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Abstract
Support Vector Machine (SVM) is originally pro-
posed as a binary classification model with achie-
ving great success in many applications. In reality,
it is more often to solve a problem which has more
than two classes. So, it is natural to extend SVM
to a multi-class classifier. There have been many
works proposed to construct a multi-class classi-
fier based on binary SVM, such as one versus rest
strategy (OvsR), one versus one strategy (OvsO)
and Weston’s multi-class SVM. The first two split
the multi-class problem to multiple binary classi-
fication subproblems, and we need to train multi-
ple binary classifiers. Weston’s multi-class SVM is
formed by ensuring risk constraints and imposing
a specific regularization, like Frobenius norm. It
is not derived by maximizing the margin between
hyperplane and training data which is the motiva-
tion in SVM. In this paper, we propose a multi-
class SVM model from the perspective of maxi-
mizing margin between training points and hyper-
plane, and analyze the relation between our model
and other related methods. In the experiment, it
shows that our model can get better or compared re-
sults when comparing with other related methods.

1 Introduction
Support Vector Machine (SVM) is originally proposed as a
binary classifier [Cortes and Vapnik, 1995] which has achie-
ved great success in many different applications, such as
handwritten digit recognition [Lauer et al., 2007; Maji and
Malik, 2009], speaker identification [Kamruzzaman et al.,
2010; Campbell et al., 2006], event recognition [Chang et al.,
2016a; 2016b], feature selection [Cai et al., 2011], action re-
cognition [Yang et al., 2017], and text categorization [Pilászy,
2005; Joachims, 1999; Nie et al., 2014]. To apply SVM
model to practical multi-class classification problems, many
researchers tend to extend SVM to be a multi-classification
classifier.

Existing multi-class SVM models can be mainly divided
into two types [Hsu and Lin, 2002]. The first type is split-
ting the multi-class classification problem into multiple bi-
nary classification subproblems, like OvsR multi-class SVM
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Figure 1: We train a multi-class Support Vector Machine
model by maximize the margin between every two classes
pair. In this three classes case, we need three parameters
w1,w2,w3, and use w1 and w2 to form a maximum-margin
hyperplane for class 1 and 2.

and OvsO multi-class SVM. OvsR splits a c class classifi-
cation problem to c binary classification subproblems, and
OvsO strategy splits it to c(c−1)

2 binary classification subpro-
blems. The second type is to solve multi-class classification
problem in a single optimization model, like Weston’s multi-
class SVM [Weston and Watkins, 1998], Crammer multi-
class SVM [Crammer and Singer, 2002], and regression-like
formulation [Nie et al., 2017]. However, none of them fol-
low the motivation in SVM which is maximizing the margin
between training points and hyperplane.

In this paper, we will propose a novel multi-class Support
Vector Machine model. Figure 1 presents the motivation of
our model. It is derived by maximizing the margin between
each two classes pair and the relationships between this mo-
del and other related multi-class SVM methods are also ana-
lyzed in this paper. We also extend our model to solve semi-
supervised problems. Stochastic gradient descent with va-
riance reduction algorithm (SVRG) is used to optimize this
model, and it is proved to have faster convergence rate and
reach better local optimum. Experiments on benchmark da-
tasets show that our model can get equal or better results than
other related methods.
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2 Multi-Class Support Vector Machine
Although SVM model is a binary classifier, researchers works
to extend it to solve multi-class classification problems. The
earliest attempt is one versus all (one versus rest) strategy.
Suppose there are n training data in the form of (xi, yi), and
c classes in total, we need to build c binary SVM models.
When we train jth SVM model, we define class j as positive
and the rest classes as negative. If the number of training data
in each class is balanced, this subproblem is an unbalanced
binary classification problem, and can be represented as,

min
wj ,bj

1

2
‖wj‖22 + C

n∑
i=1

ξji

s.t. wT
j xi + bj ≥ 1− ξji , if yi = j

wT
j xi + bj ≤ −1 + ξji , if yi 6= j

ξji ≥ 0 (1)

A new sample xi is belonged to the class j which has the
largest decision function value,

ỹi = argmax
j

wT
j x + bj (2)

As we mentioned, the main defect of this strategy is that each
binary classification is unbalanced. This property may af-
fect the performance of one versus rest strategy on multi-class
classification problem.

One versus one strategy solves this problem by training
more binary SVM models. In this strategy, we will train one
binary SVM model for each two classes, so there are c(c−1)

2
models in total. For class j and k, the maximum-margin hy-
perplane between them is wjkxi + bjk = 0, and it can be
learned through the problem as follows,

min
wjk,bjk

1

2
‖wjk‖22 + C

n∑
i=1

ξjki

s.t. wT
jkxi + bjk ≥ 1− ξjki , if yi = j

wT
jkxi + bjk ≤ −1 + ξjki , if yi = k

ξji ≥ 0

(3)

Voting strategy is used in testing, if sign(wjkxi + bjk) says
xi is in class j, then the vote for class j is added by one,
otherwise vote for class k is added by one. Final prediction
class is the class which has the largest vote.

Instead of handing multi-class classification by solving
multiple subproblems, Weston proposed to use one single ob-
jective function [Weston and Watkins, 1998],

min
W∈Rd×c,b∈Rc

1

2

c∑
j=1

‖wj‖22 + C
n∑

i=1

∑
j 6=yi

ξji

s.t. wT
yi

xi + byi ≥ wT
j xi + bj + 2− ξji

ξji ≥ 0, ∀i, j ∈ {1, ..., c} \ yi

(4)

Predicting class for a new sample is same as one versus rest
method, and it is classified to be the class which has the

largest value of decision function. Moreover, Crammer et
al. proposed a new model as follows [Crammer and Singer,
2002],

min
W∈Rd×c,b∈Rc

1

2

c∑
j=1

‖wj‖22 + C
n∑

i=1

ξi

s.t wT
yi

xi + δyi,j − wT
j xi ≥ 1− ξi, ∀i, j

(5)

where δyi,j =

{
1 if yi 6= j
0 if yi = j

.

Different from problem (4), it just considers one slack vari-
able ξi for each sample xi. Guermeur developed a theoretical
framework for multi-class SVMs [Guermeur, 2002] and pro-
posed a model,

min
W∈Rd×c,b∈Rc

1

2

c−1∑
j=1

c∑
k=j+1

‖wj − wk‖22 + C
n∑

i=1

∑
j 6=yi

ξij

s.t wT
yi

xi + byi
≥ wT

j xi + bj + 1− ξij
ξij ≥ 0, ∀i, j ∈ {1, ..., c} \ yi

c∑
j=1

wj = 0,
c∑

j=1

bj = 0

(6)
In that paper, Guermeur also pointed out that its formulation
is equal to the model proposed in [Bredensteiner and Bennett,
1999],

min
W∈Rd×c,b∈Rc

1

2

c−1∑
j=1

c∑
k=j+1

‖wj − wk‖22 +
c∑

j=1

‖wj‖22

+C

n∑
i=1

∑
j 6=yi

ξij

s.t wT
yi

xi + byi
≥ wT

j xi + bj + 1− ξij
ξij ≥ 0, ∀i, j ∈ {1, ..., c} \ yi (7)

3 Maximizing Multi-Class Margins for SVM
The forthright methods to solve multi-class problems are one
versus rest and one versus one strategy. However, one versus
rest strategy has a drawback that the training data of each
subproblem is unbalanced, which will affect the performance
of each binary classifier. While for one versus one strategy,
space and time consumption are two big problems, since we
have to train c(c−1)

2 binary SVM model for c classes.
To address this issue, we propose a novel multi-class SVM

model. In our model, we build a classifier for every two clas-
ses, however, different from one versus one strategy which
stores c(c−1)

2 models wjk, we propose to use c vectors to si-
mulate all these binary classifiers, for example a classifier be-
tween class j and k, wjk = wj − wk. In this way, our space
consumption equals to the space consumption of one versus
rest strategy, and avoid unbalanced training data subproblem
at the same time. In the following section, we also prove that
we just need to compute c decision functions in testing, and
do not need to use vote strategy like one versus one strategy.
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To solve the binary classification subproblem between
class j and k, and maximize the margin between their data,
soft margin objective function for this problem is,

min
wj ,wk∈Rd

1

2
‖wj − wk‖22 + C

∑
yi∈{j,k}

ξjki

s.t yjki fjk(xi) ≥ 1− ξjki , ∀yi ∈ {j, k}
ξjki ≥ 0 (8)

where xi ∈ Rd, non-negative slack variable ξjki is intro-
duced to handle the data that are not linearly separable.∑

yi∈{j,k} ξ
jk
i is the penalty term, and is able to reduce the

number of training errors. Parameter C is a balance be-
tween training error and regularization term ‖wj − wk‖22.
fjk(xi) = (wj −wk)

T xi+(bj − bk) is the decision function,

and yjki =

{
1 if yi = j
−1 if yi = k

.

There are c(c−1)
2 binary classifiers in total, and all of them

are essentially correlated. Then we build a multi-class SVM
model as follows,

min
W∈Rd×c,b∈Rc

1

2

c−1∑
j=1

c∑
k=j+1

‖wj − wk‖22 + C

c−1∑
j=1

c∑
k=j+1

∑
yi∈{j,k}

ξjki

s.t yjki fjk(xi) ≥ 1− ξjki , ∀yi ∈ {j, k}

ξjki ≥ 0
(9)

There should be only one optimal solution. As we can see,
if W ∈ Rd×c and b ∈ Rd is the optimal solution, let W̃ =
W+11T and b̃ = b+1, then it is easy to know that wj−wk =

w̃j−w̃k and bj−bk = b̃j− b̃k, their objective function values
are the same. There are multiple optimal solutions, and this
is not what we want. Therefore, two more constraints should
be imposed on problem (9), and the final objective function is
as follows,

min
W∈Rd×c,b∈Rc

1

2

c−1∑
j=1

c∑
k=j+1

‖wj − wk‖22 +
1

2

c∑
j=1

‖wj‖22

+
1

2

c∑
j=1

b2j + C
c−1∑
j=1

c∑
k=j+1

∑
yi∈{j,k}

ξjki

s.t yjki fjk(xi) ≥ 1− ξjki , ∀yi ∈ {j, k}
ξjki ≥ 0

(10)

where decision function fjk(xi) = (wj−wk)
T xi+(bj− bk)

and yjki =

{
1 if yi = j
−1 if yi = k

.

When we use this model to classify a new sample, we use
the same voting strategy as in one versus one strategy multi-
class SVM. If sign

(
(wj − wk)

T xi + bj − bk
)
= 1, then vote

for class j is added by one. It is easy to find out that the more
k that satisfies wT

j xi+ bj > wT
k xi+ bk, the more votes j will

get. It is easy to know that the predicted class should have the
largest decision function value,

ỹi = argmax
j

wT
j xi + bi. (11)

In this way, we do not need to use vote strategy and com-
pute decision function c(c−1)

2 times, we just need to compute
decision function c times, and find the largest value.

4 Connections to Other SVM algorithms
In this section, we analyze the relations between our model
and other multi-class SVM models. According to problem
(10), we use hinge loss to replace all slack variable ξjki , and
our problem becomes,

min
W∈Rd×c,b∈Rc

1

2

c−1∑
j=1

c∑
k=j+1

‖wj − wk‖22 +
1

2

c∑
j=1

‖wj‖22

+
1

2

c∑
j=1

b2j + C
c−1∑
j=1

c∑
k=j+1

∑
yi∈{j,k}

[
1− yjki fjk(xi)

]
+

(12)

where decision function fjk(xi) = (wj−wk)
T xi+(bj− bk)

and yjki =

{
1 yi = j
−1 yi = k

.

Proposition 4.1. Our model can be transformed to the ob-
jective function (15) proposed in [Bredensteiner and Bennett,

1999] excluding term 1
2

c∑
j=1

b2j .

Proof. First, we have
c−1∑
j=1

c∑
k=j+1

∑
yi∈j,k

[
1− yjki fjk(xi)

]
+

=

c−1∑
j=1

c∑
k=j+1

(
∑
yi∈j

[1− fjk(xi)]+ +
∑
yi∈k

[1− fkj(xi)]+)

=

c−1∑
j=1

∑
yi∈j

c∑
k=j+1

[
1− ((wj − wk)

T xi + (bj − bk))
]
+

=
c∑

j=1

∑
yi∈j

(
c∑

k=j+1

[1− (fjk(xi)]+ +

j−1∑
k=1

[1− fjk(xi)]+)

=
n∑

i=1

∑
k 6=yi

[
1− ((wyi

− wk)
T xi + (byi

− bk))
]
+

(13)

Then, our objective function (12) can be transformed to an
equivalent formation as follows,

min
W∈Rd×c,b∈Rd

1

2

c−1∑
j=1

c∑
k=j+1

‖wj − wk‖22 +
1

2

c∑
j=1

‖wj‖22

+
1

2

c∑
j=1

b2j + C
n∑

i=1

∑
k 6=yi

[1− fyik(xi)]+

(14)
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We introduce a slack variable ξ in the function above, and
problem (12) can be represented as,

min
W∈Rd×c,b∈Rc

1

2

c−1∑
j=1

c∑
k=j+1

‖wj − wk‖22 +
c∑

j=1

‖wj‖22

+
1

2

c∑
j=1

b2j + C
n∑

i=1

∑
j 6=yi

ξij

s.t wT
yi

xi + byi
≥ wT

j xi + bj + 1− ξij
ξij ≥ 0, ∀i, j ∈ {1, ..., c} \ yi

(15)

Therefore, our model can be transformed to be the objective
function proposed in [Bredensteiner and Bennett, 1999].

Proposition 4.2. Our objective function (10) has the same
optimal solution as problem (6) proposed in [Guermeur,
2002].

Proof. To handle the constraints in objective function, we
transform the primal problem (10) to a lagrangian dual pro-
blem,

L(W, b, γ, λ) =
1

2

c−1∑
j=1

c∑
k=j+1

‖wj − wk‖22 +
1

2

c∑
j=1

‖wj‖22

+
1

2

c∑
j=1

b2j + C
c−1∑
j=1

c∑
k=j+1

∑
yi∈{j,k}

ξjki

+
c−1∑
j=1

c∑
k=j+1

∑
yi∈{j,k}

αjk
i

(
1− ξjki − y

jk
i fjk(xi)

)

−
c−1∑
j=1

c∑
k=j+1

∑
yi∈{j,k}

βjk
i ξjki

(16)

where αjk
i ≥ 0 and βjk

i ≥ 0. Then we take derivative of
L(W, b, γ, λ) with respect to each wj and bj respectively,
where wj is column j of matrixW , and bj is entry j in vector
b, and set them to zero. We obtain the following two equati-
ons,
∂L

∂wj
=
∑
k 6=j

(wj − wk) + wj +
∑
k<j

∑
yi∈{k,j}

αkj
i y

kj
i xi

−
∑
j<k

∑
yi∈{j,k}

αjk
i y

jk
i xi

= 0

(17)

where 0 is a vector in Rd.
∂L

∂bj
= bj +

∑
k<j

∑
yi∈{k,j}

αkj
i y

kj
i −

∑
j<k

∑
yi∈{j,k}

αjk
i y

jk
i

= 0
(18)

These two equations hold when we get the optimal solu-
tion, and then we sum up all the derivatives on wj , and get
the following equation,

c∑
j=1

∂L (W, b, γ, λ)
∂wj

=
c∑

j=1

wj +
c∑

j=1

(
∑
k<j

∑
yi∈{k,j}

αkj
i y

kj
i xi

−
∑
j<k

∑
yi∈{j,k}

αjk
i y

jk
i xi)

= 0
(19)

In second term of the function above, whenever there is
αkj
i y

kj
i xi term, it will always be balanced out by another term

−αkj
i y

kj
i xi, therefore it is easy to know that,

c∑
j=1

∑
k<j

∑
yi∈{k,j}

αkj
i y

kj
i xi −

∑
j<k

∑
yi∈{j,k}

αjk
i y

jk
i xi

 = 0

(20)
Therefore, equation holds that,

c∑
j=1

wj = 0 (21)

Same as the derivation about parameter wj above, when
we sum up all derivatives on bs, we get an equation

c∑
j=1

bj = 0 (22)

Above all, two constraints on W and b in problem (6) do
not affect the optimal solution, and they share same formula-
tion now. So, it is true that these two models have the same
optimal solution.

Proposition 4.3. Our objective function (10) has the same
optimal solution as problem (4) proposed in [Weston and Wat-
kins, 1998].

Proof. As per the proof in Proposition 4.2, we have the equa-
tion that,

c∑
j

wj = 0 (23)

where wj are optimal solutions of the original problem. It
also implies that,

c−1∑
j=1

c∑
k=j+1

‖wj − wk‖22

=
1

2

c∑
j=1

c∑
k=1

‖wj − wk‖22

=
1

2

c∑
j=1

c∑
k=1

(
wT

j wj + wT
k wk − 2wT

j wk

)
= c

c∑
j=1

‖wj‖22 −
c∑

j=1

wj

c∑
k=1

wk

= c
c∑

j=1

‖wj‖22 (24)
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Above all, our objective function (10) has the same optimal
solution as problem (4).

5 Optimization Algorithm
In this section, we are going to use stochastic gradient des-
cent with variance reduction to solve this nonconvex and
nonsmooth problem. Problem (10) can be rewritten as:

min
W,b

1

2

c−1∑
j=1

c∑
k=j+1

‖wj − wk‖22 +
1

2

c∑
j=1

‖wj‖22 +
1

2

c∑
j=1

b2j

+ C
c−1∑
j=1

c∑
k=j+1

∑
ỹi∈{j,k},i∈U

[
1− ỹjki fjk(xi)

]
+

(25)

where W ∈ Rd×c, b ∈ Rc, decision function fjk(xi) =

(wj − wk)
T xi + (bj − bk). ỹjki is the predicted class for

unlabeled data, and ỹi = argmax
j

wT
j xi+bi. In this function,

L denotes the samples which are labeled. C is the weight of
unlabeled training data. Usually, C = 1

|U | .
In each iteration, we select a xi ∈ Rdsample in training

data randomly, and the objective function with respect to this
sample can be represented as:

min
W,b

1

2

c−1∑
j=1

c∑
k=j+1

‖wj − wk‖22 +
1

2

c∑
j=1

‖wj‖22 +
1

2

c∑
j=1

b2j

+ C

 c∑
j=ỹi+1

[1− fỹij(xi)]+ +

ỹi−1∑
j=1

[1 + fjỹi
(xi)]+


(26)

When sample is from U , ỹi is computed through function
(11). Then we take derivative of the above function with re-
spect to wj , and there are two different cases: when j = yi,
its subgradient is:

∂li
∂wyi

= −
∑
k 6=yi

(wk − wyi) + wyi

+
∑
k 6=yi

{
−Cxi if 1− fyik(xi) > 0
0 if 1− fyik(xi) ≤ 0

the other case is when j 6= yi, its subgradient is as follows:

∂li
∂wj,j 6=yi

= −
∑
k 6=j

(wk − wj) + wj

+

{
Cxi if 1− fjk(xi) > 0
0 if 1− fjk(xi) ≤ 0

We also need to take derivative with respect to bj and get
the subgradient, there are two cases j = yi and j 6= yi

∂li
∂byi

= byi
+
∑
k 6=yi

{
−C if 1− fyik(xi) > 0
0 if 1− fyik(xi) ≤ 0 (27)

∂li
∂bk,k 6=yi

= bk +

{
C if 1− fjk(xi) > 0
0 if 1− fjk(xi) ≤ 0

(28)

The optimization algorithm to solve problem (25) is sum-
marized in Algorithm 1.

Algorithm 1 SVRG to solve problem (25)

Initialize: W̃ 0 ∈ Rd×c, b̃
0 ∈ Rc, learning rate η and

s = 0.
while not converge do
s = s+ 1

W̃ = W̃ s−1, b̃ = b̃
s−1

for j=1,2...,c do

ũj =
1
n

n∑
i=1

∂l
∂w̃j

ṽj =
1
n

n∑
i=1

∂l
∂b̃j

end for
W 0 = W̃
for t=1,2,...,n do

Randomly pick it ∈ {1, 2, ..., n} and update parame-
ters
for j=1,2...,c do

wt
j = wt−1

j − η
(

∂lit
∂wt−1

j

− ∂lit
∂w̃j

+ ũj

)
btj = bt−1j − η

(
∂lit
∂bt−1

j

− ∂lit
∂b̃j

+ ṽj

)
end for

end for
Set W̃ s =Wn

end while

6 Experiments
There are two main goals in our experiment, firstly, we
will show that our model get the best or comparable perfor-
mance compared with other related SVM models via compu-
ting classification accuracy; secondly, by looking at conver-
gence figures, we will show that stochastic gradient descent
method will get faster convergence rate on supervised lear-
ning task and even semi-supervised learning task which is a
non-convex problem. Six multi-class classification datasets
from UCI machine learning repository are used in our expe-
riment [Lichman, 2013], main information are listed in Table
1.

In this experiment, we compared our method with 3 traditi-
onal multi-class support vector machine models, OvsR in (1),
OvsO in (3) and Crammer in (5).

We use 5 times 5-fold cross validation and compute
average accuracy for each method as final performance. In
all experiments, we automatically tune the parameters by se-
lecting among the values {10r, r ∈ {−5, ..., 5}}. We com-
pare the convergence rate of our method with stochastic gra-
dient descent algorithm with constant learning rate and de-
creasing learning rate. We select the largest learning rate for
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(d) svmguide2 dataset
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(e) usps5 dataset
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(f) waveform dataset

Figure 2: Suboptimality vs epochs. Suboptimality equals current objective function value minus optimal objective function
value. The optimal objective function value is obtained by running our methods for a long time.

Table 1: Experiment datasets description.

Dataset #Sample #Attribute #Class

iris 150 4 3
dermatology 366 34 6
satimage 4435 36 6
svmguide2 391 20 3
usps5 5427 256 5
waveform 2746 21 3

each method and ensure that objective function value is de-
creasing during optimization. We plot a figure of suboptima-
lity versus epoch, and suboptimality equals current value of
objective function minus optimal value of objective function.

As shown in Table 2, we can see that our model can get al-
ways better or compared accuracy than other methods except
OvsO multi-class SVM. It is normal because OvsO method
has more parameters than our method. Figure 2 presents the
convergence rate of three different stochastic gradient des-
cent, constant learning rate, decreasing learning rate and sto-
chastic gradient descent with variance reduction. It is clear
that our method has much faster convergence rate after 10
epochs. Stochastic gradient descent method with constant le-
arning rate and decreasing learning rate either has lower con-
vergence rate or stop to converge because of decreasing lear-
ning rate.

Table 2: Classification accuracy for all compared methods.

Dataset OvsO OvsR Crammer Proposed

iris 92.67 93.33 98.00 98.67
dermatology 96.71 96.99 95.07 96.99
satimage 82.64 87.24 85.68 86.02
svmguide2 80.00 82.56 81.03 82.31
usps5 97.75 97.95 97.55 97.80
waveform 86.56 86.12 86.60 87.27

7 Conclusion
In this paper, we follow the idea of maximizing margin bet-
ween two classes and propose a novel multi-class SVM mo-
del. Analysis of the relation between our model and other
related multi-class SVM models is also illustrated in the pa-
per. Experiment results show that our model can get better
or compared results than other related supervised and semi-
supervised SVM models.
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