Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

Statistical Regimes and Runtime Prediction

Barry Hurley and Barry O’Sullivan
Insight Centre for Data Analytics, University College Cork, Ireland
{barry.hurley,barry.osullivan } @insight-centre.org

Abstract

The last decade has seen a growing interest in
solver portfolios, automated solver configuration,
and runtime prediction methods. At their core,
these methods rely on a deterministic, consis-
tent behaviour from the underlying algorithms and
solvers. However, modern state-of-the-art solvers
have elements of stochasticity built in such as ran-
domised variable and value selection, tie-breaking,
and randomised restarting. Such features can elicit
dramatic variations in the overall performance be-
tween repeated runs of the solver, often by several
orders of magnitude. Despite the success of the
aforementioned fields, such performance variations
in the underlying solvers have largely been ignored.

Supported by a large-scale empirical study employ-
ing many years of industrial SAT Competition in-
stances including repeated runs, we present statisti-
cal and empirical evidence that such a performance
variation phenomenon necessitates a change in the
evaluation of portfolio, runtime prediction, and au-
tomated configuration methods. In addition, we
demonstrate that this phenomenon can have a sig-
nificant impact on empirical solver competitions.
Specifically, we show that the top three solvers
from the 2014 SAT Competition could have been
ranked in any permutation. These findings demon-
strate the need for more statistically well-founded
regimes in empirical evaluations.

1 Introduction

Modern combinatorial search solvers contain many elements
that are stochastic in nature, such as randomised variable and
value selection, tie breaking in heuristics, and random restart-
ing. These elements add a degree of robustness to the solver.
Nevertheless, this stochasticity results in variations in runtime
between repeated runs of the solver, a fact which is often not
accounted for by users and practitioners in related fields. This
paper illustrates the consequences that such assumptions can
have when comparing solver performance.

One such field is that of solver portfolios [Gomes and Sel-
man, 2001; Kotthoff, 20141, which have consolidated and ad-
vanced the state-of-the-art across a broad range of problem

318

domains such as Constraint Programming (CP) [O’Mahony
et al., 2008; Hurley et al., 2014], Satisfiability (SAT) [Xu et
al., 2008; Kadioglu et al., 2010], MaxSAT [Ansétegui et al.,
2014], Planning [Seipp et al., 2015], and many more. Their
effectiveness relies on the ability to identify the best solver
for each individual instance. At its core, training a portfolio
involves collecting the runtime performance of each solver
on a collection of benchmarks. From this, machine learning
techniques are used to choose amongst the solvers based on
instance features. Existing work in this area has only consid-
ered a single sample of the solver runtime for each instance,
and makes the assumption that the behaviour is consistent be-
tween repeated runs of the solver. However, as we will see,
the performance of a solver can vary by many orders of mag-
nitude between repeated runs. This behaviour is related to
heavy-tailed distributions discovered by [Gomes et al., 2000].

In a related field, automated solver configuration
tools [Hutter et al., 2011; Ansétegui et al., 2009; Fitzgerald
et al., 2014] have successfully been able to tune solvers to
surpass their default configuration. Their effectiveness relies
on obtaining consistent, representative performance data for
a given parameterisation on a sample of input instances. Cru-
cially, these methods will not typically make allowances for
any stochastic behaviour in the underlying solvers.

Related to the above is the task of solver runtime predic-
tion [Hutter ef al., 2014]. This focuses on building an em-
pirical hardness model to predict the performance of a solver
based on instance specific features. This paper will demon-
strate that state-of-the-art runtime prediction methods do not
account for the stochastic aspect of solver runtime and as such
can have a substantial effect on their accuracy.

Thus, the contributions of this paper are as follows:
we demonstrate that dramatic runtime variations occur
in practice and can alter the outcome of empirical com-
parisons, such as the annual SAT competitions,
we show that runtime variation needs to be accounted
for in fields such as solver runtime prediction, portfolios,
and automated configuration,
we conduct a large-scale empirical evaluation on over 10
years of industrial SAT instances consuming over 600
weeks of CPU-time, and
we provide a statistical analysis that can be applied to
compare the performance of solvers from a runtime dis-
tribution perspective.

100 " ; A e T

]

207 b \
L 1 =
i . 1 =
3 I Y
: : 1 £
: 4 [=

P(X > x)

202 b l

= | ingeling
Riss BlackBox
----- SWDiIA5BY
102 ‘ !
10 10? 10° 10*

Runtime (s)

(a) SAT Competition 2014 instance UCG-15-10p0.cnf
100 I

10" \. §
2 L.,
T | :
10'2 T U N U 4 19 IL O T i
== |Lingeling
Riss BlackBox
----- SWDIA5BY ‘
102 — ‘
10 102 10° 10*

Runtime (s)

(b) SAT Competition 2014 instance q-query_-3_1.90_coli.sat.cnf

Figure 1: Log-log plots showing the empirical runtime distri-
bution of two instances from the application category at the
2014 SAT Competition. The three solvers are the top-ranked
solvers from the competition and the vertical lines mark their
observed runtime during the competition.

2 Runtime Variations in Practice

This section illustrates a deficiency of empirical comparisons
based on a single run. Figure 1 shows the runtime distribution
of the top three solvers [Biere, 2014; Alfonso and Manthey,
2014; Oh, 2014] on two industrial instances from the 2014
SAT Competition. Vertical lines mark the solver’s observed
runtime during the competition, and the other lines plot the
survival function of the empirical runtime distribution over
100 runs. In Figure la, the solver SWDiAS5SBY solved the
instance faster than Lingeling during the competition, how-

319

ever we can clearly deduce from the runtime distribution that
over repeated runs there is a larger probability of SWDiASBY
having a longer runtime than Lingeling. In this instance, the
runtime distribution shows a clear ranking of the solvers: Lin-
geling < SWDiASBY < Riss BlackBox. In Figure 1b the dis-
tinction between solvers is not as pronounced. Interestingly,
in the competition, SWDiAS5BY is ranked as the fastest of the
three solvers on this instance, however when you consider its
runtime distribution, it is most likely to take the longest.

This exemplifies a critical flaw in this type of empirical
evaluation that is often performed when comparing solvers,
only a single sample of the solver’s runtime is taken on each
benchmark instance. The current evaluation metric used in
the SAT Competition purely considers the number of in-
stances solved within a specified timeout, and only uses run-
times in the case of ties. However, the runtime distribution
can often span over the timeout value, thus affecting the num-
ber of instances solved. Section 4 will demonstrate the ram-
ifications of this, showing that these three solvers could have
been ranked in any permutation. However, first, Section 3
will present a more holistic, statistically-founded methodol-
ogy which is lacking in current comparisons.

3 Expected Performance

We can model the performance of a solver on a set of bench-
mark instances as a random variable, doing so will allow us to
define bounds on the possible outcomes. Let p; be the proba-
bility that instance ¢ is solved within a given timeout. p; will
be simply 0.0 or 1.0 if a single sample runtime is taken, or a
continuous value if a solver is run multiple times on the same
instance. Naturally, the accuracy of p; is proportional to the
number of repeated runs performed.

Next, let X; be a discrete random variable which takes the
value 1 if instance 7 is solved within the timeout, 0 otherwise.
The expected value of X is p;:

We can define a bound on the variation of X; by taking the

critical value for p; = 0.5; thus the standard deviation of X;
can be bounded by %:

(X)) = EXY - (E[X))’
= E[Xi] - p}
= pi — D; 2
= pi(1—pi)
< i for any p;
o(Xi) = vpi(l —p;i) < % (3)

If the benchmark set contains k instances, then the success
rate .S, or ratio of instances solved within the timeout, is sim-
ply the mean of the X; variables over the k instances. This
allows the definition of the expected value of S as being the
mean over the p; values:

_ X BlXi]
k

k
_ die1 Pi

E[9] = =

“4)

Finally, bounds on the variation and standard deviation of S
can be defined:

P = o (Bp) = & (SLo)
= & (Thp-m) < =&
1
o(S) < N/ ©)

Importantly, this means that even over repeated runs, the
variation in the total number of instances solved is bounded
by a function of the number of instances. This fact should be
of great consequence to the designers of empirical compar-
isons.

4 SAT Competition 2014

This section will project the analysis of Section 3 onto one
annual empirical solver comparison. Consider the top three
solvers from the application category at 2014 SAT Competi-
tion, namely, Lingeling [Biere, 2014], SWDiA5BY5by [Oh,
2014], and Riss BlackBox [Alfonso and Manthey, 2014]
which solved 231, 228, and 226 of the 300 instances in this
category, respectively. Note that, like many other empirical
competitions, only a single sample of the solver’s runtime is
taken during the evaluation and the scoring metric is purely
based on the number of instances solved within the specified
timeout. Using the equations of Section 3, we can postulate
on possible outcomes and give upper-bounds on the variation
that could occur in such empirical evaluations, this is pre-
sented in Table 1.

Given that the performance difference amongst the top-
ranked solvers is so narrow, it is not unreasonable to suspect
that the outcome could have been different if the competi-
tion was re-run. To assess the potential outcomes, each of
the three solvers above were re-run 100 times on each of the
300 instances from the industrial/application category at the
SAT Competition 2014. Since Lingeling is the only one of
these solvers to support the ability to pass a random seed as
input, we emulate the functionality across all solvers simply
by shuffling the input instance: randomly renaming the vari-
ables, shuffling their order in each clause, and reordering the
clauses. This preserves the same structure and semantics of
the original instance but may result in the solver taking dif-
ferent paths in the solving process across runs. Note that it
is common in the SAT Competition to re-use instances from
previous years by performing this type of shuffling [Le Berre
and Simon, 2004].

Table 1: Number of instances solved out of 300 by the top-3
solvers in the application category of the 2014 SAT Competi-
tion along with the upper-bound on the deviation from these
values if the competition was rerun.

Solver #Solved S 0(S) 95% bounds
Lingeling 231 0.770 0.0289 214..248
SWDiA5BY5by 228 0.760 0.0289 211..245
Riss BlackBox 226 0.753 0.0289 209..243

320

Performance data was collected on a cluster of Intel Xeon
E5430 2.66Ghz processors running CentOS 6. The solvers
were limited to 1 hour and 2GB of RAM per instance. All
times are reported in CPU-time. Note that these experiments
are run on different hardware to that used in the SAT Com-
petition and used a shorter timeout due to the increased com-
putational complexity. In total, 322 CPU-weeks were used to
record the data.

Considering the observed runtime distributions across 100
runs, together with the analysis from Section 3, we can quan-
tify more statistically well-founded outcomes to the SAT
Competition; these are presented in Table 2. Additionally,
we can derive 95% confidence bounds on the expected suc-
cess rate if we assume it to be normally distributed; which
we will see to be reasonable in Figure 2. Significantly, the
95% confidence bounds of the solvers overlap, and as such,
any permutation of the ordering could be possible.

Table 2: Expected success rates over multiple runs on 300
application instances from the SAT Competition 2014.

Solver E[S] 6(S) 95% bounds
Lingeling 0.553 3.6 159..173
Riss BlackBox 0.530 33 152..165
SWDiA5BY5by 0.571 2.6 166..176

Figure 2 augments these results by visualising the dis-
tribution of the total number of instances solved by each
solver across the runs. Their frequencies appear normally
distributed but additional samples would be needed to ver-
ify this. Ordering by probability mass would rank the solvers
SWDiA5BY < Lingeling < Riss BlackBox, consistent with
the ranking from Table 2. Interestingly, this is a different
ranking to that of the official competition.

18

I - Lingeling Riss BlackBox

16

14
12
10

Frequency

150 155 160 165
Number of Instances Solved

145 170

Figure 2: A histogram of the number of instances solved
across 100 runs on 300 instances from the application cate-
gory of the SAT Competition 2014. The three solvers are the
top-ranked solvers from the competition.

Table 3 presents some more detailed statistics about the

Table 3: Summary of the runtime variations of three solvers on a set of sample instances from the 2014 SAT Competition. The
’Comp.” column contains the runtime observed in the competition, AUC is the area under the survival function for the empirical
distribution. Bold entries mark instances where there is at least one order of magnitude between the best and worst observed

runtime for the solver.

Instance Name Solver #runs Median Mean Std.dev Min Max Comp. AUC

15 006-23-80.cnf Lingeling 100 3600.0 3509.6 438.3 63.5 3600.0 5000.0 3509.6
15 006-23-80.cnf Riss BlackBox 100 3600.0 3600.0 0.0 3600.0 3600.0 5000.0 3600.0
15 006-23-80.cnf SWDiA5BY 100 3600.0 3600.0 0.0 3600.0 3600.0 5000.0 3600.0
21 008-80-4.cnf Lingeling 100 12744 17521 1264.6 142.0 3600.0 621.0 17525
21 008-80-4.cnf Riss BlackBox 100 808.8 818.9 382.3 85.3 3600.0 794.0 8194
21 008-80-4.cnf SWDIiIA5BY 100 209.7 202.7 78.2 10.5 359.6 854 203.2
53 6s168-opt.cnf Lingeling 100 260.5 473.4 622.6 26.6 3600.0 370.8 473.9
53 6s168-opt.cnf Riss BlackBox 100 13.1 14.2 4.5 7.4 36.8 17.5 14.6
53 6s168-opt.cnf SWDiA5BY 100 83.9 87.0 21.8 51.9 162.5 56.7 87.4
117 UCG-15-10p0.cnf Lingeling 100 556.7 562.9 75.0 404.6 863.9 263.2 563.4
117 UCG-15-10p0.cnf Riss BlackBox 100 2117.1 2165.9 510.9 1290.1 3600.0 478.4 2166.5
117 UCG-15-10p0.cnf SWDiA5BY 100 1385.2 14454 402.9 7574 3600.0 202.4 14459
258 q-query.3_...li.sat.cnf Lingeling 100 307.8 379.6 165.1 226.7 1071.9 148.6 380.0
258 q-query.3_...li.sat.cnf Riss BlackBox 100 268.7 308.5 78.5 198.2 515.1 71.5 308.9
258 q._query.3....li.sat.cnf SWDIiA5BY 100 422.3 507.9 320.6 141.3 1487.7 52.9 508.4
265 rpoc_xits_15_SAT.cnf Lingeling 100 7.3 5.5 2.9 1.6 11.9 1.9 6.0
265 rpocxits_15_SAT.cnf Riss BlackBox 100 12.1 59.7 359.1 4.9 3600.0 3.6 60.2
265 rpoc_xits_15_SAT.cnf SWDiA5BY 100 5.3 5.8 2.0 2.1 11.7 1.1 6.3
271 stable-400...140011.cnf Lingeling 100 3600.0 3458.7 568.3 125.6 3600.0 5000.0 3458.7
271 stable-400...140011.cnf Riss BlackBox 100 3600.0 3482.0 532.4 133.6 3600.0 5000.0 3482.0
271 stable-400...140011.cnf SWDIiASBY 100 3600.0 2577.2 1346.1 78.3 3600.0 5000.0 2577.4
287 vmpc_32.re...5-1919.cnf Lingeling 100 3600.0 2929.7 1113.6 19.3 3600.0 5000.0 2929.8
287 vmpc_32.re...5-1919.cnf Riss BlackBox 100 14459 18319 1365.0 17.2 3600.0 1931.7 1832.2
287 vmpc_32.re...5-1919.cnf SWDIiA5BY 100 2533.8 2187.1 1488.7 3.1 3600.0 149.5 2187.4

performance of the three solvers, only a sample of the 300 in-
stances is presented due to space constraints. We list the run-
time which was observed in the SAT Competition under the
’Comp.” column. Notice that for numerous instances where a
solver recorded a timeout in the SAT Competition we also ob-
serve many timeouts across the runs, but critically, the solver
may also solve the instance very quickly.

We observe dramatic variations in runtime, often more than
three orders of magnitude between a solver’s best and worse
time on an instance. In numerous cases, on a single instance,
a solver will timeout on a large proportion of the runs but con-
versely may solve the instance very quickly in other cases.
This could be the critical difference between solved or un-
solved in the competition setting. Given that the difference
amongst the top ranked solvers in the SAT Competitions is
typically only a handful of instances, this constitutes a signif-
icant observation.

5 State-of-the-art Runtime Prediction

The ability to predict the runtime of a solver is interesting
from a number of perspectives. Solver designers can make
use of it as an informative analytical tool and it frequently
serves as a central component in solver portfolios and config-
uration tools. Often, these tools base their decisions on under-
lying runtime prediction models. The prediction target is the

321

runtime of the solver on an instance, which has convention-
ally been collected by recording a single runtime. However
this approach is flawed, since in reality we are dealing with
solvers that exhibit a highly variable runtime distribution, a
single value is simply not representative. This section high-
lights the detrimental effects that this fundamental flaw can
have on state-of-the-art runtime prediction methods.

5.1 Log Transformation

The typical practice when predicting solver runtime is to log-
transform the runtime in seconds [Hutter et al., 2014]. Error
calculations on this, like root-mean-squared error and mean
absolute error, will over-penalise runtimes of less than one
second. Differences between runtimes of 0.01 seconds and
0.1 seconds are valued to the same extent as the difference
between 10 and 100 seconds. These are all an order of mag-
nitude different, but we argue that the first order of magnitude
for runtimes should range from [0..9) seconds, the second
from [9..99), and so on. Thus, the runtimes should be trans-
formed as log(1 + runtime). This additionally eliminates the
need to censor runtimes of zero seconds which would have
been needed when performing the log transformation. For
the predictions in this section we will use the adjusted log-
transformed runtime, log,,(1 4 runtime).

Table 4: Samples of the runtime variations of MiniSat on a set of sample industrial category instances from the SAT Compe-
titions, Races, and Challenges between 2002 and 2011. The AIJ’14 column contains the runtime observed in [Hutter e al.,
20141, AUC is the area under the survival function for the empirical distribution.

Instance Name #runs Median Mean Std.dev Min Max All’'14 AUC
dated-10-13-s.cnf 100 82.0 3374 675.3 7.5 3600.0 12.6 337.9
fvp-unsat.shuffled.cnf 100 944 1294.5 1642.6 8.0 3600.0 3600.0 1294.8
grieu-vmpc-s05-34.cnf 100 3600.0 2963.2 1189.9 9.6 3600.0 3600.0 2963.3
gss-23-s100.cnf 100 3600.0 3542.7 310.8 12439 3600.0 3600.0 3542.7
k2fix_gr_rcs_w8.shuffled.cnf 100 3600.0 3394.9 818.5 5.6 3600.0 3600.0 3394.9
mizh-md5-47-4.cnf 100 200.3 283.3 254.0 18.8 1458.7 595.2 283.8
g-query_3_L.100_coli.sat.cnf 100 609.4 763.3 522.6 129.6 2236.2 139.0 763.8
rbel _xits_14_SAT.cnf 100 3.7 50.6 373.1 1.1 3600.0 1.9 51.1
shuffling-1-s11...s.sat04-461.cnf 100 6.2 14556 16424 3.3 3600.0 6.1 1456.0
uts-106-ipc5-h33-unknown.cnf 100 234.7 276.4 173.0 109.0 15464 228.9 276.9
velev-fvp-sat-3.0-b18.cnf 100 349 65.3 69.7 16.4 372.3 6.2 65.8
velev-live-sat-1.0-03.cnf 100 127.4 153.6 92.6 52.9 628.4 71.7 154.1
vmpc_31.cnf 100 2179.5 2080.3 1395.9 2.9 3600.0 3600.0 2080.7
vmpc_33.cnf 100 25919 22440 1311.2 15.6 3600.0 305.8 22443

5.2 Experimental Setup

The benchmark set comprises 1676 industrial instances from
9 years of the SAT Competitions, Races, and Challenges
between 2002 and 2011. We use MiniSat 2.0 [Eén and
Sorensson, 2004] as the solver with a timeout of 1 hour and
a limit of 2GB RAM. Performance data was collected on a
cluster of Intel Xeon E5430 Processors (2.66GHz) running
CentOS 6. A total of 315 weeks of CPU-time was consumed
to accumulate this performance data. Table 4 presents a sam-
ple summary of the runtimes. The dataset is available at
http://ucc.insight—-centre.org/bhurley/

5.3 Predictive Fragility

To perform the regression we use a random forest with the
same parameters as [Hutter et al., 2014], that is using 10 re-
gression trees, using half of the variables as split variables
at each node (perc = 0.5), a maximum of 5 data-points in
leaf nodes (n,,;, = 5). This configuration was shown to
be the most accurate for runtime prediction in comparison to
ridge regression, neural networks, Gaussian processes, and
individual regression trees. The random forest may choose
from a set of 138 SAT features [Lin Xu and Leyton-Brown,
2012] which have been used for runtime prediction and many
award winning portfolios. As per [Hutter et al., 2014] and
other work on runtime prediction, we do not treat runs that
timeout with any speciality, they are considered to just have
taken the timeout value. We use a standard randomised 10-
fold cross-validation, where the dataset is split in 10 folds.
Each of the folds takes a turn as the test set, with a model be-
ing built from the remaining 9 folds of training data. We use
a standard error metric for regression, the root-mean-squared
error (RMSE) from the predicted value to the true test value.

Some simple statistical values are extracted from the run-
time distribution on each instance in order to model a range
of scenarios which may arise using the current methodology,
where it is possible for the models to be trained on com-
pletely different runtime samples to that considered in test-
ing. Table 5 presents a set of these scenarios, highlight-

322

ing the fragility in current state-of-the-art runtime predic-
tion methods. Columns vary the target metric and rows vary
the training sample. Within each column, values in italics
highlight the best mean RMSE, bold values are those which
produced predictions statistically significantly different (95%
confidence) from this best.

The closest setting to current methodology is shown in the
sample entries, this simply uses a random sample of the ob-
served runtimes. The predictions produced by these models
are reasonable but are not the most accurate. Unsurprisingly,
the most accurate predictions typically arise when we are us-
ing the same sample statistic for both training and testing. For
example, when aiming to predict the median runtime it is best
to have used the median runtime of the training set instances,
likewise for predicting the minimum and maximum runtimes.

Conversely, another setting, albeit the most extreme, is if
the training data consists of the minimum value from each
distribution and we are attempting to predict the maximum
runtime. In this case, the runtime prediction values are off by
one order of magnitude on average. Likewise for predicting
the minimum runtime where the maximum is used as training.

It is clear, and should seem natural, that the origin of the
training sample has a considerable impact on the outcome of
the models, but surprisingly, this is not something which is
considered in existing methodology.

6 Related Work

A large body of work in the SAT community has studied run-
time variations when running deterministic backtracking al-
gorithms on distributions of random instances, but also by
repeated runs of randomised backtracking algorithms on in-
dividual instances. The Handbook of Satisfiability dedicates
a chapter [Gomes and Sabharwal, 2009] to runtime varia-
tions in complete solvers, modelling them as complex physi-
cal phenomena. The chapter focuses on an analysis and pre-
vention of extreme variations using the framework of fat- and
heavy-tailed distributions.

Table 5: Mean RMSE on log(1 + runtime) predictions across
10-fold cross-validation, lower is better. Comparison of train-
ing and testing on different samples of each instance’s ob-
served runtimes. ’sample’ is simply a single random sample
from the observed runtimes for an instance. For each column,
values in italics represent the best mean RMSE, bold values
are statistically significantly different from this best.

Test
sample min median mean max
sample 0.701 0.797 0.669 0.658 0.739
= min 0.823 0.631 0.807 0.833 1.006
& median 0.692 0.823 0.638 0.636 0.722
& mean 0.684 0.844 0.653 0.661 0.702
max 0.768 1.016 0.755 0.712 0.669

[Gomes et al., 2000] first presented the heavy- and fat-
tailed phenomenon in solver runtime. That paper was writ-
ten during a time before randomised restarting was common
and the fastest complete-search solvers for SAT were based
on the DPLL method; modern SAT solvers have come a long
way since. The paper also modified the algorithms to add
an element of randomisation and a new heuristic equivalence
parameter to increase its frequency. Our work has not modi-
fied the solvers in any way, we use the current state-of-the-art
solvers. Nevertheless, it is evident that modern solvers have
an element of stochasticity built in, resulting in runtime dis-
tributions with significant variance.

[Nikoli¢, 2010] formed a methodology for statistically
comparing two solvers given observations from their runtime
distributions. Our paper provides substantial additional evi-
dence to support the need for such comparisons. [Van Gelder,
2011] proposes a new careful ranking method for competi-
tions which addresses a number of issues with existing rank-
ing methods, but the system is still based on individual run-
time samples.

[Hutter er al., 2014] presents the state-of-the-art for solver
runtime prediction, evaluating the effectiveness of a number
of machine learning methods for runtime prediction across a
wide range of SAT, MIP, and TSP benchmarks. Our compar-
ison in Section 5 does not compare different models on their
accuracy, but does question a fundamental assumption being
made about the underlying runtime behaviour.

[Fawcett er al., 2014] tackles runtime predictions for state-
of-the-art planners where they observe substantial runtime
variations of planners across different domains. The authors
propose new feature sets which improve the accuracy of pre-
dictions however the work does not consider runtime varia-
tions on individual instances, only a single sample runtime is
taken.

[Leyton-Brown et al., 2002] identified features of combi-
natorial auction problems to predict the runtime of CPLEX on
different distributions of instances, but only one sample run-
time is taken despite elements of randomness in the solver.

323

7 Conclusions and Discussion

This paper questions a fundamental assumption being made
about the runtime behaviour of complete search solvers.
Modern solvers usually have some form of in-built random-
ness. As a consequence their runtime exhibit significant vari-
ation, sometimes by orders of magnitudes on individual in-
stances. We have shown that the outcome of empirical com-
parisons such as the SAT Competitions can fluctuate sim-
ply by re-running the experiments, and we provide statistical
bounds on such variations. We also project the fragility of
state-of-the-art runtime prediction methods to these runtime
distributions, showing that it is insufficient to take a single
sample of the runtime in the current practice. Such observa-
tions have broad reaching implications for empirical compar-
isons in a number of fields, solver analysis, portfolios, auto-
mated configuration, and runtime prediction.

There may not be a single solution that should be applied
to overcome this phenomenon, but rather a context dependant
approach should be taken. For empirical evaluations, solvers
should be compared based on their runtime distributions. Sta-
tistical tests such as the Kolmogorov-Smirnov or chi-squared
tests would be applicable. Of course, this increases the com-
putational cost but gives the advantage of more authoritative
conclusions. One related question concerns the appropriate
number of runtime samples required to obtain representative
results.

For the fields of runtime prediction, solver portfolios, and
automated configurators, there remains a great number of
open questions. It is simply insufficient to take a single
sample of a solver’s runtime as ground-truths. Alternatively
we should consider predicting statistics or parameters of the
runtime distribution. Depending on the application we may
attempt to maximise the probability of solving an instance
within a certain time, we may prefer solvers which give more
consistent behaviour, or conversely a solver which varies dra-
matically in the hope that we may get lucky. Additionally, in
a parallel setting this would have knock-on effects. There are
many avenues for future study in these areas.

Acknowledgments

This work is supported by Science Foundation Ireland (SFI)
Grant 10/IN.1/13032 and FP7 FET-Open Grant 284715. The
Insight Centre for Data Analytics is supported by SFI Grant
SFI/12/RC/2289. We would like to thank Nic Wilson for his
valuable contributions to Section 3.

References

[Alfonso and Manthey, 2014] Enrique Matos Alfonso and
Norbert Manthey. Riss 4.27 BlackBox. SAT Competition,
2014.

[Ansétegui er al., 2009] Carlos Ansétegui, Meinolf Sell-
mann, and Kevin Tierney. A Gender-based Genetic Al-
gorithm for the Automatic Configuration of Algorithms.
In Proceedings of the 15th International Conference on

Principles and Practice of Constraint Programming (CP
2009), pages 142—157, 20009.

[Ansétegui et al., 2014] Carlos Ansétegui, Yuri Malitsky,
and Meinolf Sellmann. MaxSAT by Improved Instance-
Specific Algorithm Configuration. In Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI
2014), pages 2594-2600, 2014.

[Biere, 2014] Armin Biere. Yet another Local Search Solver
and Lingeling and Friends Entering the SAT Competition
2014. SAT Competition, 2014.

[Eén and Sorensson, 2004] Niklas Eén and Niklas
Sorensson. An extensible SAT-solver. In Theory
and Applications of Satisfiability Testing, pages 502-518.
Springer-Verlag, 2004.

[Fawcett et al., 2014] Chris Fawcett, Mauro Vallati, Frank
Hutter, Jorg Hoffmann, Holger H Hoos, and Kevin Leyton-
Brown. Improved Features for Runtime Prediction of
Domain-Independent Planners. In Proceedings of the 24th
International Conference on Autonomous Planning and
Scheduling (ICAPS 2014), 2014.

[Fitzgerald er al., 2014] Tadhg Fitzgerald, Yuri Malitsky,
Barry O’Sullivan, and Kevin Tierney. ReACT: Real-Time
Algorithm Configuration through Tournaments. In Pro-
ceedings of the Seventh Annual Symposium on Combina-
torial Search, SOCS 2014, Prague, Czech Republic, 15-17
August 2014.,2014.

[Gomes and Sabharwal, 2009] Carla P. Gomes and Ashish
Sabharwal. Exploiting Runtime Variation in Complete
Solvers. In Handbook of Satisfiability, pages 271-288.
2009.

[Gomes and Selman, 2001] Carla P. Gomes and Bart Sel-
man. Algorithm Portfolios. Artificial Intelligence, 126(1-
2):43-62, 2001.

[Gomes et al., 2000] Carla P Gomes, Bart Selman, Nuno
Crato, and Henry Kautz. Heavy-tailed Phenomena in Sat-
isfiability and Constraint Satisfaction Problems. Journal
of Automated Reasoning, 24(1-2):67-100, 2000.

[Hurley er al., 2014] Barry Hurley, Lars Kotthoff, Yuri Mal-
itsky, and Barry O’Sullivan. Proteus: A Hierarchical Port-
folio of Solvers and Transformations. In Integration of
Al and OR Techniques in Constraint Programming - 11th
International Conference, CPAIOR 2014, pages 301-317,
2014.

[Hutter et al., 20111 Frank Hutter, Holger H. Hoos, and
Kevin Leyton-Brown. Sequential Model-Based Optimiza-
tion for General Algorithm Configuration. In Learning
and Intelligent Optimization - 5th International Confer-
ence, LION 5, Rome, Italy, January 17-21, 2011. Selected
Papers, pages 507-523, 2011.

[Hutter et al., 2014] F Hutter, L Xu, H H Hoos, and
K Leyton-Brown. Algorithm runtime prediction: Methods
& evaluation. Artificial Intelligence, 206:79—-111, 2014.

[Kadioglu et al., 2010] Serdar Kadioglu, Yuri Malitsky,
Meinolf Sellmann, and Kevin Tierney. ISAC — Instance-
Specific Algorithm Configuration. In Proceedings of the
19th European Conference on Artificial Intelligence (ECAI
2010), pages 751-756, 2010.

324

[Kotthoff, 2014] Lars Kotthoff. Algorithm selection for
combinatorial search problems: A survey. Al Magazine,
35(3):48-60, 2014.

[Le Berre and Simon, 2004] Daniel Le Berre and Laurent Si-
mon. The Essentials of the SAT 2003 Competition. In
Theory and Applications of Satisfiability Testing. Springer-
Verlag, 2004.

[Leyton-Brown et al., 2002] Kevin Leyton-Brown, Eugene
Nudelman, and Yoav Shoham. Learning the Empirical
Hardness of Optimization Problems: The Case of Combi-
natorial Auctions. In Proceedings of the 8th International
Conference on Principles and Practice of Constraint Pro-
gramming (CP 2002), pages 556-572. Springer Berlin
Heidelberg, January 2002.

[Lin Xu and Leyton-Brown, 2012] Holger Hoos Lin Xu,
Frank Hutter and Kevin Leyton-Brown. Features for SAT,
2012.

[Nikolié, 2010] Mladen Nikolié. Statistical methodology for
comparison of SAT solvers. In Theory and Applications of
Satisfiability Testing, 2010.

[Oh, 2014] Chanseok Oh. MiniSat_. HACK_999ED, Min-
iSat_ HACK_1430ED and SWDiA5BY. SAT Competition,
2014.

[O’Mahony et al., 2008] Eoin O’Mahony, Emmanuel He-
brard, Alan Holland, Conor Nugent, and Barry O’Sullivan.
Using Case-based Reasoning in an Algorithm Portfolio for
Constraint Solving. Irish Conference on Artificial Intelli-
gence and Cognitive Science, 2008.

[Seipp et al., 2015] J. Seipp, S. Sievers, M. Helmert, and
F. Hutter. Automatic Configuration of Sequential Plan-
ning Portfolios. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 2015.

[Van Gelder, 2011] Allen Van Gelder. Careful Ranking of
Multiple Solvers with Timeouts and Ties. In Theory
and Applications of Satisfiability Testing. Springer-Verlag,
2011.

[Xu et al., 2008] Lin Xu, Frank Hutter, Holger H Hoos, and
Kevin Leyton-Brown. SATzilla: Portfolio-based Algo-
rithm Selection for SAT. In Journal Of Artificial Intelli-
gence Research, pages 565-606, 2008.

