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Abstract

Recurrent neural networks (RNNs) have enjoyed
great success in speech recognition, natural lan-
guage processing, etc. Many variants of RNNs
have been proposed, including vanilla RNNs,
LSTMs, and GRUs. However, current architectures
are not particularly adept at dealing with tasks in-
volving multi-faceted contents, i.e., data with a bi-
modal or multimodal distribution. In this work, we
solve this problem by proposing Multiple-Weight
RNNs and LSTMs, which rely on multiple weight
matrices to better mimic the human ability of
switching between contexts. We present a frame-
work for adapting RNN-based models and analyze
the properties of this approach. Our detailed ex-
perimental results show that our model outperforms
previous work across a range of different tasks and
datasets.

1 Introduction

Deep learning has led to remarkable advances across a di-
verse range of machine learning tasks in recent years [Ben-
gio and others, 2009]. Various kinds of deep network archi-
tectures have been proposed, including Multi-Layer Neural
Networks, Convolutional Neural Networks (CNN), and Re-
current Neural Networks (RNNs). RNN-style networks have
emerged as the dominant approach for sequential data such
as natural language, achieving great success on tasks such as
speech recognition, language modeling, and text generation.

Over the years, a number of variants of RNNs have
been proposed. The well-known Long Short Term Mem-
ory (LSTM) networks [Hochreiter and Schmidhuber, 1997]
were designed with the goal of mitigating the vanishing and
exploding gradient problems [Bengio er al., 1994; Hochre-
iter and Schmidhuber, 1997]. LSTM cells are able to capture
longer-range associations by aggregating increasing amounts
of information. They have enjoyed remarkable success on
highly non-trivial tasks such as machine translation and rela-
tion extraction.

LSTMs rely on information control mechanisms in the
form of gates that modulate how the state is updated, given
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values computed from the current input and the previous hid-
den state. Different gating structures and information flow
mechanisms can be considered. Cho et al. [2014] presented
Gated Recurrent Units (GRUs), which are able to adaptively
collect dependencies at different time scales. GRUSs, too, have
been successfully applied across a range of tasks, including
machine translation. A number of minor variations of LSTMs
[Greff et al., 2016] and GRUs [Jozefowicz et al., 2015] have
been studied. The Minimal Gated Unit (MGU) architecture
[Zhou er al., 2016] relies on a simplified model with just a
single gate. In contrast, the recent Multi-Function Recurrent
Units (Mu-FuRUs) adopt an elaborate gating mechanism that
allows for additional differentiable functions as composition
operations [Weissenborn and Rocktiischel, 2016]. Overall,
we see that it remains important to explore the space of de-
sign choices for information flow and gating mechanisms in
recurrent neural networks.

In this paper, we study such gating mechanisms focusing in
particular on the important challenge of how to develop mod-
els that perform robustly on challenging multi-faceted tasks.
Humans are naturally adept at adapting to different kinds of
tasks. For instance, we can rapidly switch between different
levels of formality in conversation, interacting with our col-
league using colloquial slang in one moment, while speaking
formally to a superior in the next. To this end, we develop
a more adaptive RNN-style architecture that consists of mul-
tiple weight matrices so as to enhance the model’s ability of
handling heterogeneous types of content across different test
instances.

The main contributions of this work are as follows:

1. We propose the novel paradigm of multi-weight matrix
RNNS, seeking to mimic the human ability of separat-
ing and switching between different subtasks or problem
facets and addressing each of them appropriately.

2. This paradigm is formalized as a framework that is read-
ily applicable to numerous RNN-family network archi-
tectures. We analyze this framework both at an abstract
level and empirically.

3. Our extensive experimental evaluation on three tasks,
namely language modeling, cloze tests, and character-
level word embeddings, shows that our model is suc-
cessfully able to exploit the multi-faceted nature of the
data, surpassing previous models on these tasks and ob-
taining new state-of-the-art results on some.
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2 Related Work

Recurrent neural networks, a form of neural networks with
self-recurrent connections, were extensively studied during
the 1990s [Fausett, 1994]. It was soon observed that ordi-
nary recurrent neural networks, in training, suffer from the
problems of exploding and vanishing gradients [Bengio er
al., 1994]. Hence, more elaborate RNN networks were de-
signed so as to overcome these drawbacks. LSTM networks
sought to achieve this by relying on three gates that control
the information flow [Hochreiter and Schmidhuber, 1997].
The more recent Gated Recurrent Unit (GRU) networks rely
on two gates to capture the dependencies of different time
scales adaptively [Cho et al., 2014]. Apart from these well-
established units, a number of extensions and variants have
been put forth, including Structurally Constrained Recurrent
Networks (SCRNs) [Mikolov et al., 2014], IRNNs [Le et al.,
2015], and Minimal Gated Units (MGU) [Zhou et al., 2016].
Multi-Function Recurrent Units (Mu-FuRUs) adapt the gat-
ing mechanism by allowing it to select among a set of suitable
composition functions [Weissenborn and Rocktischel, 2016].
Our work presents a framework showing how many of these
RNN-style algorithms can additionally operate using multiple
weight matrices.

As for the tasks we consider, important works for lan-
guage modeling include the recurrent neural network lan-
guage model (RNNLM) [Mikolov ef al., 2010], which ad-
dressed the problem that previous feedforward networks de-
pended on fixed length contexts, which need to be speci-
fied ad hoc before training. LSTM-based language models
have also achieved strong results on language modeling due
to their superior capability of capturing longer-term depen-
dencies [Hochreiter and Schmidhuber, 1997]. For dialogue
systems, contextual information and dialogue interactions be-
tween speakers are important signals. Thus, several contex-
tual language models have been proposed, such as a context-
dependent RNN language model [Mikolov and Zweig, 20121,
larger-context language models [Wang and Cho, 2015], and
two state-of-the-art dialogue context language models [Liu
and Lane, 2017]. A significant challenge for word embed-
dings is how to address the problem of rare and out-of-
vocabulary words. Here, character-level information provides
significant linguistic features for learning a good represen-
tation not only for rare words but also for morphologically
complex words.

Finally, we contrast our work with other lines of works
sharing seemingly similar goals. In multi-task learning
[Caruana, 1997], it is known from which task each input
comes, whereas in our setting, there is a single task with
multi-faceted data, so the system autonomously needs to learn
to choose different weight matrices. Another related task is
domain adaptation [Glorot ef al., 2011]. Here, training oc-
curs on one domain and then the trained model is applied
(only) to another domain. Our model, in contrast, is simulta-
neously applied to heterogeneous multi-faceted data, without
knowledge of which domains a given input instance origi-
nates from. Our architecture needs to learn on its own how
to identify and handle relevant domains or facets, which can
be mixed even within a single instance. Our idea of relying
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Figure 1: The structures of naive RNN, LSTM, and GRU.

on multiple weight matrices is also distinct from the notion
of ensemble methods, which also duplicate parts the model,
and are often used for increased accuracy and robustness of
neural networks. We describe the differences in Section 3.2.
Finally, the differences to attention models are analyzed in
Section 4.4.

3 Multi-Weight RNN Model

In this section, we describe the details of our proposed model.
We will first review model structures from past work, and
then introduce the key innovations of our framework, which
allows us to modify these previous architectures.

3.1 Basic RNN-based Models

An RNN-type structure consists of RNN cells of the form
illustrated in Fig. 1(a). Such cells can be described in terms
of their update equations as follows:

¢t = f(Whay + Unci—1 + 0),

1
or = g(Wyer + by). M

Here the subscript ¢ stands for the ¢-th timestamp, xy, ¢, 04
are the input vector, the state vector, and the output vector,
respectively, and f, g are activation functions. For a given se-
quence of inputs, the repetitive application of this procedure
can be described in terms of connected chains of RNNs, as
illustrated in Fig. 1(a).

A naive RNN cell computes a new state vector at every step
using matrix multiplications and a non-linearity such as tanh.
To overcome the naive RNN’s inability to store long-range in-
formation, several enhanced RNN cells have been proposed,
among which the most well-known ones are Long Short Term
Memory (LSTM) [Hochreiter and Schmidhuber, 1997] and
Gated Recurrent Unit (GRU) [Cho et al., 2014] cells. An
LSTM cell is illustrated in Fig. 1(b) and can be described by
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the following equations:

i = o(Wixwy + Winhe—1 + by),
fir = oWy + Winhy—1 + by),
Oy = U(Woxxt + Wohht—l + bo); (2)
¢t = fi ©® ci—1 + 4 © tanh(Wexwy + Wenhe—1 + b)),
ht = O¢ ® C¢.
Here, as in a basic RNN cell, ¢ stands for the ¢-th timestamp,
T, ¢, hy are the input vector, state vector, and hidden vec-
tor, respectively, and i, f;, o; refer to the input gate, forget
gate, and output gate, respectively. Finally, the W are weight
matrices, b are bias terms, and o is the sigmoid function.
Compared to LSTMs, GRUs do not need any intermediate
vector ¢;. The structure of a GRU is illustrated in Fig. 1(c)
and can be expressed as follows:
Ty = O—(Wrxxt + thht—l + br)a
Uy = U(Wuxxt + Wunhi—1 + bu)a
vy = tanh [Woyaxy + Wer (1 © he—1) + by,
Ot = ht =u ® ht—l + (1 — Ut) ® v¢.

3

Here, xy, hy, vy, 04 are the input vector, the original activa-
tion vector, the new activation vector, and the output vec-
tor, respectively, while u,;, r; refer to the update gate and
reset gate, respectively. It has been found that GRUs and
LSTMs achieve somewhat similar accuracies, but that GRUs
are faster in terms of the convergence time and required train-
ing epochs [Chung et al., 2014].

3.2 Our Model

Having introduced previous RNN-type models, we now
present our novel multi-weight architecture. The central idea
in our proposal is to allow for multiple matrices that may up-
date the state vector. During training, the model will then
learn to adaptively decide on which of these to rely on, based
on the current input and the previous state at every time step.
Technically, we replace each occurrence of tanh(Wx +b) by
a weighted sum

Zpitanh(Wim +b;), 4

7

where tanh(-) is the hypertangent function. Note that we
are not combining the matrices W; as tanh(>_ W;), since
that would be equivalent to tanh(77) for a single matrix W.
When our modification is applied to an LSTM cell, we obtain
a Multi-Weight LSTM cell with the update equations

iy = o(Wixxs + Winhe—1 + bs),
fo = o(Wixxy + Winhg 1 + br),
O = G'(Woxxt + Wohhtfl + bo)»
K
e =fi ®ci_1+ Zpl- ® tanh (Wéxxt + Whihe—1 + bl) ;
i=1
hi =0t © ¢,
&)
where K is the number of weight matrices. Our strategy is to
extend the LSTM cell with a gate control mechanism to allow
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it to choose between two or more matrices when updating the
state vector for multi-faceted data (see Fig. 2).

As another example, when applied to the GRU cell archi-
tecture, we obtain cell architecture of the form

Ty = U(Wrxxt + thht—l + br)7

Uy = U(Wuxxt + Wuhht—l + bu)7

vy = tanh [Wha, + Wi (ry ©hy1) + 0], 1 <i < K

K
op=h=u Oh1+(1—u)O Zpivz7
i=1
(6)
where the v} are the activation vectors for the GRU. The sub-
script of W indicates the weight of the connection between
two gates, and the superscript of W indicates which matrix is
being used. For simplicity, in later experiments, we will con-
sider the modified LSTM cell architecture and take K = 2.
Other cell structures improve to a similar degree.

While our architecture bears some superficial resemblance
to ensemble methods, there are a few crucial differences.
First, while ensemble methods aggregate the final outputs that
correspond to different internal states [Zhang et al., 20161,
our model uses a single RNN with only one internal state.
Internally, the decisions for arriving at this internal state are
based on multiple matrices. This novel approach is geared
at multi-faceted data. Second, while ensemble methods take
an average of several model outputs, our model relies on a
weighted average over the matrices, for which the weights
are learnt during training.

Finally, we explain how the p; are computed. The weights
of the matrices, p;, are also learnt using the input word and
the state vector, '

v = hi(@,c), (7)

and then go through a softmax normalization,

b, = —ox0(ri)
> exp(p))

A detailed description of our scheme is shown in Fig. 2. In
our implementation, we choose h; such that

(®)

Py = Wia+ Wi+ b, ©)
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3.3 Objective function

Since the objective function is dependent on the task, we dis-
cuss a series of three example tasks (which are explained in
more detail in Section 4).

1. Language modeling: Here, the loss function is set to

T
= logp(wy [ wi, ..., wi—1).  (10)
t=1

This loss function can be understood as maximizing the
probability of a sentence.

2. Cloze tests: In this task, we set the output layer to be a
conditional random field (CRF). The objective function
is the conditional probability of the true answer to the
cloze test, i.e.,

L= _logp(wf | 'UJl,.-.,wt_l,'UJt+17.-.,’wN), (11)

where wy; is the blank word to be filled.

3. Character to word embedding: Here, we choose the loss
function to be the cosine similarity of the ground truth
word embedding and the one generated by our model
from character embeddings. More precisely, we have

L = —(vw,vc), 12)

where the minus sign is placed to maximize the cosine
similarity, v,, is the genuine word embedding (which
serves as the ground truth target), and v, is the word
embedding generated from character embeddings.

3.4 Training

We use mini-batch stochastic gradient descent to train our
model. The learning rate is controlled by AdaDelta [Zeiler,
2012]. As before, we distinguish three cases:

1) Language modeling: The parameters are learnt through
the following equation

OL  — OL Ouwy,
9~ 2wy 90 a3

where 6 refers to the parameters.

2) Cloze tests: The training for cloze test tasks is similar to
language modeling, except that here, only one word is being
predicted. Hence the parameters are updated according to

oL _ oL ow,

00 Ow; 99’

where 6 is the parameter and w; is the word being predicted.
3) Character to word embedding: Denote the character em-

beddings as ci, co,...,c,. According to the chain rule, the
parameters are updated by

(14)

3L Ov.. Ocg,
— - — 15
81}6 Z Oci, 00’ s
where 6 is, as usual, a parameter.
For all three cases, the gradient updates depend on the p;
values, and we use standard backpropagation along the com-
putation graph.
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Perplexity ROUGE2

GRU 123.0 12.1
MuFuRu 119.7 14.7
Our model 101.4 17.2

Table 1: Experiment Results of Language Modeling.

4 Empirical Evaluation

We evaluate our model on a range of different sequential
learning tasks, in order to demonstrate the improvements ob-
tained with our enhanced model.

4.1 Language Modeling

We use the standard Penn Treebank dataset [Marcus et al.,
1993] for language modeling. To measure the effectiveness
of our language models, we consider the standard perplexity
and ROUGE2 measures. Recall that perplexity is defined as

N

1
LS —togp(u |-

=1

Perplexity = exp ( ,wi—1)> , (16)

where w; is the i-th word and NV is the length of the sen-
tence. ROUGE2 is defined as the recall over bigrams. We
compare our model with two strong baselines, GRUs and Mu-
FuRu [Weissenborn and Rocktischel, 2016]. At test time, we
use beam search to find the best word sequence. The results
are given in Table 1. Compared against the baselines, our
model achieves the best performance both in terms of per-
plexity and in terms of the ROUGE2 measure. Our model
reduces the perplexity of GRUs by 21.3% and that of MuFu-
RUs by 18.0%. At the same time, our model improves by
42% over GRUs and by 17% over MuFuRUs in terms of the
respective ROUGE2 scores.

Additionally, we evaluate our model on two further
datasets: (1) Restaurant Reservation Dialogs [Eric and Man-
ning, 2017] and (2) the Switchboard Dialog Act Corpus [Liu
and Lane, 2017]. The first dataset consists of raw dialogue
text and system commands. The dialogue contains both user
and system utterances. The system commands are used to
query its knowledge base in order to respond to a users’ ut-
terance. The average number of utterances in each dialogue
is 14. The vocabulary size is 1,229. The dataset is split into
training set, test set, and validation set, with 1,618, 1,117,
and 500 dialogues, respectively. In the second (Switchboard)
dataset, there are part-of-speech (POS) tags associated with
the utterances. The data is split into 14 equal parts, 10 of
which are used for training, one for testing, and the remain-
ing three for validation. In total, there are 223.5K utterances
in the corpus. Only the most frequent 10K words are consid-
ered for the vocabulary.

For the restaurant reservation dialog dataset, the previous
state-of-the-art [Eric and Manning, 2017] achieves an accu-
racy of 48%, while our result is 51.3%. Our model im-
proves the accuracy of the previous state-of-the-art by 6.8%.
The performance comparison for the Switchboard Dialog Act
Corpus is shown in Table 2. Our model reduces the perplexity
of the previous state-of-the-art [Liu and Lane, 2017] by 8.8%.
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Perplexity
Previous state-of-the-art 58.4
Our result 53.7

Table 2: Experiment Results of Dialogue Corpora.

Algorithms Accuracy
Attentive reader 0.53
Stanford reader 0.64

AS reader 0.57

GA reader 0.57

Our model 0.69

Table 3: Experiment Results of Cloze tests.

4.2 Cloze Test

In a Cloze test, one is given a sentence, from which one of
the words has been excised and left blank. The goal is to fill
the blank with an appropriate word, choosing among differ-
ent options. We use the “Who-did-What” dataset [Onishi et
al., 20161, which consists of around 0.2 million cloze ques-
tions. On average, there are 3.5 different choices for each
blank. The total vocabulary size is more than 0.3 million. We
compare with four neural network baselines:
1. Attentive Reader [Hermann et al., 2015]: LSTM with
attention mechanism.
2. Stanford Reader [Chen et al., 2016]: As above, but with
a bilinear term.
3. Attention Sum (AS) Reader [Kadlec et al., 2016]: GRU
with attention.
4. Gated-Attention (GA) Reader [Dhingra et al., 2016]: As
above, but with gated layers.
The accuracy scores of these baselines and our model are
shown in Table 3. It can be seen that our model is 5% bet-
ter than the best baseline on the “Who-did-What” dataset.

4.3 Character-Level Word Embedding

In this subsection, we evaluate on the character-to-word em-
bedding task, a supervised task, where the goal is to predict a
word embedding given a sequence of character embeddings.
There are several challenges. First, each word has a different
number of characters. This is naturally addressed by using
the RNN structure, which is well-suited for variable-length
inputs. Second, the dimensions of the character embedding
and the word embedding diverge significantly (the former is
around 10, while the latter is around 400). For the second
problem, we use a non-square matrix to transform the input
vector to the state vector, and another non-square matrix to
transform the state vector to the output vector.

The intuition for why our model may work better for this
character-to-word task than previous methods is that the data
may be bimodal in the sense that there are two kinds of words.
As a concrete example, consider the words “inconsiderable”
and “piano”. While the semantics of the former is reason-
ably predictable from the standard morphological rules of the
English language, the latter is borrowed from a foreign lan-
guage. This shows that there are at least two logics inherent

to the data, which can easily be captured by our multi-weight
model, but is challenging for previous methods.

We compare our model with the model of Santos et
al. [2014] and use the Penn Treebank dataset (standard
Wall Street Journal portion) [Marcus et al., 1993]. The
ground truth word embedding is generated using the standard
word2vec tool using SGNS [Mikolov et al., 2013]. The accu-
racies of Santos et al. and of our model are 97.3% and 98.1%,
respectively. Again, we find that our model outperforms pre-
vious work; in this case, the method of Santos et al. by 0.8%
(absolute).

4.4 Analysis and Discussion

We next shed further light on why and how our multi-weight
approach succeeds, while also providing an error analysis.

Theoretical Analysis. For simplicity, we assume there is a
mixing of two separated tasks and set the number of matrices
to two. The case of more than two matrices is analogous. In
particular, we consider the instructive example of interleaving
English speech generation and French speech generation, as
is common in code-switching and in multilingual announce-
ments.

Initially, the parameters in our model will be quite ran-
dom. During training, the weight matrices and state vectors
will stabilize to a steady state. In this steady state, ideally,
each character within an English utterance would result in se-
lecting the weight matrix W7, while each character within a
French utterance would select for the weight matrix Ws. In
this case, our model can be understood as a seamless com-
bination of two language models, the English model and the
French model. This explains our model’s ability to deal with
data in which different aspects are blended together, and its
ability to switch between them.

The reader may have noticed that similar mechanisms also
appear in a different form in attention models. However, there
are a few notable differences. First, in an attention model, a
weight is used to determine to what extent to consider the
hidden state obtained for a given input, e.g. different key-
words in a sentence [Wang et al., 2016], while in our multi-
weight LSTM model, the focus is instead on choosing the
right weight matrices to produce a hidden state. Second, for
attention models, the steps that require attention are usually
fixed, while in our model, the number of selections may vary
for different instances. Third, attention mechanisms typically
are used to enable each output step to focus on the hidden
states for different parts of an input sequence. Our gating
mechanism instead enables entirely different operations, not
just varying attention, and enables this for every input step,
while an attention model applies only after the entire input
has been consumed. Fourth, unlike attention mechanisms,
the weight matrices for these different operations are auto-
matically learned from the data.

Experimental Analysis. In order to validate these theoreti-
cal intuitions experimentally, we create two artificial datasets.
The first of these consists of the union of a large biomedical
corpus [Bunescu and Mooney, 2005] and a news corpus [Das
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Bio News
0.81 0.27
English French
0.15 0.93

Table 4: The relation between the selected weight matrix and the
type of sentence.

Error class Percentage
Infrequent Mechanism 63%
Prior Knowledge 21%
Others 16%

Table 5: Distribution of different error classes.

and Bandyopadhyay, 2010], with a randomly shuffled sen-
tence order. In the second dataset, we take an English corpus
[Marcus et al., 1993] and another French corpus [Degand and
Bestgen, 2003], and again randomly shuffle the sentences.

Now, we examine and interpret the cell behavior on these
manufactured datasets. In our experiment, we again set the
number of weight matrices to be two, since it suffices for cap-
turing the bimodal nature of these datasets. After training our
model and before prediction, we keep track of which corpus
each test sentence originated from and trace the value of p; in
Eq. (8) of the cell. Recall that p; denotes the probability of
selecting the i-th weight matrix W;.

In Table 4, we list the corresponding p; for the respective
two corpora in the two datasets. Since, in this two-weight
matrix instantiation of multi-weight LSTMs, ps = 1 — p;
can be determined from p;, we omit its values in the table.
It can be seen that, in both datasets, one kind of data selects
W1 much more often, while the other goes through W5 much
more often.

Error Analysis. To further improve the architecture of our
framework in the future, it is helpful to scrutinize the failure
cases of our models. In particular, we have categorized the
failure cases observed for the cloze tests into the following

categories.
1. Infrequent Mechanism. For example, the choices for the
blank in “... Sources close to the presidential palace

said that Fujimori declined at the last moment to leave
the country and instead he will send a high level dele-
gation to the ceremony, at which Chilean President Ed-
uardo Frei will pass the mandate to . ...70 are
(1) Augusto Pinochet, (2) Jack Straw, and (3) Ricardo
Lagos. Our model wrongly chooses option (2), while
the correct answer is choice (1). The model may have
misunderstood that Eduardo Frei is in close contact with
Jack Straw, since the name Jack Straw is closest to Ed-
vardo Frei among the three choices. Such errors likely
occur because this is an infrequent case not covered by
the main mechanisms of inference learnt by our model.
2. Prior Knowledge: For example, the choices for the blank
in “... U.S. officials, repeatedly stymied in the quest
to oust alleged war criminals from the Bosnian Serb
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leadership, said Tuesday that increased NATO patrols
could improve the chances that indicted suspects such as
Radovan Karadzic and will be arrested. ...” are
(1) Warren Christopher, (2) Nicholas Burns, (3) George
Joulwan, (4) Simon Haselock, and (5) Ratko Mladic.
Our model wrongly chooses option (3), while the cor-
rect answer is choice (5). It is not mentioned that Ratko
Mladic is a criminal in the context, though it is common
knowledge, and hence the model may not have captured
that the word “suspect” hints at the blank being filled
with this name. Overcoming such errors may require an
additional dictionary or encyclopedia.

The relative percentages of different classes of errors are
given in Table 5. For this evaluation, we randomly select 100
failure cases and categorize them manually. It can be seen
that the class of Infrequent Mechanism errors occupies the
largest portion, followed by Prior Knowledge, which comes
second. Thus, focusing on avoiding these two types of errors
may greatly enhance the success rate of our model on cloze
test scores specifically and other tasks in general.

5 Conclusion

In summary, we have proposed a novel framework for multi-
weight RNN cells that rely on multiple weight matrices to
better cope with multi-faceted data. The mechanism is ex-
plained theoretically and experimentally analyzed in substan-
tial detail. Extensive experiments on multiple tasks show the
consistent superiority of our model against previous state-of-
the-art models. Since most real-world data is multi-faceted in
nature, we expect this approach to be of broad applicability
in numerous different tasks.
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