WILD!-Gibbs by adapting a model already used for the anal-
ysis of asynchronous SGD. Next, we illustrated a major is-
sue with HOGWILD!-Gibbs sampling: that it produces biased
samples. To address this, we proved that if for some class
of models with bounded total influence, only O(n) sequen-
tial Gibbs samples are necessary to produce good marginal
estimates, then HOGWILD!-Gibbs sampling produces equally
good estimates after onlyO(1) additional steps. Additionally,
for models that satisfy Dobrushin’s condition (α < 1), we
proved mixing time bounds for sequential and asynchronous
Gibbs sampling that differ by only a factor of 1 +O(n−1).
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DimmWitted: A study of main-memory statistical
analytics. PVLDB, 2014.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4815


