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Abstract
The restricted chase is a sound and complete al-
gorithm for conjunctive query answering over on-
tologies of disjunctive existential rules. We develop
acyclicity conditions to ensure its termination. Our
criteria cannot always detect termination (the prob-
lem is undecidable), and we develop the first cyclic-
ity criteria to show non-termination of the restricted
chase. Experiments on real-world ontologies show
that our acyclicity notions improve significantly
over known criteria.

1 Introduction
Answering conjunctive queries (CQs) over ontologies is an
important reasoning task with many applications in knowl-
edge representation and data management. A flurry of re-
search efforts have significantly improved our understanding
of this problem, and led to concrete solutions for many on-
tologies based either on description logics (DLs) [Calvanese
et al., 2007; Stefanoni et al., 2014; Calvanese et al., 2014; Bi-
envenu et al., 2016] or on existential rules [Baget et al., 2011;
Cuenca Grau et al., 2013; Calı̀ et al., 2013].

Nevertheless, the problem remains very challenging in the-
ory and in practice. For the popular OWL Web Ontology
Language (based on DLs), it is still unknown if the prob-
lem is decidable [Rudolph and Glimm, 2010]. For existential
rules, which are syntactically closer to CQs, query answer-
ing is a basic reasoning task, but it is also undecidable. At
the same time, existential rules are too weak to capture the
non-deterministic features of ontology languages like OWL.

In this work, we study existential rules with disjunction,
which generalise many expressive ontology languages. Our
results apply to DLs (and OWL) and many rule languages.

Example 1. The following rules capture basic part-whole re-
lationships (meronomy) and disjunctive information.

Bicycle(x)→ ∃v.hasPart(x, v) ∧Wheel(v) (1)
Wheel(x)→ SpokeWheel(x) ∨ DiscWheel(x) (2)

SpokeWheel(x)→ ∃w.partOf(x,w) ∧ Bicycle(w) (3)
hasPart(x, y)→ partOf(y, x) (4)
partOf(x, y)→ hasPart(y, x) (5)

Similar modelling can be found, e.g., in many medical ontolo-
gies. This particular example can also be expressed in OWL.

The oblivious chase provides a sound and complete rea-
soning algorithm for this logic [Bourhis et al., 2016], com-
puting rule entailments in a bottom-up fashion and branching
on disjunctive choices. Unfortunately, the chase often fails to
terminate. In Example 1, each bicycle introduces a new wheel
(1), which could be a spoke wheel (2), which may introduce
a new bicycle (3) – an infinite chain of bikes and wheels. To
avoid this, we define a restricted chase that tries to reuse ex-
isting elements before introducing new ones.

However, the restricted chase may still fail to terminate,
and determining this is undecidable in general [Beeri and
Vardi, 1981]. We therefore develop new acyclicity criteria that
can ensure termination in the spirit of previous approaches
for rules without disjunctions [Marnette, 2009; Krötzsch and
Rudolph, 2011; Cuenca Grau et al., 2013]. Existing notions
can actually be applied to disjunctive rules by replacing ∨
with ∧ for testing acyclicity. However, this only works for an
oblivious chase, where non-termination is preserved if rules
are logically strengthened. Our restricted chase is more chal-
lenging, since additional entailments can lead to termination.
Indeed, the restricted chase terminates for Example 1 since
rule (3) never needs to be applied to a wheel that was newly
introduced by rule (1). Without the rules (4) and (5), this
would not be true, and an infinite chase would be required.
Only Carral et al. [2016] seem to have studied this setting
so far, but their results are specific to the non-disjunctive DL
Horn-SRIQ and do not apply to existential rules.

Acyclicity is sufficient but not necessary for termination.
In experiments, we are often left with a significant amount
of non-acyclic ontologies of which we cannot say anything.
We therefore also develop a cyclicity notion to detect non-
termination of the restricted chase. To the best of our knowl-
edge, this is the first proposal for such a criterion. It allows
us to show that a majority of practical ontologies is such that
the chase will either terminate over all possible sets of input
facts, or will necessarily be infinite over at least some inputs.

In summary, our main contributions are:

• we propose restricted joint acyclicity as a simple crite-
rion for restricted chase termination on disjunctive rules,

• we design more general criteria by extending model-
faithful acyclicity and model-summarising acyclicity,
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• we characterise the complexity of query answering and
of checking acyclicity for each of the new notions,
• we introduce the first criterion for checking non-

termination of the restricted chase,
• we empirically evaluate our results on a large corpus of

real-world ontologies.
Experiments suggest that our new notions can significantly
improve over the state of the art, and that a large subset of
non-acyclic ontologies are indeed cyclic. Our treatment is
fully self-contained, but a technical report with full formal
details can be consulted if desired [Carral et al., 2017].

2 Preliminaries
We consider a standard first-order signature based on mutu-
ally disjoint, countably infinite sets of constants C, function
symbols F, variables V, and predicates P. Every function
symbol or predicate f has an arity ar(f) ≥ 0. Terms are
built from C, V, and F as usual. We write lists of variables
〈x1, . . . , xn〉 as x, and similarly for term lists t. We treat such
lists as sets when order is irrelevant. We will use function
symbols only to represent auxiliary terms introduced during
reasoning (via skolemisation; see below). An atom is a for-
mula p(t) with p ∈ P and ar(p) = |t|. A term or formula is
ground if it contains no variables. A fact is a ground atom. A
disjunctive existential rule, or simply rule, is a formula

∀x,y. (B[x,y]→
∨n
i=1 ∃vi.Hi[x,vi]) (6)

where n ≥ 1, and where B (the body) and Hi (the heads)
are non-empty conjunctions of atoms that contain only vari-
ables from x ∪ y and x ∪ vi, respectively, and no constants
or function symbols. We omit the universal quantifiers when
writing rules. The variables x are called frontier variables.
A rule is deterministic if n = 1 and nondeterministic other-
wise; it is generating if it contains an existential variable and
non-generating otherwise. When convenient, we treat con-
junctions, such as B and Hi, as sets of atoms.

We consider finite sets of rules R, where we assume with-
out loss of generality that each variable in R occurs only in
the scope of a single quantifier within a single rule (‡). An
instance I is a finite set of function-free facts. A program is
a pair 〈R, I〉 withR a rule set and I an instance.

A Boolean conjunctive query (BCQ) is a formula ∃v.Q[v],
where Q is a conjunction of function-free, constant-free
atoms using only variables from v. A program 〈R, I〉 entails
a BCQ ∃v.Q[v] if

∧
R ∧

∧
I |= ∃v.Q[v] under standard

first-order semantics. It is well known that arbitrary conjunc-
tive query answering can be reduced to BCQ entailment.

A (ground) substitution σ is a partial function from vari-
ables to (ground) terms. We denote finite substitutions as
[x1/t1, . . . , xn/tn] or [x/t], and we set σ(x) = x if σ is
undefined for x. Given a term or formula F , we write Fσ
for the expression obtained by concurrently replacing all un-
bound occurrences of variables x in F by σ(x).

The skolemisation sk(ρ) of a rule ρ as in (6) is the for-
mula ∀x,y. (B[x,y]→

∨n
i=1 sk(Hi)[x]) where sk(Hi) is

obtained from Hi by replacing each variable v ∈ vi by the
term fv(x), where fv is a fresh skolem function symbol spe-
cific to v (which, by (‡), occurs in only one quantifier).

The Restricted Chase We consider a restricted version of
the disjunctive chase [Bourhis et al., 2016], where rules are
only applicable if their heads are not satisfied by existing
facts. Moreover, we impose an order of rule applications that
defers the use of generating rules.
Definition 1. Consider a rule ρ of form (6), a ground substi-
tution σ defined exactly on the variables x ∪ y from ρ, and a
set of facts F . Then 〈ρ, σ〉 is applicable to F if (a) F |= Bσ,
and (b) F 6|=

∨n
i=1 ∃vi.Hiσ. In this case, the result of apply-

ing 〈ρ, σ〉 to F is the set {F ∪ sk(H1)σ, . . . ,F ∪ sk(Hn)σ},
consisting of all sets of facts obtained from F by adding the
skolemised, σ-instantiated atoms of some head of ρ.

Note that condition (a) is the same as Bσ ⊆ F , while (b)
states that there is no extension σ̂ of σ to the variables vi such
that Hiσ̂ ⊆ F , for any i ∈ {1, . . . , n}. The chase is the result
of a possibly infinite process of recursive rule applications:
Definition 2. A chase tree of 〈R, I〉 is a (possibly infinite)
tree; each node is labelled by a set of facts, such that:
(1) the root is labelled with I,
(2) if a node labelled F has n children labelled F1, . . . ,Fn,

then there is a rule ρ ∈ R and substitution σ such that
{F1, . . . ,Fn} is the result of applying 〈ρ, σ〉 to F ,

(3) if a node α is labelled with F and 〈ρ, σ〉 is applicable
to F , then each path starting from α contains a node in
which 〈ρ, σ〉 is no longer applicable due Definition 1 (b),

(4) generating rules are only applied in a node where no non-
generating rule ofR is applicable.

The result of a restricted chase is the (possibly infinite) set
of all (possibly infinite) sets of facts that are obtained as the
union of all set of facts along some path.

Condition (3) ensures fair, exhaustive application, while (4)
improves the rule application strategy to reduce the amount of
applicable generating rules. Bourhis et al. [2016] omit (4) and
Definition 1 (b), but restricted disjunctive chase algorithms
were considered before, e.g., by Deutsch and Tannen [2002].
Example 2. Consider the rules in Example 1, where
we use first letters to abbreviate predicates from now
on, and the instance {B(c)}. We obtain a finite chase
tree with two leaves F1 = {B(c), hP(c, fv(c)),W(fv(c)),
pO(fv(c), c), SW(fv(c))} and F2 = {B(c), hP(c, fv(c)),
W(fv(c)), pO(fv(c), c),DW(fv(c))}. In particular, rule (3)
is not applicable to F1, since the facts pO(fv(c), c) and B(c)
already satisfy the head of this rule for the substitution [x/c].

In general, the chase tree and even its result is not unique,
since the order of rule applications may matter, but we get the
following consequence of well-known results:
Fact 1. A program 〈R, I〉 entails a BCQ ∃v.Q iffF |= ∃v.Q
holds for all sets of facts F in the result of an (arbitrary)
restricted chase.

If the chase terminates, the chase tree is finite, and the re-
sult is the set of all (finite) leaf labels. In this case, Fact 1
leads to a decision procedure for BCQ entailment. Unfortu-
nately, chase termination is undecidable even for determinis-
tic rules [Beeri and Vardi, 1981]. We therefore study sound
but incomplete tests for restricted chase termination.
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3 Restricted Joint Acyclicity
We first consider a limited but easy-to-check condition to en-
sure chase termination. As noted in the introduction, we could
apply existing criteria for the deterministic skolem chase, but
the result is often unsatisfactory:

Example 3. On the skolemisation of the rules in Exam-
ple 1, the oblivious chase may produce an infinite set of
facts {hP(c, fv(c)), W(fv(c)), pO(fv(c), c), SW(fv(c)),
pO(fv(c), fw(fv(c))), B(fw(fv(c))), hP(fw(fv(c)), fv(c)),
hP(fw(fv(c)), fv(fw(fv(c)))), W(fv(fw(fv(c)))), . . .}.
Definition 1 (b) does not reduce the derivable facts, since the
presence of one skolem term does not allow us to omit the
introduction of another skolem term.

To address such cases, we extend the notion of joint
acyclicity (JA), proposed by Krötzsch and Rudolph [2011]
for deterministic rules. JA proceeds in two steps: (1) for each
existential variable v, we compute a set Ωv of predicate po-
sitions, to which values generated for v might propagate; (2)
we build a dependency graph to show if the value generated
for a variable v may participate in the generation of a new
value for a variable w. A rule set is JA if this graph has no
cycles. To adapt this idea to the restricted chase, we treat ∨
as ∧ for (1) and add a new blocking criterion for (2). For the
next definition, recall assumption (‡) from Section 2.

Definition 3. A position in a predicate p is a pair 〈p, i〉 with
i ∈ {1, . . . , ar(p)}. A term t occurs at position 〈p, i〉 in a
formula ϕ if ϕ contains an atom p(s) with si = t. Given a
rule ρ and variable z, a body position (head position) of z is
a position in the body (in a head) of ρ at which z occurs.

For a rule set R and an existential variable v of R, a set
Ωv of positions is defined recursively: (i) Ωv contains all head
positions of v in a rule ofR; (ii) for every universally quanti-
fied variable x in R, if Ωv contains every body position of x,
then Ωv also contains every head position of x.

Example 4. For the rules of Example 1, we obtain
Ωv = {〈hP, 2〉, 〈W, 1〉, 〈SW, 1〉, 〈DW, 1〉, 〈pO, 1〉} and Ωw =
{〈pO, 2〉, 〈B, 1〉, 〈hP, 1〉}.

For a set of facts F and set of rules R, let Rdng(F) be
the set of facts obtained from F by exhaustive application of
all deterministic, non-generating rules of R. For an existen-
tially quantified variable v, let Hv denote the (unique) head
conjunction v occurs in, and let Bv be the body of the corre-
sponding rule.

Definition 4. The restricted dependency graph of a rule set
R has the existentially quantified variables ofR as its nodes,
and an edge v → w if w occurs in a rule ρw of form (6) with
a frontier variable x ∈ x such that

(a) all body positions of x occur in Ωv , and

(b) for the set F = (Bw ∪ Hv[v/x] ∪ Bv)σ, where σ re-
places all variables z by distinct constants cz , we have
Rdng(F) 6|= (∃w.Hw)σ.

R is restricted jointly acyclic (RJA) if its restricted depen-
dency graph has no cycles.

Example 5. We consider Example 1 and rename variables by
subscripting rule numbers. The existential dependency graph

has nodes v and w. For the potential edge v → w, condition
(a) of Definition 4 is satisfied for rule (3) and variable x3,
since 〈SW, 1〉 ∈ Ωv (see Example 4). However, the set F of
condition (b) is {SW(c3),B(c1), hP(c1, c3),W(c3)} and the
application of deterministic, non-generating rules (4) and (5)
yieldsRdng(F) = F ∪ {pO(c3, c1)}, which satisfies rule (3).
Hence, there is no edge v → w. A similar argument rules out
w → v. For v → v and w → w, condition (a) is not satisfied.
The graph therefore has no edges and the rule set is RJA.

RJA rules lead to a finite chase tree. The following property
is the essence of this claim.

Lemma 2. If the restricted chase tree of 〈R, I〉 contains a
term fw(t) where ti = fv(s) for some i ∈ {1, . . . , |t|}, then
there is an edge v → w in the restricted dependency graph.

Proof. We denote rules etc. as in Definition 4, and assume
that fw(t) was derived by applying 〈ρw, θ〉. The sets Ωv over-
estimate the possible positions of fv-terms, hence the appli-
cability of ρw to fv(s) implies Definition 4 (a). Moreover,
let Fw be the set of facts as it was when ρw was applied
in the chase tree. There is a homomorphism h : F → Fw
with h(Bwσ) = Bwθ and h(Bvσ) the premise of the ap-
plication of ρv that produced fv(s). By our chase strategy,
Rdng(Fw) = Fw. Hence, if Rdng(F) |= Hwσ, then Fw |=
h(Hwσ) = Hwθ, such that 〈ρw, θ〉 would not be applicable.
Since it is, we getRdng(F) 6|= Hwσ as claimed.

Theorem 3. Deciding BCQ entailment for programs 〈R, I〉
whereR is RJA is coN2EXPTIME-complete, even if the arity
of predicates is bounded.

Proof sketch. Membership follows since BCQ non-
entailment can be shown by finding a model of 〈R, I〉
that does not satisfy the query. For this we may non-
deterministically guess a branch of the chase tree. The
maximal nesting depth of function terms in the chase tree is
bounded by the number of existentially quantified variables
inR, since a greater depth can only be achieved by repeating
a function symbol, which would make the restricted depen-
dency graph cyclic by Lemma 2. The maximal number of
terms of linear depth is doubly exponential, so there are
double exponentially many possible ground facts overall. A
set of facts of this size can be computed in 2EXPTIME.

Hardness is established by modifying the construction of a
2EXPTIME Turing machine given for deterministic, weakly
acyclic rules by Calı̀ et al. [2010]. The construction yields
a grid of doubly exponential size, using predicates of arity
≤ 3. Using disjunction in rules, it is not hard to simulate a
nondeterministic Turing machine in the same way.

Theorem 4. Deciding if R is RJA is EXPTIME-complete,
coNP-complete if the arity of predicates is bounded, and P-
complete if the number of variables per rule is bounded.

Proof. Sets Ωv can be computed in polynomial time, and
there are only polynomially many possible edges and body
variables x as in Definition 4 to be considered. However, Def-
inition 4 (b) corresponds to the EXPTIME-complete Datalog
reasoning task of checking non-entailment of a set of facts
[Dantsin et al., 2001]. The task becomes coNP-complete
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for predicates of bounded arity: hardness follows from hard-
ness of conjunctive query entailment (rule bodies are CQs);
membership follows since there are only polynomially many
ground facts over this signature, hence the derivation of
any such fact can be represented as a polynomial directed
acyclic graph with (true) facts as nodes and edges connect-
ing premises with conclusions, such that fact entailment can
be checked by guessing this graph and verifying each rule
application. The task becomes P-complete for bounded num-
bers of variables, since grounding (instantiation of rules with
constants) polynomially reduces fact entailment to proposi-
tional Horn logic entailment. In all cases, detecting cycles in
the (polynomial) dependency graph is possible in P.

4 Restricted Model-Faithful Acyclicity
Since RJA is not sufficient to capture all realistic cases, we
develop more general, though also more complex, criteria.

Example 6. We extend Example 1 with the following rules:

SpokeWheel(x6)→ ∃u.hasPart(x6, u) ∧ Spoke(u) (7)
Spoke(x7)→ ∃z.partOf(x7, z) ∧ Bicycle(z) (8)

hasPart(x8, y8) ∧ hasPart(y8, z8)→ hasPart(x8, z8) (9)

The resulting rule set still leads to a finite restricted chase for
all instances, but it is not RJA. Indeed, the restricted depen-
dency graph contains a cycle v → u→ z → v. For example,
when considering z → v, the set F in Definition 4 (b) is
{B(c1), pO(c7, c1), S(c7)}, which cannot entail W(c1).

For cases as in Example 6, we extend the notion of model-
faithful acyclicity (MFA) [Cuenca Grau et al., 2013]. To de-
termine if a set of deterministic rules R is MFA, one com-
putes the chase on 〈sk(R), I?R〉, where I?R is the critical in-
stance, which contains all possible ground facts based on
predicates ofR and the single constant symbol ?.R is MFA if
this chase terminates without introducing a cyclic term f(t),
which is such that f occurs in the terms t. Alternatively, a
cyclic term must appear after at most doubly exponentially
many steps. Deciding MFA indeed is 2EXPTIME-complete.

MFA uses the fact that the chase terminates on every in-
stance if it terminates on the critical instance. This is not true
for the restricted chase, as no rule is applicable in the presence
of the critical instance. We therefore consider a relaxed con-
dition of applicability, which, in the spirit of Definition 4 (b),
determines a rule’s applicability from a smaller set of facts not
including the whole critical instance. The body of the rule (in-
stance) that is to be applied can always be assumed as given.
Further facts can be obtained from this body’s skolem terms,
since each skolem function is introduced by one specific rule:

Definition 5. For a rule set R and a ground term t= fv(s)
using skolem functions from sk(R), the set Ft contains all
ground facts involved in the derivation of facts containing t:

(1) Let B[x,y] →
∨
i ∃vi.Hi[x,vi] be the unique rule that

contains v in head disjunct Hk, and consider the substi-
tution θ = [x/s,y/c], where c is a list of fresh constant
symbols not used elsewhere. Then Bθ ∪ sk(Hk)θ ⊆ Ft.

(2) For every functional term sj ∈ s, we have Fsj ⊆ Ft.

Example 7. For the rules from Examples 6 and 1, and term
t = fu(fv(b)), we have Ft = {SW(fv(b)), hP(fv(b), t),
S(t)}∪Ffv(b) with Ffv(b) = {B(b), hP(b, fv(b)),W(fv(b))}.

The next example illustrates another difficulty: even if we
only take a rule’s body into account to check its applicability,
we might get much fewer derivations on the critical instance
than on other instances.

Example 8. Consider the rule ρ : p(x, y) → ∃v.p(v, v) ∨
∃w.p(y, w). On the critical instance, one could try to apply
ρ with substitution [x/?, y/?]. But already the instantiated
body p(?, ?) prevents the application of ρ, since p(?, ?) |=
∃v.p(v, v). The restricted chase terminates immediately. Yet,
on the instance {p(a, b)}, one can compute an infinite set of
facts {p(a, b), p(b, fw(b)), p(fw(b), fw(fw(b))), . . .}, so the
restricted chase is not finite in general.

To handle this issue, we rename distinct occurrences of ?.

Definition 6. Consider a rule ρ :B[x,y]→
∨
i ∃vi.Hi[x,vi],

and a ground substitution σ defined exactly on x∪y. Let σ′ be
such that, for all x ∈ V, σ′(x) is σ(x) with each occurrence
of a constant renamed so that no constant occurs more than
once in the image of σ′. The set Bρ,σ is the union of Bσ′ and
each of the sets Ft for which there is a skolem term t in Bσ′.
We say that 〈ρ, σ〉 is blocked ifRdng(Bρ,σ) |=

∨
i ∃vi.Hiσ

′.

Example 9. Consider the rules of Example 6, and especially
rule ρ of (8) under substitution [x7/t] with t = fu(fv(b)).
Intuitively speaking, t represents a spoke that was introduced
as part of wheel fv(b), which in turn is part of bicycle b. We
want to show that ρ does not need to be applied to intro-
duce another bicycle fz(t). We do not need to rename any
constants here, so Bρ,σ = {S(t)} ∪ Ft with Ft as in Exam-
ple 7. While Bρ,σ does not satisfy the head of ρ yet, we get
Rdng(Bρ,σ) = Bρ,σ ∪ {hP(b, t), pO(t, fv(b)), pO(fv(b), b),
pO(t, b)}. Therefore Rdng(Bρ,σ) |= ∃z.pO(t, z) ∧ B(z) and
〈ρ, σ〉 is blocked as expected.

Our adaptation of MFA conducts a (deterministic) chase on
the critical instance, but applies rules only if not blocked.

Definition 7. For a rule set R, RMFA(R) is the least
set of facts for which I?R ⊆ RMFA(R) and, whenever
ρ :B→

∨
i ∃vi.Hi is a rule in R, and σ is such that Bσ ⊆

RMFA(R) and 〈ρ, σ〉 is not blocked, then sk(H1)σ ∪ . . . ∪
sk(Hn)σ ⊆ RMFA(R). R is restricted model-faithfully
acyclic (RMFA) if RMFA(R) does not contain a cyclic term.

Example 10. The rules of Examples 1 and 6 together are
RMFA, as one can easily check along the lines of Example 9.

Theorem 5. Deciding ifR is RMFA is 2EXPTIME-complete
even if the arity of predicates or the number of variables per
rule is bounded. It is EXPTIME-complete if each rule contains
at most one frontier variable.

Proof sketch. Membership in 2EXPTIME follows as in The-
orem 3 by bounding the possible ground skolem terms. Sim-
ilarly, rules with one frontier variable lead to unary skolem
functions, which can form only exponentially many terms.

2EXPTIME-Hardness can be shown as for the case of
MFA, where it was done by reduction from the 2EXPTIME-
hard problem of BCQ entailment checking for weakly acyclic
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(WA) rules [Cuenca Grau et al., 2013]. The hardness proof for
WA in turn is based on a direct Turing machine construction
using predicates of bounded arity and rules with a bounded
number of variables [Calı̀ et al., 2010]. One may verify that
no rule application is ever blocked in this particular construc-
tion, so that we can use the same proof for our purposes. EXP-
TIME-hardness can be obtained using a known proof for the
case of MFA, which exhibit the same complexity for small
frontiers [Cuenca Grau et al., 2013]. In particular, their con-
struction in Lemma 59 works even when using blocking.

Lemma 6. Let π? be the function that maps a term t to the
term obtained from t by replacing all constants with ?. Then,
for every term t that occurs in any restricted chase of 〈R, I〉
for any instance I, the term π?(t) occurs in RMFA(R).

Proof sketch. We can show that π? is a homomorphism from
any leaf of the chase tree into RMFA(R). This is done by in-
duction following the rule applications of one branch of the
restricted chase. The main observation is that, if 〈ρ, σ〉 is ap-
plicable to a set of facts F during the restricted chase, and
we define σ?(z) = π?(σ(z)), for all z, then 〈ρ, σ?〉 is not
blocked. This in turn is shown by finding a homomorphism
fromRdng(Bρ,σ?) (Definition 6) into F .

Theorem 7. Deciding BCQ entailment for programs 〈R, I〉
where R is RMFA is coN2EXPTIME-complete, even if the
arity of predicates is bounded.

Proof sketch. The proof is similar as for Theorem 3. By
Lemma 6, any chase derives at most doubly exponentially
many facts, since this is the maximal number of non-cyclic
terms, and π? preserves non-cyclicity. Hardness follows by
Theorem 3, as any RJA rule set can be shown to be RMFA (cf.
the relation of JA and MFA [Cuenca Grau et al., 2013]).

Theorem 5 motivates the search for a simpler test that
still extends RJA. We can achieve this by adapting model-
summarising acyclicity (MSA) to our setting [Cuenca Grau
et al., 2013]. This criterion resembles MFA in that a chase
on the critical instance is conducted to discover cycles. How-
ever, instead of using skolem terms, existential variables now
are replaced by fresh constants, and cycles are tracked ex-
plicitly during the chase instead of using cyclic terms. Defi-
nition 6 can remain unchanged if we treat the fresh constants
as nullary “skolem” function symbols in Definition 5 (the re-
cursive case (2) for subterms becomes irrelevant).

Definition 8. For a rule setR, let S be a binary predicate not
used inR, and let θ be a substitution that maps each existen-
tially quantified variable v inR to a unique fresh constant cv .
RMSA(R) is the least set of facts for which I?R ⊆ RMSA(R)
and, whenever ρ :B[x,y]→

∨n
i=1 ∃vi.Hi[x,vi] is a rule in

R, and σ is such that Bσ ⊆ RMSA(R) and 〈ρ, σ〉 is not
blocked, then H1θσ ∪ . . .∪Hnθσ ∪ {S(xσ, vθ) | x ∈ x, v ∈
vi, 1 ≤ i ≤ n} ⊆ RMSA(R).
R is restricted model-summarising acyclic (RMSA) if

RMSA(R) does not contain a directed cycle of S-relations.

BCQ answering remains as hard as for RJA and RMFA,
but recognising RMSA is only as hard as for RJA. The proof
is similar to the proofs of Theorems 4 and 5.

Theorem 8. Deciding if R is RMSA is EXPTIME-complete,
and P-complete if the number of variables per rule is fixed.

Example 11. RMSA cannot capture Example 6, but it gener-
alises RJA. Consider the setR of the rules (1), (2), (7), and

hasPart(x, y) ∧ BicycleChain(y)→ Bicycle(x). (10)

R is RMSA since rule (10) is never applicable to fresh con-
stants (which do not have parts that are bicycle chains). How-
ever,R is not RJA since (10) leads to 〈Bicycle, 1〉 ∈ Ωv .

5 Proving Nontermination
Even if rules are not acyclic by any of our criteria, they might
still have a finite chase. In this section, we introduce a com-
plementary criterion that is sufficient (but not necessary) to
show that the chase will be infinite. By combining this with
our previous acyclicity notions, we hope to decide the ques-
tion of chase termination for most practical ontologies.

Sufficient conditions for nontermination can also look for
cycles, e.g., by detecting cyclic terms in a chase as done for
MFA. The critical instance cannot be used here, since it over-
estimates what can really be derived repeatedly. However, a
cyclic term fv(. . . fv(t) . . .) might indicate nontermination if
it was derived in a chase that started from nothing but the facts
Bv∪sk(Hv), where we replace each variable z by a fresh con-
stant cz (Bv and Hv are the unique body and head for v as in
Section 3). Indeed, if this happens, then each application of
the rule of v creates a set of facts that eventually enables an-
other application of the same rule that will produce a skolem
term of increased nesting depth. This discussion suggests a
criterion for showing nontermination of the skolem chase:

Definition 9. Consider a set R of deterministic rules, and a
rule ρ : B[x,y] → ∃v.H[x,v] in R. The set Iρ is obtained
fromB∪sk(H) by replacing all occurrences of every variable
z with a fresh constant cz . Let Fρ be the set of facts obtained
by exhaustive application of rules from sk(R) to Iρ, under the
condition that no rule is applied to facts with a cyclic term.
ThenR has a ρ-cycle if there is a variable v ∈ v such thatFρ
contains a cyclic term fv(. . . fv(t) . . .). R is model-faithful
cyclic (MFC) if it has a ρ-cycle for a generating rule ρ ∈ R.

Excluding facts with cyclic terms in the computation of
Fρ is necessary to ensure termination, since otherwise that
chase might be infinite although none of the cyclic terms have
the form fv(. . . fv(t) . . .) with v ∈ v. With this restriction,
however, MFC can be checked in 2EXPTIME.

Example 12. The rules in Example 1 are MFC if we replace
∨ by ∧ to make them deterministic. Let ρ be rule (1). Then
Iρ = {B(c), hP(c, fv(c)),W(fv(c))} and Fρ contains the
facts SW(fv(c)), pO(fv(c), fw(fv(c))), B(fw(fv(c))), and
hP(fw(fv(c)), fv(fw(fv(c)))), which has a cyclic term.

Theorem 9. If R is MFC, then there is an instance I for
which the chase of 〈sk(R), I〉 is infinite.

Unfortunately, the approach of performing a chase on min-
imal sets of facts fails when the application of rules can be
prevented by the presence of additional facts. We therefore
perform an additional applicability check for the restricted
chase. Recall that I?R denotes the critical instance forR.
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Definition 10. Consider a setR of deterministic rules, a rule
ρ : B[x,y]→ ∃v.H[x,v] ∈ R, and a ground substitution σ
on x∪y. Let σ? be such that σ?(z) is σ(z) with all constants
replaced by ? for all z ∈ V. Let R? be R with existential
quantifiers omitted and existential variables replaced by ?,
and let ρ? ∈ R? be the rule obtained from ρ.

We define Iρ,σ,R = I?R ∪ Bσ? ∪
⋃
t∈(x∪y)σ? Ft. The set

Uρ,σ,R is obtained by exhaustive application of rules fromR?
to Iρ,σ,R, with the exception of the rule ρ? under substitution
σ?. Then 〈ρ, σ〉 is unblockable forR if Uρ,σ,R 6|= ∃v.Hσ?.

Intuitively speaking, Uρ,σ,R represents a gross overestima-
tion of what might be derivable in a situation ρ is applicable.

Lemma 10. Consider the chase tree for a program 〈R, I〉,
let F be the label of some node n in this tree, and let R∧ be
R with ∨ replaced by ∧. If ρ : B[x, z] → ∃v.H[x,v] is a
deterministic rule in R, F |= Bσ, and 〈ρ, σ〉 is unblockable
forR∧, then 〈ρ, σ〉 is applied in a node above or below n.

Proof sketch. For a contradiction, suppose that the precondi-
tions hold but 〈ρ, σ〉 is not applied. Since applications are fair,
Definition 1 (b) is violated in all leaf nodes below n. For any
such leaf n′ labelled F ′, we map F ′ to Uρ,σ,R as follows: ev-
ery term t inBσ? (including subterms) is mapped to itself; all
other terms are mapped to ?. One can show by induction over
the chase of F ′ that this is a homomorphism. Since 〈ρ, σ〉 is
not applicable to F ′, we find Uρ,σ,R |= ∃v.Hσ?.

Definition 11. For a set R of rules and a rule ρ ∈ R, we
define Iρ and Fρ as in Definition 9, but with the additional
restriction that the computation of Fρ uses only applications
of deterministic rules that are unblockable for R∧, obtained
fromR by replacing ∨ with ∧.

As before R has a restricted ρ-cycle if there is a variable
v ∈ v such thatFρ contains a cyclic term fv(. . . fv(t) . . .).R
is restricted model-faithful cyclic (RMFC) if it has a ρ-cycle
for some generating rule ρ ∈ R.

Theorem 11. If R is RMFC, then there is an instance I for
which the restricted chase of 〈R, I〉 is infinite.

6 Evaluation
To evaluate the effectiveness of our criteria, we have used
MOWLCorp, a large corpus of real-world OWL ontologies
[Matentzoglu and Parsia, 2014; Matentzoglu et al., 2013],
which we transformed into rules. To this end, we first nor-
malised ontologies by structural decomposition of complex
axioms, and then rewrote axioms into first-order logic to ob-
tain rules. We refer to Cuenca Grau et al. [2013] for details on
this standard process; our normal forms are as in their Table 1
but with an added form A1 u . . . uAn v B1 t . . . tBm.

We excluded ontologies with nominals (oneOf) and at-
most-restrictions (maxCardinality) since they require equality
reasoning. There are well-known techniques for this [Cuenca
Grau et al., 2013], but they are not our focus. We then con-
sidered all ontologies with up to 1,000 existential quantifiers
after normalisation, leading to a set of 1,576 ontologies.

We have implemented tests for RMSA, RMFA, RMFC,
MSA, and MFA using RDFox [Motik et al., 2014] as a rule
engine. The creation of new terms during the chase and our

#∃ # MSA MFA RMSA RMFA RMFC open
1–4 443 293 293 314 314 127 2
5–69 368 243 243 272 272 72 24

70–1K 409 348 348 350 350 40 19

de
te

rm
in

.

1–1K 1220 884 884 936 936 239 45
1–9 128 48 48 53 53 3 72

10–59 110 19 19 39 40 5 65
60–1K 118 23 23 30 30 20 68no

n-
de

t.

1–1K 356 90 90 122 123 28 205

Table 1: Experimental results

blocking conditions are implemented on top of RDFox. For
MSA and MFA, we replaced ∨ by ∧ in all ontologies. We
treat > (universal class) and ⊥ (empty class) as regular unary
predicates, and we modify our tests to ensure that all elements
are always in >; likewise for the universal and the empty
property. We have not implemented RJA since we found the
more general RMSA to perform well.

Table 1 shows our results for ontologies without (top) and
with (bottom) disjunctions, grouped by their number of ex-
istential axioms (#∃). The column “#” gives the number of
ontologies per group; “open” counts ontologies that are nei-
ther RMFA nor RMFC. We can see that RMSA performs bet-
ter than MFA, while (R)MFA hardly improves over (R)MSA.
Using MFA, chase termination remains open for 602 ontolo-
gies overall (38.2%). The combination of RMFA and RMFC
reduces this number to 250 (15.8%). As expected, many on-
tologies are indeed cyclic, but there are also an additional 85
that are acyclic (14.1% of the formerly open ones). In the de-
terministic case, our notions perform rather well and allow us
to characterize 96.3% ontologies as acyclic or cyclic.

7 Conclusion
To the best of our knowledge, this is the first systematic study
of termination of the restricted chase on existential rules
(with disjunctions) and the first ever approach to restricted
chase nontermination. We have shown our criteria to be theo-
retically and empirically more general than previous notions,
deciding termination for 84.2% of the tested ontologies.

Our work motivates and enables further research on chase-
based reasoning procedures. Many tableau-based OWL rea-
soners already implement chase-like algorithms that could be
a starting point. In a test with a modified version of HermiT
[Motik et al., 2009], we have already answered queries over
an acyclic, non-Horn ontology with tens of thousands of facts.
We believe this is a highly promising direction in description
logics ontologies and existential rules alike.
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