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Abstract
Hyper graph matching problems have drawn atten-
tion recently due to their ability to embed higher
order relations between nodes. In this paper,
we formulate hyper graph matching problems as
constrained MAP inference problems in graphical
models. Whereas previous discrete approaches in-
troduce several global correspondence vectors, we
introduce only one global correspondence vector,
but several local correspondence vectors. This al-
lows us to decompose the problem into a (linear)
bipartite matching problem and several belief prop-
agation sub-problems. Bipartite matching can be
solved by traditional approaches, while the belief
propagation sub-problem is further decomposed as
two sub-problems with optimal substructure. Then
a newly proposed dynamic programming procedure
is used to solve the belief propagation sub-problem.
Experiments show that the proposed methods out-
perform state-of-the-art techniques for hyper graph
matching.

1 Introduction
The feature matching problem aims to establish consistent
correspondences between two feature sets, and is a funda-
mental subroutine in computer vision and pattern recogni-
tion [Leordeanu and Hebert, 2005; Torresani et al., 2008;
Li et al., 2010]. When establishing correspondences between
features, it is important to consider not only local similarity
between features, but also structured similarity between sets
of features. Graphical models provide an elegant framework
to encode feature matching problems, as they are naturally
able to express structured relationships between sets of vari-
ables.

However, graphical model based methods [Zhang et al.,
2016; Torresani et al., 2008; Ahn et al., 2015] are typi-
cally limited to pairwise matching, which can be used to ex-
press (for example) matches between rigid structures. Un-
fortunately, pairwise relations are insufficient to encode rich
geometrical structures [Lee et al., 2011]; thus higher-order
information should be included and the problem formu-
lated as one of hyper graph matching [Yan et al., 2015;
Nguyen et al., 2015; Lee et al., 2011; Duchenne et al., 2009].

Such a formulation can be more robust to noise and outliers,
though hyper graph matching is less well studied than pair-
wise matching, due to the increased difficulty of optimization.

Among hyper graph matching methods, most recent ones
fall into one of two categories. In the first category, the
correspondence vector (which encodes the matching) is re-
laxed to be continuous, and then post-processing (such as
the Munkres/Hungarian algorithm) is used to discretize the
correspondence vector; Hyper Reweighted Random Walks
Methods (HRRWM) [Lee et al., 2011] belong to this cate-
gory. The second category, which includes Discrete Hyper
Graph Matching [Yan et al., 2015] and Tensor Block Coor-
dinate Ascent Graph Matching (TBCAGM) [Nguyen et al.,
2015], relaxes the matching objective as a multi-linear or
multi-quadratic problem, and then alternating optimization
methods are used to optimize over the relaxed objective. Due
to the relaxation such alternating optimization methods may
return multiple inconsistent correspondence vectors, though
in practice their performance is state-of-the-art. Regulariz-
ers can be added to the objective to encourage the multiple
correspondence vectors to be consistent, however this may
result in a looser relaxation. Another issue for multi-linear
or multi-quadratic relaxations is their non-convexity; due to
non-convexity, alternating optimization methods may easily
get stuck in local optima.

In this paper, we formulate the hyper graph matching prob-
lem as a constrained higher order MAP inference problem in
a graphical model. To solve this we propose a convex linear
programming (LP) relaxation. In the primal form of the re-
laxation, rather than introduce several global correspondence
vectors, we introduce only one global correspondence, but
several local correspondence vectors, which represent cor-
respondences only within a small sub-graph (e.g. an edge,
a triplet or other small sub-graph). In the dual formulation,
the hyper graph matching problem is decomposed as a linear
bipartite matching problem (which can be efficiently solved
by the Munkres/Hungarian algorithm [Munkres, 1957]), and
several non-linear matching problems, which we term belief
propagation sub-problems, with relatively small scale. These
sub-problems are solved iteratively, and during optimization
the global correspondence vector is encouraged to be consis-
tent with the local correspondences. If the global correspon-
dence vector is consistent with all local correspondences, our
algorithm is guaranteed to provide an exact solution.
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Although some previous work has used similar formula-
tions for pairwise matching problems [Torresani et al., 2008;
Zhang et al., 2016], the exhaustive search procedures in-
volved when solving belief propagation sub-problems are
computationally expensive when applied to hyper graph
matching. As a response, by exploiting the internal structure
of hyper graph matching problems, we further decompose the
belief propagation sub-problems as several overlapping sub-
problems with optimal substructure. This allows efficient dy-
namic programming methods to be developed to solve these
problems. We title the proposed methods Dynamic Program-
ming Bipartite Belief Propagation. Experiments show that
the proposed methods outperform the current state-of-the-art
in hyper graph matching problems.

2 Notation and Problem Formulation
A hyper graph H = (V,C) consists of nodes v ∈ V and hyper
arcs c ∈ C, where a hyper arc c is a subset of V. The order of
a hyper arc is its cardinality |c| and the order of a hyper graph
is the largest order among all hyper arcs.

We seek a correspondence between two hyper graphs: the
model graph HP = (VP ,CP ) and the data graph HQ =

(VQ,CQ), and their associated attributes AP and AQ. For
any hyper arc c from CP or CQ, there is a corresponding at-
tribute, denoted by aPc or aQc . Attributes could encode the
orientation of a keypoint, the length of an edge, the angle be-
tween two edges, etc..

The goal of hyper graph matching is to find the optimal
correspondence between VP and VQ. Here to simplify the
derivation, we assume that V = VP = VQ = {1, 2, · · · , n},
though this can easily be relaxed (e.g. to handle outliers) by
adding ‘dummy’ nodes in either VP or VQ. Given a corre-
spondence vector yi = j (meaning that the ith node in VP

corresponds to the jth node in VQ), finding an optimal one-
to-one matching between VP and VQ can be formulated as a
constrained MAP inference problem in a graphical model:

max
y

∑
i∈V

θi(yi)+
∑
c∈CP

θc(yc), s.t.
∑
i∈V

1(yi= l) = 1, l∈V, (1)

where 1(S) is an indicator function (i.e. 1 if S is true and 0
otherwise). θi(yi) and θc(yc) are value functions (or ‘poten-
tials’) of the form

θi(yi) = ϕ(aPi ,a
Q
yi), θc(yc) = ϕ(aPc ,a

Q
yc

), (2)

where ϕ are real-valued functions, which measure the sim-
ilarity between unary or higher order attributes. In prac-
tice, the similarity function are often defined as Duchenne et
al.; Nguyen et al. [2009; 2015]

ϕ(aPc ,a
Q
yc

) = γ1,|c| exp(‖ aPc −aQyc
‖/γ2,|c|), (3)

where γ1,|c| > 0 and γ2,|c| > 0 are problem-specific parame-
ters for order |c| hyper arcs.

3 LP Relaxation and Its Dual
The problem (1) is NP-hard in general, thus relaxations are
required. The approaches of Zhang et al. [2016] and Torre-
sani et al. [2008] are restricted to pairwise problems. Thus

Table 1: Introduced dual variables

Constraints Dual Variables
∀i ∈ VP ,

∑
yi
µi(yi) = 1 ui

∀l ∈ VQ,
∑

i∈V µi(l) = 1 vl
∀c ∈ CP , i ∈ c,∑

yc\{i}
µc(yc) = µi(yi)

λc→i(yi)

we proposed a linear programming (LP) relaxation for both
pairwise and hyper graph matching problems as follows:

argmax
µ

∑
i∈V

〈µi, θi〉+
∑
c∈CP

〈µc, θc〉, (4a)

s.t. ∀c ∈ CP ,
∑
yc

µc(yc) = 1, ∀yc, µc(yc) > 0, (4b)

∀c ∈ Cp, ∀i ∈ c,
∑

yc\{i}

µc(yc) = µi(yi), (4c)

∀i ∈ V, ∀l ∈ V,
∑
i∈V

µi(l) = 1, (4d)

where 〈f, g〉 =
∑
x f(x)g(x) denotes the inner product of

two functions. In the LP relaxation, µ = [µi(yi)]i∈V,yi∈[n] is
the global correspondence vector, and µi(yi = j) = 1 means
that the ith node in VP corresponds to the jth node in VQ.
Each µc(yc) is a local correspondence vector, and µc(yc =

[ai]i∈c) = 1 means that the ith node in VP corresponds to the
(ai)

th node in VQ for all i ∈ c.
It is well-known that ‘off-the-shelf’ solvers such as

CPLEX are slow for LP problems like (4) [Werner, 2007].
Thus we use dual block coordinate descent based belief prop-
agation to solve such problems efficiently. First we intro-
duce dual variables (shown in Table 1), then by standard La-
grangian duality the dual objective is as follows,

min
λ,u,v

g(λ,u,v) =
∑
c∈CP

max
yc∈Yc

[
θc(yc)−

∑
i∈c

λc→i(yi)

]
,

+
∑
i∈V

max
yi

[
θi(yi)− ui − vyi +

∑
i⊂c∈CP

λc→i(yi)

]
+
∑
i∈VP

ui +
∑
l∈VQ

vl. (5)

In order to satisfy the one-to-one matching constraint, the fea-
sible set Yc is

Yc =

{
yc

∣∣∣∣ ∀i ∈ c, yi ∈ [n];
∀l ∈ [n],

∑
i∈c 1(yi = l) 6 1

}
. (6)

The dual variables λc→i(yi) are referred to as messages,
and u,v are referred to as matching variables as in previous
work [Zhang et al., 2016]. Similar to Zhang et al. [2016] for
pairwise problems, we alternately optimize over u, v and λ.
When optimizing u and v, we fix all λ’s. When optimizing λ,
in each step we pick a particular c from CP , and allow those
λc→i(yi), i ∈ c to vary. Then the dual problems (5) can be
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decomposed as the following two groups of sub-problems:

Matching Sub-problem (7)

min
ui,vi

∑
i∈V

max
yi

[
θi(yi)− ui − vyi +

∑
c′∈CP ,i∈c′

λc′→i(yi)
]

+
∑
i∈VP

ui +
∑
l∈VQ

vl,

Belief Propagation Sub-problem (8)

min
λc

max
yc∈Yc

[
θc(yc)−

∑
i∈c

λc→i(yi)
]

+
∑
i∈c

max
yi

[
ϑi(yi) +

∑
c′:i∈c′,c′∈C

λc′→i(yi)
]
,

where λc denotes [λc→i(yi)]i∈c, and the augmented potential
ϑi(yi) is defined as

ϑi(yi) = θi(yi)− ui − vyi . (9)

The matching sub-problem (7) can be solved by the Hungar-
ian algorithm [Zhang et al., 2016]. However, the belief prop-
agation sub-problems are not easy to solve in general. For
general higher order potentials, the time complexity for solv-
ing (8) is O(n|c|), which increases very quickly as the order of
hyper arcs grows. However, for hyper-graph matching prob-
lems the higher order potentials are usually sparse [Yan et al.,
2015; Nguyen et al., 2015; Lee et al., 2011]. Thus we will
use the sparsity to derive an efficient solver.
Remarks For sparse potentials whose non-zero entries are
positive, Rother et al. [2009]’s and Potetz and Lee [2008]’s
approaches can be applied to derive an efficient message pass-
ing procedure. However, these methods are not compatible
with one-to-one matching constraints which must be satisfied
in matching problems.

4 Dynamic Programming Approaches for the
Belief Propagation Sub-problem

It is intractable to compute affinities between two hyper
graphs by considering all possible mappings between hyper
arcs. Even for pairwise matching problems, the number of
terms required to evaluate all possible pairs of connections is
already n4, which is quite expensive for large-scale problems.
Thus we seek methods that can be used to sparsify the poten-
tials. Here we derive dynamic programming approaches for
the belief propagation sub-problem that exploit the sparsity
of higher-order potentials.

4.1 Decomposition of the Belief Propagation
Sub-problem

To obtain our dynamic programming belief propagation
scheme, we start at a closed-form solution of the belief prop-
agation sub-problem. To simplify our derivation we define

bc(yc) = θc(yc)−
∑
i∈c

λc→i(yi), ∀c ∈ CP

bi(yi) = ϑi(yi) +
∑

c:i∈c,c∈CP

λc→i(yi), (10)

then we can give the closed-form solution of (8) as

λ∗c→i(yi) =λc→i(yi)− bi(yi) (11)

+
1

|c|
max

ŷc∈Y
yi
c

[
bc(ŷc) +

∑
i′∈c

bi′(ŷi′)
]
.

where the domain Yyic is defined as

Yyic = {ŷc ∈ Yc\{i} |ŷi = yi}. (12)

The closed-form solution (11) can be computed by exhaus-
tive search. However, the time complexity required would
be O(n|c|), which is not scalable for hyper graph matching
problems. Thus we decompose the most expensive part (the
max-marginal) into several overlapping problems with opti-
mal substructure.
Proposition 1. The max-marginal procedure in (11) can be
be performed as follows

max
ŷc∈Y

yi
c

[bc(ŷc) +
∑
i∈c

bi(ŷi)] = max

{
max

ŷc∈Y
yi
c

∑
i′∈c

ζi′(ŷi′),

max
ŷc∈Y

yi
c

1(θc(ŷc) > 0)
[
θc(ŷc) +

∑
i′∈c

ζi′(ŷi′)
]}
, (13)

where ζi′(ŷi′) = bi′(ŷi′)− λc→i′(ŷi′).
The second sub-problem (last row of (13)) only considers

non-zero entries of θc(yc), which can be done efficiently via
exhaustive search. The solution of the first term (second last
row of (13)) can be reformulated as a linear bipartite matching
problem as follows.

Proposition 2. Let y(l)i′ denote the entries corresponding to
the lth largest ζi′(yi′), and let

Ỹ
yi
c = {ŷc|ŷc ∈ Yyic , ∀i′ ∈ c \ {i}, yi′ ∈ {y

(1)
i′ , . . . y

(|c|)
i′ }}

then we have that

ξi(yi) = max
ŷc∈Y

yi
c

∑
i′∈c

ζi′(ŷi′) = max
ŷc∈Ỹ

y1
c

∑
i′∈c

ζi′(ŷi′).

By Proposition 2, the first term in (13) can be efficiently
computed via |c| partial sort operations, and solving a bipar-
tite matching problem whose cost matrix size is |c|2. While
the size of |c| is very small (usually 3 or 4) in most higher or-
der matching problems [Yan et al., 2015; Nguyen et al., 2015]
the bipartite matching problem can be solved via exhaustive
search with complexity O(|c|!). For large cliques, we can use
Hungarian methods to further accelerate the procedure.

4.2 The Partial Reparametrization Formulation
The terms bi(yi) and bc(yc) are in fact reparametrizations of
the augmented potentials, that is ∀y∑

i∈V

bi(yi) +
∑
c∈CP

bc(yc) =
∑
i∈V

ϑi(yi) +
∑
c∈CP

θc(yc).

Thus in our implementation, we only store bi(yi), θc(yc), all
messages λ, and matching variables u, v. Using this for-
mulation, the augmented potentials ϑi(yi) and θi(yi) can be
recovered easily. Another benefit of this formulation (rather
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Algorithm 1: The DPMU Procedure
input : A clique c, potential bi(yi), i ∈ c, messages λc→i(yi).
output: b∗i (yi), λ∗c→i(yi), i ∈ c

1 for i ∈ c do
2 ζi(yi) = bi(yi)− λc→i(yi);

3 Compute ξi(yi), i ∈ c by Proposition 2;
4 with ζi(yi) as input;
5 for i ∈ c do b∗i (yi)← ξi(yi);
6 for yc ∈ non-zero entries of θc(yc) do
7 fv = θc(yc) +

∑
i∈c ζi(yi);

8 for i ∈ c do
9 if fv > b∗i (yi) then b∗i (yi)← fv;

10 for i ∈ c do
11 b∗i (yi)← 1

|c| b
∗
i (yi);

12 λ∗c→i(yi)← λc→i(yi)− bi(yi) + b∗i (yi);

than storing all potentials) is that significant computation can
be avoided. Recall the definition of bi(yi) in (10); if we only
store messages, then several messages have to be added to-
gether every time we compute bi(yi). However the optimal
b∗i (yi) can be computed directly from max-marginals by the
following proposition.

Proposition 3. The optimal b∗i (yi) can be computed by

b∗i (yi) = θi(yi) +
∑

i:i∈c′,c′ 6=c

λc′→i(yi) + λ∗c→i(yi)

=
1

|c|
max

ŷc∈Y
yi
c

[bc(yc) +
∑
i∈c

bi(yi)]. (14)

By Proposition 3 and (11), the optimal messages can be com-
puted as

λ∗c→i(yi) = λc→i(yi) + b∗i (yi)− bi(yi).

The above results, Propositions 2 and 1 together result in
our Dynamic Programming Message Updating (DPMU) al-
gorithm in Algorithm 1. Putting DPMU into a coordinate
descent framework results in our Dynamic Programming Bi-
partite Belief Propagation (DPBBP) algorithm in Algorithm
2.
Decoding Our Dynamic Programming Bipartite Belief Prop-
agation methods are dual based methods, thus a feasible in-
teger solution is required. We consider two strategies to de-
code an integer solution. In the first strategy, integer solu-
tions are decoded by the bipartite matching. This strategy
is natural since in each iteration of belief propagation, a bi-
partite matching procedure is used to optimize over the dual
variables u and v, and they provide a feasible primal inte-
ger solution at the same time. In the second strategy, we use
a multi-linear relaxation method to further refine our results.
Although such methods can easily get stuck at non-optimal
points, our algorithm usually provides near optimal solutions
in practice, so that using multi-linear relaxations to refine the
results usually yields satisfactory results. Multi-linear relax-
ations are more expensive than bipartite matching, thus we
only perform this refinement procedure at the last step.

Algorithm 2: The Dynamic Programming Bipartite BP

input : Potentials θi(yi), i ∈ V, θc(yc),c ∈ CP ; MaxIter;
threshold ε1 and ε2.

output: y?.
1 fmax = −∞, u = 0, v = 0 ;
2 bi(yi) = θi(yi), ∀i ∈ V, yi ∈ [n];
3 for k ∈ {1, 2, . . . ,MaxIter} do
4 for c ∈ CP do
5 Compute optimal λ∗c→i(yi), b

∗
i (yi), i ∈ c by

Algorithm 1;
6 Updating λc→i(yi), bi(yi), i ∈ c to

λ∗c→i(yi), b
∗
i (yi), i ∈ c;

7 Compute optimal u?, v? for sub-problem (7), and
decoding a candidates ŷ by the Hungarian algorithm;

8 Update [u,v] to [u?,v?];
9 fk =

∑
i∈V θi(ŷi) +

∑
c∈CP θc(ŷc);

10 If fk > fmax then fmax = fk, y? = ŷ;
11 gk ← current dual objective of (5);
12 if |fmax − gk| < ε1 or |gk − gk−1| < ε2 then break;

4.3 Analysis
In this section, we analyse the convergence, time complexity
and accuracy of the proposed method. The convergence of the
proposed methods is guaranteed by the following proposition.
Proposition 4. For arbitrary bounded input, the Dynamic
Programming Bipartite Belief Propagation produces a mono-
tonically decreasing dual objective sequence.

Since the MAP value is a natural lower bound of the dual
objective, the proposed methods must converge to a fixed dual
objective. At the fixed point of the proposed algorithm, the
local and global correspondence vectors have the following
weak consistency properties:
Proposition 5 (Weak Consistency). Assume that Dynamic
Programming Bipartite Belief Propagation converges to a
fixed point; let ŷ be the optimal assignment produced by lin-
ear bipartite matching in (7), and ∀c ∈ CP let

ȳc = argmax
yc∈Yc

[bc(yc) +
∑
i∈c

bi(yi)],

then we have that ∀c ∈ CP ,∑
i∈c

bi(ȳi) =
∑
i∈c

bi(ŷi) =
∑
i∈c

max
yi

bi(yi). (15)

By the weak consistency properties, we can see that the
local and global correspondence vectors are encouraged to
attain the same optimal objective value on unary terms. By
this property, we immediately obtain the condition for global
optimality.
Proposition 6. Assume that Dynamic Programming Bipar-
tite Belief Propagation converges to a fixed point; if ∀i ∈ V,
there some ŷi s.t. ∀ȳi 6= ŷi, b(ŷi) > b(ȳi), then Dynamic
Programming Bipartite Belief Propagation provides a glob-
ally optimal solution of the problem (1).

Time Complexity In each iteration, we must solve |CP |
belief propagation sub-problems and one linear bipartite
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Figure 1: Experimental results on the CMU House data set. Left: Typical matching result of our algorithm (green lines: correct matching;
yellow lines: matches between outliers; purple liens: wrong matches); Middle: Average accuracy vs. image separation; Right: Average
normalized objective value. Top: The matching problem includes all landmarks. Bottom: For each image pair, 5 landmarks are randomly
removed from each image, and a rigid transformation is applied to the second image with scale parameter 4 and rotation angle 3π/4. Due to
the large scale and rotation transformation, pairwise methods failes to give satisfactory results.

matching problem. The time complexity of solving a bi-
partite matching problem is O(n3). The time complexity
for solving belief propagation sub-problems by Algorithm 1
is O(|c|n log |c| + |c|! + |c||NNZ(θc(yc))|), where we use
NNZ(θc(yc)) to denote the set of non-zero entries of θc(yc).
On the other hand the time complexity for solving belief prop-
agation sub-problems by exhaustive search is O(n|c|). Al-
though both expressions grow exponentially in |c|, the pro-
posed methods are still significantly faster than exhaustive
search for sparse potentials. This is because in practice the
value |c| is usually very small (often 2 or 3), so that |c| and
even |c|! can be viewed as (small) constants. Treating |c| as a
constant, the time complexity for each iteration of our algo-
rithm is O(n3 + |CP |n+

∑
c∈CP |NNZ(θc(yc))|).

5 Experiments
In this section, we apply Dynamic Programming Bipartite Be-
lief Propagation (DP-BBP) to several hyper graph matching
tasks. Our method is applied with two decoding schemes.
In the first decoding scheme, we simply use solutions for bi-
partite matching as candidates, while in the second one, we
use multiple linear relaxation based methods to further re-
fine the decoding results. The first algorithm is referred to
as DP-BBP, and the second is referred to as DP-BBP-MLR.
Our method is compared with several existing popular and
state-of-the-art hyper graph matching algorithms, including:
• The Tensor Block Coordinate Descent Method for multi-

linear relaxation (“BCA”) [Nguyen et al., 2015];
• The Tensor Block Coordinate Descent Method for multi-

quadratic relaxation with IPFP [Leordeanu et al., 2009]
as the quadratic solver (“BCA-IPFP”);
• The Tensor Block Coordinate Descent Method for multi-

quadratic relaxation with Max Pooling Matching [Cho et
al., 2014] as the quadratic solver (“BCA-MP”);
• The Probabilistic Hyper Graph Matching method

(“HGM”) [Zass and Shashua, 2008];

• The Tensor Matching method (“TM”) [Duchenne et al.,
2009];
• The hyper graph matching via reweighted random walk-

ing method (“HRRWM”) [Lee et al., 2011].
Two state-of-the-art quadratic graph matching algorithms,
Factorized Graph Matching (FGM) [Zhou and De la Torre,
2012] and Bipartite Belief Propagation (BBP) [Zhang et al.,
2016], are also included as baselines. We mainly compare the
accuracy and objective value for different algorithms.

Implementation details In our experiments, the proposed
algorithms DP-BBP and DP-BBP-MLR are implemented in
c++ and python. As in previous work [Zhang et al., 2016],
when there is a gap between the dual and decoded primal,
a most-fractional-first branch-and-bound strategy is used to
tighten the gap. We run at most 100 branch-and-bound it-
erations, and in each branch-and-bound, we run at most 10
iterations of DP-BBP or DP-BBP-MLR. All other methods
are based on publicly available implementations.

Higher Order Potential Computation In our experiments,
we mainly consider third-order similarities, which are invari-
ant to scale and rotation. Given two sets of points P =
[pi]

n
i=1 and Q = [qi]

n
i=1, we use Delaunay triangulation to

construct the set of hyper arcs CP and CQ. The higher order
potentials are computed as

θc(yc) = exp(−
∑3
i=1 d(αic, α

i
yc

))1(yc ∈ CQ) (16)

where αic(α
i
yc

) is the ith angle of the triangle c(yc), and the
distance between two angles d(αic, α

i
yc

) is computed as

d(αic, α
i
yc

) =

{
|αic − αiyc

|, |αic − αiyc
| 6 π,

2π − |αic − αiyc
|, otherwise. (17)

The pairwise potentials for pairwise methods are as follows,

θij(yi, yj) = exp(
−‖dij−dyiyj ‖

τij,yiyj
)1({yi, yj} ∈ CQ) (18)

where dij (dyiyj ) are Euclidean distances between nodes i
and j (yi and yj), and τij,yiyj is a user-specified parameter.
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Figure 2: Experimental results on the Car and Motorbike data set. Top two rows: Typical matching results (The color of lines have the same
meaning as Figure 1). Bottom: The left two columns are results on “Car,” and the right two columns are results on “Motorbike”. As we
applied large scale and rotation transformation to the original data, pairwise methods failes to give satisfactory results.

5.1 CMU House Dataset

The CMU house dataset has been widely used in previous
work to evaluate matching algorithms [Nguyen et al., 2015].
The house sequence consists of 111 frames of a toy house
captured from different view points. In each image there are
30 manually marked landmark points with known correspon-
dences. We match all images spaced by 10, 20, . . . , 90 frames
and compute the average performance per separation gap. In
this experiment, unary terms are set to zero [Nguyen et al.,
2015]. Again for each image we use Delaunay triangulation
to connect landmark points. Each triplet in the connected
graph becomes a hyper arc in the hyper graph (or each edge
in the case of pairwise matching methods). Higher order po-
tentials are computed as in (17) and pairwise potentials are
computed as in (18). For hyper graph matching methods, we
only use higher order potentials and we use pairwise poten-
tials only for pairwise matching methods, where we set the
parameter τij,yiyj = 1/2500 [Leordeanu et al., 2009].

We consider two different settings. In the first setting, all
landmark points are used to construct the hyper graph. In
the second setting, for each image pair, we randomly remove
5 landmarks from each image, which results in outliers (i.e.
landmarks that do not have any correspondences). Then for
landmarks in the second image in the pair, a scale transfor-
mation with scale parameter 4 and a rotation transformation
with angle 3π/4 are applied.

Results are shown in Figure 1. In the first setting, for small
image separation all methods find the exact matching, while
the accuracy of BCA, BCA-MP, HGM and TM drops as the
separation increases. In the second setting, pairwise matching
methods fail to obtain satisfactory results as they are sensi-
tive to scale variation and rotation. For hyper graph matching
methods, for image separation less than 80 frames our algo-
rithm attains similar (or slightly better) accuracy compared to
the best results among BCA-MP, BCA-IPFP and HRRWM.
For the highest separation our methods’ accuracy is more than

10% higher compared to these methods.

5.2 The Cars and Motorbikes Dataset
The Cars and Motorbikes dataset consists of 30 pairs of im-
ages of cars and 20 pairs of images of motorbikes from the
Pascal 2007 dataset [Everingham et al., 2009]. Each pair
contains a number of ground-truth correspondences and sev-
eral outliers. In the dataset, the scale and viewing angle
have only small variations. To investigate the performance
of matching methods under large scale and viewing angle
variations, for each image pair, we add a rigid transforma-
tion to the keypoints in the second image with scale pa-
rameter 4 and rotation angle π/4. We set the parameter
τij,yiyj = min(dij , dyiyj ) as in previous work [Zhou and
De la Torre, 2012; Zhang et al., 2016]. We randomly added
1-20 outliers from the background to the matching problem,
with the result shown in Figure 2. From the figure we can see
that our methods provide better average accuracy in all cases.

6 Conclusion
In this paper, we formulate hyper graph matching problems
as constrained MAP inference problems in graphical models.
The proposed method explicitly models only one global cor-
respondence vector, but several local correspondence vectors,
allowing us to decompose difficult high order optimization
problems into a linear bipartite matching problem and sev-
eral belief propagation sub-problems with small scale. We
further propose a dynamic programming procedure to effi-
ciently solve the belief propagation sub-problems. Experi-
ments demonstrate the proposed method outperforms state-
of-the-art methods for hyper graph matching.
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