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Abstract
Semantic Image Interpretation (SII) is the task of
extracting structured semantic descriptions from
images. It is widely agreed that the combined use of
visual data and background knowledge is of great
importance for SII. Recently, Statistical Relational
Learning (SRL) approaches have been developed
for reasoning under uncertainty and learning in the
presence of data and rich knowledge. Logic Tensor
Networks (LTNs) are a SRL framework which inte-
grates neural networks with first-order fuzzy logic
to allow (i) efficient learning from noisy data in the
presence of logical constraints, and (ii) reasoning
with logical formulas describing general properties
of the data. In this paper, we develop and apply
LTNs to two of the main tasks of SII, namely, the
classification of an image’s bounding boxes and the
detection of the relevant part-of relations between
objects. To the best of our knowledge, this is the
first successful application of SRL to such SII tasks.
The proposed approach is evaluated on a standard
image processing benchmark. Experiments show
that background knowledge in the form of logical
constraints can improve the performance of purely
data-driven approaches, including the state-of-the-
art Fast Region-based Convolutional Neural Net-
works (Fast R-CNN). Moreover, we show that the
use of logical background knowledge adds robust-
ness to the learning system when errors are present
in the labels of the training data.

1 Introduction
Semantic Image Interpretation (SII) is the task of generating
a structured semantic description of the content of an image.
This structured description can be represented as a labelled
directed graph. Each vertex corresponds to a bounding box
of an object in the image, each edge represents a relation be-
tween pairs of objects. Vertices are labelled with a set of ob-
ject types and edges are labelled with binary relations. Such
a graph is also called a scene graph in [Krishna et al., 2016].

A major obstacle to be overcome by SII is the so-called
semantic gap [Neumann and Möller, 2008], that is, the lack
of a direct correspondence between low-level features of the

image and high-level semantic descriptions. To tackle this
problem, a system for SII must learn the latent correlations
that may exist between the numerical features that can be ob-
served in an image and the semantic concepts associated with
the objects. It is in this learning process that the availabil-
ity of relational background knowledge can be of great help.
Thus, recent SII systems have sought to combine, or even
integrate, visual features obtained from data and symbolic
knowledge in the form of logical axioms [Zhu et al., 2014;
Chen et al., 2012; Donadello and Serafini, 2016].

The area of Statistical Relational Learning (SRL), or Sta-
tistical Artificial Intelligence (StarAI), seeks to combine data-
driven learning, in the presence of uncertainty, with symbolic
knowledge [Wang and Domingos, 2008; Bach et al., 2015;
Gutmann et al., 2010; Diligenti et al., 2015; Rocktaschel et
al., 2015; Ravkic et al., 2015]. However, only very few SRL
systems have been applied to SII tasks (c.f. Section 2) due
to the high complexity associated with image learning. Most
systems for solving SII tasks have been based, instead, on
deep learning and neural network models. These, on the other
hand, do not in general offer a well-founded way of learn-
ing from data in the presence of relational logical constraints,
requiring the neural models to be highly engineered from
scratch. In this paper, we develop and apply for the first time,
the SRL framework called Logic Tensor Networks (LTNs) to
computationally challenging SII tasks. LTNs combine learn-
ing in deep networks with relational logical constraints [Ser-
afini and d’Avila Garcez, 2016]. It uses a First-order Logic
(FOL) syntax interpreted in the real numbers, which is im-
plemented as a deep tensor network. Logical terms are in-
terpreted as feature vectors in a real-valued n-dimensional
space. Function symbols are interpreted as real-valued func-
tions, and predicate symbols as fuzzy logic relations. This
syntax and semantics, called real semantics, allow LTNs to
learn efficiently in hybrid domains, where elements are com-
posed of both numerical and relational information. We ar-
gue, therefore, that LTNs are a good candidate for learning SII
because they can express relational knowledge in FOL which
serves as constraints on the data-driven learning within ten-
sor networks. Being LTN a logic, it provides a notion of log-
ical consequence, which forms the basis for learning within
LTNs, which is defined as best satisfiability, c.f. Section 4.
Solving the best satisfiability problem amounts to finding the
latent correlations that may exist between a relational back-
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ground knowledge and numerical data attributes. This for-
mulation enables the specification of learning as reasoning,
a unique characteristic of LTNs, which is seen as highly rele-
vant for SII. This paper specifies SII within LTNs, evaluating
it on two important tasks: (i) the classification of bounding
boxes, and (ii) the detection of the part-of relation between
any two bounding boxes. Both tasks are evaluated using the
PASCAL-PART dataset [Chen et al., 2014]. It is shown that
LTNs improve the performance of the state-of-the-art object
classifier Fast R-CNN [Girshick, 2015] on the bounding box
classification task. LTNs also outperform a rule-based heuris-
tic (which uses the inclusion ratio of two bounding boxes) in
the detection of part-of relations between objects. Finally,
LTNs are evaluated on their ability to handle errors, specifi-
cally misclassification of objects and part-of relations. Very
large visual recognition datasets now exist which are noisy
[Reed et al., 2014], and it is important for learning systems to
become robust to noise. LTNs were trained systematically on
progressively noisier datasets, with results on both SII tasks
showing that LTN’s logical constraints are capable of adding
robustness to the system, in the presence of errors in the labels
of the training data. The paper is organized as follows: Sec-
tion 2 contrasts the LTN approach with related work which
integrate visual features and background knowledge for SII.
Section 3 specifies LTNs in the context of SII. Section 4 de-
fines the best satisfiability problem in this context, which en-
ables the use of LTNs for SII. Section 5 describes in detail the
comparative evaluations of LTNs on the SII tasks. Section 6
concludes the paper and discusses directions for future work.

2 Related Work
The idea of exploiting logical background knowledge to im-
prove SII tasks dates back to the early days of AI. In what
follows, we review the most recent results in the area in com-
parison with LTNs.

Logic-based approaches have used Description Logics
(DL), where the basic components of the scene are all as-
sumed to have been already discovered (e.g. simple ob-
ject types or spatial relations). Then, with logical reasoning,
new facts can be derived in the scene from these basic com-
ponents [Neumann and Möller, 2008; Peraldi et al., 2009].
Other logic-based approaches have used fuzzy DL to tackle
uncertainty in the basic components [Hudelot et al., 2008;
Dasiopoulou et al., 2009; Atif et al., 2014]. These approaches
have limited themselves to spatial relations or to refining the
labels of the objects detected. In [Donadello and Serafini,
2016], the scene interpretation is created by combining image
features with constraints defined using DL, but the method is
tailored to the part-of relation and cannot be extended eas-
ily to account for other relations. LTNs, on the other hand,
should be able to handle any semantic relation. In [Marsza-
lek and Schmid, 2007; Forestier et al., 2013], a symbolic
Knowledge-base is used to improve object detection, but only
the subsumption relation is explored and it is not possible to
inject more complex knowledge using logical axioms.

A second group of approaches encodes background knowl-
edge and visual features within probabilistic graphical mod-
els. In [Zhu et al., 2014; Nyga et al., 2014], visual features

are combined with knowledge gathered from datasets, web
resources or annotators, about object labels, properties (e.g.,
shape, colour, size) and affordances, using Markov Logic
Networks (MLNs) [Richardson and Domingos, 2006] to pre-
dict facts in unseen images. Due to the specific knowledge-
base schema adopted, the effectiveness of MLNs in this do-
main is evaluated only for Horn clauses, although the lan-
guage of MLNs is more general. As a result, it is not easy to
evaluate how the approach may perform with more complex
axioms. In [Bach et al., 2015], a probabilistic fuzzy logic
is used, but not with real semantics. Clauses are weighted
and universally-quantified formulas are instantiated, as done
by MLNs. This is different from LTNs where the universally-
quantified formulas are computed by using an aggregation op-
eration, which avoids the need for instantiating all variables.

In other related work, [Chen et al., 2012; Kulkarni et al.,
2011] encode background knowledge into a generic Condi-
tional Random Field (CRF), where the nodes represent de-
tected objects and the edges represent logical relationships
between objects. The task is to find a correct labelling for
this graph. In [Chen et al., 2012], the edges encode logical
constraints on a knowledge-base specified in DL. Although
these ideas are close in spirit to the approach presented in this
paper, they are not formalised as in LTNs, which use a deep
tensor network and first-order logic, rather than CRFs or DL.
In general, the logical theory behind the functions to be de-
fined in the CRF is unclear. In [Kulkarni et al., 2011], poten-
tial functions are defined as text priors such as co-occurrence
of terms found in the image descriptions of Flickr.

In a final group of approaches, here called language-priors,
background knowledge is taken from linguistic models [Ra-
manathan et al., 2015; Lu et al., 2016]. In [Ramanathan et al.,
2015], a neural network is built integrating visual features and
a linguistic model to predict semantic relationships between
bounding boxes. The linguistic model is a set of rules de-
rived from WORDNET [Fellbaum, 1998], stating which types
of semantic relationships occur between a subject and an ob-
ject. In [Lu et al., 2016], a similar neural network is proposed
for the same task but with a more sophisticated language
model, embedding in the same vector space triples of the form
subject-relation-object, such that semantically similar triples
are mapped closely together in the embedding space. In this
way, even if no examples exist of some triples in the data,
the relations can be inferred from similarity to more frequent
triples. A drawback, however, is the possibility of inferring
inconsistent triples, such as e.g. man-eats-chair, due to the
embedding. LTNs avoid this problem with a logic-based ap-
proach (in the above example, with an axiom to the effect that
chairs are not normally edible). LTNs can also handle excep-
tions, offering a system capable of dealing with crisp axioms
and real-valued data, as specified in what follows.

3 Logic Tensor Networks
Let L be a first-order logic language, whose signature is com-
posed of three disjoint sets C, F and P , denoting constants,
functions and predicate symbols, respectively. For any func-
tion or predicate symbol s, let α(s) denote its arity. Logi-
cal formulas in L allow one to specify relational knowledge,
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e.g. the atomic formula partOf(o1, o2), stating that object
o1 is a part of object o2, the formulae ∀xy(partOf(x, y) →
¬partOf(y, x)), stating that the relation partOf is asymmet-
ric, or ∀x(Cat(x)→ ∃y(partOf(x, y)∧Tail(y))), stating that
every cat should have a tail. In addition, exceptions are han-
dled by allowing formulas to be interpreted in fuzzy logic,
such that in the presence of an example of, say, a tailless cat,
the above formula can be interpreted naturally as normally,
every cat has a tail; this will be exemplified later.
Semantics of L: We define the interpretation domain as a
subset of Rn, i.e. every object in the domain is associated
with a n-dimensional vector of real numbers. Intuitively, this
n-tuple represents n numerical features of an object, e.g. in
the case of a person, their name in ASCII, height, weight,
social security number, etc. Functions are interpreted as real-
valued functions, and predicates are interpreted as fuzzy rela-
tions on real vectors. To emphasise the fact that we interpret
symbols as real numbers, we use the term grounding instead
of interpretation1 in the following definition of semantics.
Definition 1 Let n ∈ N. An n-grounding, or simply ground-
ing, G for a FOL L is a function defined on the signature of
L satisfying the following conditions:

1. G(c) ∈ Rn for every constant symbol c ∈ C;
2. G(f) ∈ Rn·α(f) −→ Rn for every f ∈ F ;
3. G(P ) ∈ Rn·α(P ) −→ [0, 1] for every P ∈ P .

Given a grounding G, the semantics of closed terms and
atomic formulas is defined as follows:

G(f(t1, . . . , tm)) = G(f)(G(t1), . . . ,G(tm))

G(P (t1, . . . , tm)) = G(P )(G(t1), . . . ,G(tm))

The semantics for connectives is defined according to fuzzy
logic; using for instance the Lukasiewicz t-norm:2

G(¬φ) = 1− G(φ)

G(φ ∧ ψ) = max(0,G(φ) + G(ψ)− 1)

G(φ ∨ ψ) = min(1,G(φ) + G(ψ))

G(φ→ ψ) = min(1, 1− G(φ) + G(ψ))

The LTN semantics for ∀ is defined in [Serafini and d’Avila
Garcez, 2016] using the min operator, that is, G(∀xφ(x)) =
mint∈term(L) G(φ(t))), where term(L) is the set of instanti-
ated terms ofL. This, however, is inadequate for our purposes
as it does not tolerate exceptions (the presence of a single ex-
ception to the universally-quantified formulae, such as e.g. a
cat without a tail, would falsify the formulae). Instead, our
aim in SII is that the more examples that satisfy a formulae
φ(x), the higher the truth-value of ∀xφ(x) should be. To cap-
ture this, we use for the semantics of ∀ a mean-operator:

G(∀xφ(x)) = lim
T→term(L)

meanp(G(φ(t)) | t ∈ T )

1In logic, the term grounding indicates the operation of replac-
ing the variables of a term or formula with constants or terms that do
not contain other variables. To avoid any confusion, we use the syn-
onym instantiation for this purpose. It is worth noting that in LTN,
differently from MLNs, the instantiation of every first order formula
is not required.

2Examples of t-norms include Lukasiewicz, product and Gödel.
The Lukasiewicz t-norm is µLuk(x, y) = max(0, x+y−1), product
t-norm is µPr(x, y) = x · y, and Gödel t-norm is µmax(x, y) =
min(x, y). See [Bergmann, 2008] for details.

where meanp(x1, . . . , xd) =
(

1
d

∑d
i=1 x

p
i

) 1
p

for p ∈ Z.3

Finally, the classical semantics of ∃ is uniquely determined
by the semantics of ∀, by making ∃ equivalent to ¬∀¬. This
approach, however, has a drawback too when it comes to SII:
if we adopt, for instance, the arithmetic mean for the seman-
tic of ∀ then G(∀xφ(x)) = G(∃xφ(x)). Therefore, we shall
interpret existential quantification via Skolemization: every
formula of the form ∀x1, . . . , xn(. . . ∃yφ(x1, . . . , xn, y)) is
rewritten as ∀x1, . . . , xn(. . . φ(x1, . . . , xn, f(x1, . . . , xn))),
by introducing a new n-ary function symbol, called Skolem
function. In this way, existential quantifiers can be eliminated
from the language by introducing Skolem functions.
Formalizing SII in LTNs: To specify the SII problem, as
defined in the introduction, we consider a signature ΣSII =
〈C,F ,P〉, where C =

⋃
p∈Pics b(p) is the set of identi-

fiers for all the bounding boxes in all the images, F = ∅,
and P = {P1,P2}, where P1 is a set of unary predi-
cates, one for each object type, e.g. P1 = {Dog,Cat,
Tail,Muzzle,Train,Coach, . . . }, and P2 is a set of binary
predicates representing relations between objects. Since in
our experiments we focus on the part-of relation, P2 =
{partOf}. The FOL formulas based on this signature can
specify (i) simple facts, e.g. the fact that bounding box b con-
tains a cat, written Cat(b), the fact that b contains either a cat
or a dog, written Cat(b) ∨ Dog(b), etc., and (ii) general rules
such as ∀x(Cat(x)→ ∃y(partOf(x, y) ∧ Tail(y))).

A grounding for ΣSII can be defined as follows: each con-
stant b, denoting a bounding box, can be associated with a
set of geometric features and a set of semantic features com-
puted with a bounding box detector. Specifically, each bound-
ing box is associated with geometric features describing the
position and the dimension of the bounding box, and seman-
tic features describing the classification score returned by the
bounding box detector for each class. For example, for each
bounding box b ∈ C, Ci ∈ P1, G(b) is the R4+|P1| vector:

〈class(C1, b), . . . , class(C|P1|, b), x0(b), y0(b), x1(b), y1(b)〉

where the last four elements are the coordinates of the top-left
and bottom-right corners of b, and class(Ci, b) ∈ [0, 1] is the
classification score of the bounding box detector for b.

An example of groundings for predicates can be defined
by taking a one-vs-all multi-classifier approach, as follows.
First, define the following grounding for each class Ci ∈ P1

(below, x =
〈
x1, . . . , x|P1|+4

〉
is the vector corresponding to

the grounding of a bounding box):

G(Ci)(x) =

{
1 if i = argmax1≤l≤|P1| xl
0 otherwise (1)

Then, a simple rule-based approach for defining a ground-
ing for the partOf relation is based on the naı̈ve assump-
tion that the more a bounding box b is contained within a
bounding box b′, the higher the probability should be that b
is part of b′. Accordingly, one can define G(partOf(b, b′)) as
the inclusion ratio ir(b, b′) of bounding box b, with ground-
ing x, into bounding box b′, with grounding x′ (formally,

3The popular mean operators, arithmetic, geometric and har-
monic mean, are obtained by setting p = 1, 2, and −1, respectively.
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ir(b, b′) = area(b∩b′)
area(b) ). A slightly more sophisticated rule-

based grounding for partOf (used as baseline in the experi-
ments to follow) takes into account also type compatibilities
by multiplying the inclusion ratio by a factor wij . Hence, we
define G(partOf(b, b′)) as follows:{

1 if ir(b, b′) ·max
|P1|
ij=1(wij · xi · x′j) ≥ thir

0 otherwise
(2)

for some threshold thir (we use thir > 0.5), and with wij =
1 if Ci is a part of Cj , and 0 otherwise. Given the above
grounding, we can compute the grounding of any atomic
formula, e.g. Cat(b1), Dog(b2), leg(b3), partOf(b3, b1),
partOf(b3, b2), thus expressing the degree of truth of the for-
mula. The rule-based groundings (Eqs. (1) and (2)) may not
satisfy all the constraints to be imposed. E.g., the classifica-
tion score may be wrong, a bounding box may include an-
other one which is not in the part-of relation, etc. Further-
more, in many situations it is not possible to define a ground-
ing a priori. Instead, groundings should be learned automati-
cally from data, by optimizing the truth-values of the formu-
las in the background knowledge. This is discussed next.

4 Learning as Best Satisfiability
A partial grounding, denoted by Ĝ, is a grounding that is de-
fined on a subset of the signature of L. A grounding G is
said to be a completion of Ĝ, if G is a grounding for L and
coincides with Ĝ on the symbols where Ĝ is defined.

Definition 2 A grounded theory GT is a pair 〈K, Ĝ〉 with a
set K of closed formulas and a partial grounding Ĝ.

Definition 3 A grounding G satisfies a GT 〈K, Ĝ〉 if G com-
pletes Ĝ and G(φ) = 1 for all φ ∈ K. A GT 〈K, Ĝ〉 is satisfi-
able if there exists a grounding G that satisfies 〈K, Ĝ〉.

According to the previous definition, deciding the satisfia-
bility of 〈K, Ĝ〉 amounts to searching for a grounding Ĝ such
that all the formulas of K are mapped to 1. Differently from
the classical satisfiability, when a GT is not satisfiable, we are
interested in the best possible satisfaction that we can reach
with a grounding. This is defined as follows.

Definition 4 Let 〈K, Ĝ〉 be a grounded theory. We define the
best satisfiability problem as the problem of finding a ground-
ing G∗ that maximizes the truth-values of the conjunction of
all clauses cl ∈ K, i.e. G∗ = argmaxĜ⊆G∈G G(

∧
cl∈K cl).

Grounding G∗ captures the latent correlation between quan-
titative attributes of objects and their categorical/relational
properties. Not all functions are suitable as a grounding; they
should preserve some form of regularity. If G(Cat)(x) ≈ 1
(the bounding box with feature vector x contains a cat) then
for every x′ close to x (i.e. for every bounding box with
features similar to x), one should have G(Cat)(x′) ≈ 1. In
particular, we consider groundings of the following form.

Function symbols are grounded to linear transformations.
If f is a m-ary function symbol, then G(f) is of the form:

G(f)(v) = Mfv +Nf

where v = 〈vᵀ
1 , . . . ,v

ᵀ
m〉

ᵀ is the mn-ary vector obtained by
concatenating each vi. The parameters for G(f) are the n ×
mn real matrix Mf and the n-vector Nf .

The grounding of an m-ary predicate P , namely G(P ),
is defined as a generalization of the neural tensor network
(which has been shown effective at knowledge completion
in the presence of simple logical constraints [Socher et al.,
2013]), as a function from Rmn to [0, 1], as follows:

G(P )(v) = σ
(
uᵀP tanh

(
vᵀW

[1:k]
P v + VPv + bP

))
(3)

with σ the sigmoid function. The parameters for P are:
W

[1:k]
P , a 3-D tensor in Rk×mn×mn, VP ∈ Rk×mn, bP ∈ Rk

and uP ∈ Rk. This last parameter performs a linear com-
bination of the quadratic features given by the tensor prod-
uct. With this encoding, the grounding (i.e. truth-value) of
a clause can be determined by a neural network which first
computes the grounding of the literals contained in the clause,
and then combines them using the specific t-norm.

In what follows, we describe how a suitable GT can be
built for SII. Let Picst ⊆ Pics be a set of bounding boxes of
images correctly labelled with the classes that they belong to,
and let each pair of bounding boxes be correctly labelled with
the part-of relation. In machine learning terminology, Picst

is a training set without noise. In real semantics, a training
set can be represented by a theory Texpl = 〈Kexpl, Ĝ〉, where
Kexpl contains the set of closed literals Ci(b) (resp. ¬Ci(b))
and partOf(b, b′) (resp. ¬partOf(b, b′)), for every bounding
box b labelled (resp. not labelled) with Ci and for every
pair of bounding boxes 〈b, b′〉 connected (resp¬partOf(b, b′).
not connected) by the partOf relation. The partial ground-
ing Ĝ is defined on all bounding boxes of all the images in
Pics where both the semantic features class(Ci, b) and the
bounding box coordinates are computed by the Fast R-CNN
object detector [Girshick, 2015]. Ĝ is not defined for the
predicate symbols in P and is to be learned. Texpl contains
only assertional information about specific bounding boxes.
This is the classical setting of machine learning where classi-
fiers (i.e. the grounding of predicates) are inductively learned
from positive examples (such as partOf(b, b′)) and negative
examples (¬partOf(b, b′)) of a classification. In this learn-
ing setting, mereological constraints such as “cats have no
wheels” or “a tail is a part of a cat” are not taken into account.
Examples of mereological constraints state, for instance,
that the part-of relation is asymmetric (∀xy(partOf(x, y) →
¬partOf(y, x))), or lists the several parts of an object (e.g.
∀xy(Cat(x) ∧ partOf(x, y) → Tail(y) ∨ Muzzle(y))), or
even, for simplicity, that every whole object cannot be part
of another object (e.g. ∀xy(Cat(x) → ¬partOf(x, y)))
and every part object cannot be divided further into parts
(e.g. ∀xy(Tail(x) → ¬partOf(y, x))). This general knowl-
edge is available from on-line resources, such as WORD-
NET [Fellbaum, 1998], and can be retrieved by inheriting
the meronymy relations for every concept corresponding to
a whole object. A grounded theory that considers also mere-
ological constraints as prior knowledge can be constructed
by adding such axioms to Kexpl. More formally, we define
Tprior = 〈Kprior, Ĝ〉, where Kprior = Kexpl +M, andM is
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the set of mereological axioms. To check the role ofM, we
evaluate both theories and then compare results.

5 Experimental Evaluation
We evaluate the performance of our approach for SII4 on
two tasks, namely, the classification of bounding boxes and
the detection of partOf relations between pairs of bounding
boxes. We chose the part-of relation because both data (the
PASCAL-PART-dataset [Chen et al., 2014]) and ontologies
(WORDNET) are available on the part-of relation. In addi-
tion, part-of can be used to represent, via reification, a large
class of relations [Guarino and Guizzardi, 2016] (e.g., the re-
lation “a plant is lying on the table” can be reified in an object
of type “lying event” whose parts are the plant and the table).
However, it is worth noting that many other relations could
have been included in this evaluation. The time complexity
of LTN grows linearly with the number of axioms.

We also evaluate the robustness of our approach with re-
spect to noisy data. It has been acknowledged by many that,
with the vast growth in size of the training sets for visual
recognition [Krishna et al., 2016], many data annotations
may be affected by noise such as missing or erroneous la-
bels, non-localised objects, and disagreements between an-
notations, e.g. human annotators often mistake “part-of” for
the “have” relation [Reed et al., 2014].

We use the PASCAL-PART-dataset that contains 10103
images with bounding boxes annotated with object-types and
the part-of relation defined between pairs of bounding boxes.
Labels are divided into three main groups: animals, vehicles
and indoor objects, with their corresponding parts and “part-
of” label. Whole objects inside the same group can share
parts. Whole objects of different groups do not share any
parts. Labels for parts are very specific, e.g. “left lower leg”.
Thus, without loss of generality, we have merged the bound-
ing boxes that referred to the same part into a single bounding
box, e.g. bounding boxes labelled with “left lower leg” and
“left upper leg” were merged into a single bounding box of
type “leg”. In this way, we have limited our experiments to
a dataset with 20 labels for whole objects and 39 labels for
parts. In addition, we have removed from the dataset any
bounding boxes with height or width smaller than 6 pixels.
The images were then split into a training set with 80%, and
a test set with 20% of the images, maintaining the same pro-
portion of the number of bounding boxes for each label.

Object Type Classification and Detection of the Part-
Of Relation: Given a set of bounding boxes detected by an
object detector (we use Fast-RCNN), the task of object clas-
sification is to assign to each bounding box an object type.
The task of Part-Of detection is to decide, given two bound-
ing boxes, if the object contained in the first is a part of the
object contained in the second. We use LTN to resolve both
tasks simultaneously. This is important because a bounding
box type and the part-of relation are not independent. Their
dependencies are specified in LTN using background knowl-
edge in the form of logical axioms.

4LTN has been implemented as a Google TENSOR-
FLOWTM library. Code, partOf ontology, and dataset are available
at https://gitlab.fbk.eu/donadello/LTN_IJCAI17

To show the effect of the logical axioms, we train two
LTNs: the first containing only training examples of object
types and part-of relations (Texpl), and the second contain-
ing also logical axioms about types and part-of (Tprior). The
LTNs were set up with tensor of k = 6 layers and a regu-
larization parameter λ = 10−10. We chose Lukasiewicz’s
T-norm (µ(a, b) = max(0, a+ b− 1)) and use the harmonic
mean as aggregation operator. We ran 1000 training epochs
of the RMSProp learning algorithm available in TENSOR-
FLOWTM . We compare results with the Fast RCNN at object
type classification (Eq.(1)), and the inclusion ratio ir base-
line (Eq.(2)) at the part-of detection task.5 If ir is larger than
a given threshold th (in our experiments, th = 0.7) then the
bounding boxes are said to be in the partOf relation. Every
bounding box b is classified into C ∈ P1 if G(C(b)) ≥ th.
With this, a bounding box can be classified into more than
one class. For each class, precision and recall are calculated
in the usual way. Results for indoor objects are shown in Fig-
ure 1 where AUC is the area under the precision-recall curve.
The results show that, for both object types and the part-of re-
lation, the LTN trained with prior knowledge given by mere-
ological axioms has better performance than the LTN trained
with examples only. Moreover, prior knowledge allows LTN
to improve the performance of the Fast R-CNN (FRCNN) ob-
ject detector. Notice that the LTN is trained using the Fast
R-CNN results as features. FRCNN assigns a bounding box
to a class if the values of the corresponding semantic features
exceed th. This is local to the specific semantic features. If
such local features are very discriminative (which is the case
in our experiments) then very good levels of precision can
be achieved. Differently from FRCNN, LTNs make a global
choice which takes into consideration all (semantic and geo-
metric) features together. This should offer robustness to the
LTN classifier at the price of a drop in precision. The logical
axioms compensate this drop. For the other object types (an-
imals and vehicles), LTN has results comparable to FRCNN:
FRCNN beats Tprior by 0.05 and 0.037 AUC, respectively,
for animals and vehicles. Finally, we have performed an ini-
tial experiment on small data, on the assumption that the LTN
axioms should be able to compensate a reduction in training
data. By removing 50% of the training data for indoor ob-
jects, a similar performance to Tprior with the full training
set can be achieved: 0.767 AUC for object types and 0.623
AUC for the part-of relation, which shows an improvement
in performance.

Robustness to Noisy Training Data: In this evaluation,
we show that logical axioms improve the robustness of LTNs
in the presence of errors in the labels of the training data. We
have added an increasing amount of noise to the PASCAL-
PART-dataset training data, and measured how performance
degrades in the presence and absence of axioms. For k ∈
{10, 20, 30, 40}, we randomly select k% of the bounding
boxes in the training data, and randomly change their clas-
sification labels. In addition, we randomly select k% of pairs
of bounding boxes, and flip the value of the part-of relation’s
label. For each value of k, we train LTNs T kexpl and T kprior

5A direct comparison with [Chen et al., 2012] is not possible
because their code was not available.
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(a) LTNs with prior knowledge improve the perfor-
mance of Fast R-CNN on object type classification,
achieving an Area Under the Curve (AUC) of 0.800 in
comparison with 0.756.

(b) LTNs with prior knowledge outperform the rule-
based approach of Eq.2 in the detection of part-of re-
lations, achieving AUC of 0.598 in comparison with
0.172.

Figure 1: Precision-recall curves for indoor objects type classification and the partOf relation between objects.

and evaluate results on both SII tasks as done before. As ex-
pected, adding too much noise to training labels leads to a
large drop in performance. Figure 2 shows the AUC mea-
sures for indoor objects with increasing error k. Each pair
of bars indicates the AUC of T kprior, T kexpl, for a given k% of
errors. Results indicate that the LTN axioms offer robustness
to noise: in addition to the expected overall drop in perfor-
mance, an increasing gap can be seen between the drop in
performance of the LTN trained with examples only and the
LTN trained including background knowledge.

6 Conclusion and Future Work
SII systems are required to address the semantic gap problem:
combining visual low-level features with high-level concepts.
We argue that the problem can be addressed by the integra-
tion of numerical and logical representations in deep learning.
LTNs learn from numerical data and logical constraints, en-
abling approximate reasoning on unseen data to predict new
facts. In this paper, LTNs were shown to improve on state-of-
the-art method Fast R-CNN for bounding box classification,
and to outperform a rule-based method at learning part-of re-
lations in the PASCAL-PART-dataset. Moreover, LTNs were
evaluated on how to handle noisy data through the system-
atic creation of training sets with errors in the labels. Results
indicate that relational knowledge can add robustness to neu-
ral systems. As future work, we shall apply LTNs to larger
datasets such as VISUAL GENOME, and continue to compare
the various instances of LTN with SRL, deep learning and
other neural-symbolic approaches on such challenging visual
intelligence tasks.

(a) Object types

(b) Part-of predicate

Figure 2: AUCs for indoor object types and part-of relation with
increasing noise in the labels of the training data. The drop in per-
formance is noticeably smaller for the LTN trained with background
knowledge.
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