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ABSTRACT
The Belief Desire Intention model is a widely used architecture for
developing rational agents. Because of its expressiveness, the task
of programming a BDI agent can be challenging, especially when
applied to safety-critical scenarios. In such scenarios, it is important
to provide a safeguard for the critical behaviour of the agent. In this
paper, we summarise how to extend the agent’s reasoning cycle
in the BDI model with safety shields. A safety shield works as a
sandbox for the agents’ plans that is enforced at runtime so that the
agent behaves according to a safety formal specification. A runtime
monitor is automatically synthesised from a shield to detect any
failure that is within the scope of the shielded plan.
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1 INTRODUCTION
Engineering a software system can be a complex process. This is
especially true when the system under consideration presents some
degree of autonomy. In the context of Multi-Agent Systems (MAS),
multiple entities called agents are programmed and deployed in a
distributed fashion to solve various types of tasks.

In this paper, we consider MAS designed and developed follow-
ing the principles of the Belief Desire Intention (BDI) model [13].
We choose the BDI model because it is one of the most popular
architectures for the development of MAS. The BDI model is part
of the symbolic approaches to Artificial Intelligence (AI) develop-
ment, hence it expects the developer to fully specify how an agent
behaves. This is obtained by defining, beliefs, goals, and especially
plans, which denote – step by step – the agent’s reasoning process.
Through such plans, the developer has complete control over the
agent. However, the resulting programming process is not trivial.
BDI languages, such as AgentSpeak(L) [12], are notoriously dif-
ferent from traditional programming languages and usually come
with a steep learning curve. The process of testing [15], debug-
ging [16], and verifying [9], such systems can be quite complex.
When these BDI languages are applied to safety-critical scenarios,
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in which an error can be costly, any solution which may make the
BDI development more reliable is of uttermost importance.

The main idea of this work is to use Runtime Verification (RV) [2,
11] as a way to enforce safety properties [1] on BDI agents. These
properties can only be violated at runtime, which means the re-
sulting monitor can only report negative and inconclusive verdicts.
This is due to the fact that safety properties are satisfied only by
infinite traces of events, and at runtime we only have access to fi-
nite traces. BDI agents can be applied to dynamic scenarios, where
it may be difficult to guarantee that their behaviour will always
be consistent with the developers’ expectations. Runtime verifica-
tion is usually more focused on detecting unexpected behaviours,
rather than enforcing the system to actually behave in a correct
way. Enforcing a behaviour leads to Runtime Enforcement [10].

We synthesise runtime monitors (called safety shields) to enforce
the correct behaviour of existing BDI agents. In this paper, we
summarise the main features of such safety shields, along with
their generation and integration into the BDI architecture. A safety
shield works as a sandbox for the agent. Every command (actions,
addition/removal of beliefs, and so on) performed in the agent’s
shielded plans are checked by their respective safety shields before
being executed. In this way, in case the command would violate the
safety specification, the safety shield can intervene and stop such
command from being completed.

2 AGENTSPEAK(L) OPERATIONAL
SEMANTICS

An AgentSpeak(L) configuration 𝐶 is a tuple ⟨𝐼 , 𝐸, 𝐴, 𝑅,𝐴𝑝, 𝜄, 𝜌, 𝜖⟩
where: 𝐼 is the set of intentions {𝑖, 𝑖 ′, . . .}. Each intention 𝑖 is a stack
of partially instantiated plans [𝑝1 |𝑝2 . . . 𝑝𝑛]. We use the | symbol to
separate plans in an intention. 𝐸 is a set of events {⟨𝑡𝑒, 𝑖⟩, ⟨𝑡𝑒 ′, 𝑖 ′⟩, . . .}.
Each event is a pair ⟨𝑡𝑒, 𝑖⟩, where 𝑡𝑒 is a triggering event and
the intention 𝑖 are plans associated with 𝑡𝑒 . 𝐴 is a set of actions
{⟨𝑎, 𝑖⟩, ⟨𝑎′, 𝑖 ′⟩, . . .}. Each event is a pair ⟨𝑎, 𝑖⟩, where 𝑎 is an action
and the intention 𝑖 are plans associated with 𝑎. 𝑅 is a set of relevant
plans. 𝐴𝑝 is a set of applicable plans. 𝜄, 𝜖 and 𝜌 keep the record of a
particular intention, event and applicable plan (respectively) being
considered in the current agent’s reasoning cycle. This notation is
similar to the ones presented in [6, 12, 14].

To keep the notation compact, we adopt the following notations:
(i) if 𝐶 is an AgentSpeak(L) configuration, we write 𝐶𝐸 to make
reference to the component 𝐸 of 𝐶 (same for the other components
of𝐶); (ii) we write𝐶𝜄 = _ to indicate there is no intention considered
in the agent’s execution (same for 𝐶𝜌 and𝐶𝜖 ); (iii) we write 𝑖 [𝑝] to
denote the intention that has 𝑝 on its top.
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3 SAFETY SHIELDS
In this section, we introduce the notion of safety shields for the BDI
model. Specifically, we extend the standard AgentSpeak(L) opera-
tional semantics (i.e., the inference rules). Due to space constraints,
we present only some of the rules that need to be extended.

A shield is a component which can be attached to an agent’s plan
to check whether such plan violates a formal specification during
its execution. In such case, the shield enforces the plan to conform.

Safety Shield Specification. The first aspect to tackle is how, and
when, a safety shield is specified. We achieve this by annotating the
plans which we want to “shield”. Annotating plans is a common
practice in existing BDI programming languages and can be found
for example in [5, 8]. An annotation is a structured label attached
to a plan. More formally, a shield annotation can be specified as
follows:@𝑠ℎ𝑖𝑒𝑙𝑑 [𝜑1, . . . , 𝜑𝑛] with (𝑛 ≥ 1) where 𝑠ℎ𝑖𝑒𝑙𝑑 is a custom
label to identify that a shield annotation is being added, and 𝜑𝑖
(with 1 ≤ 𝑖 ≤ 𝑛) is the formal property the shield will look out
for. By design, annotations do not have any specific semantics.
The agent’s reasoning cycle does not consider them, unless the
developer explicitly modifies it to do so.

Adding and Removing Safety Shields. This is obtained by extend-
ing the inference rules in the agent’s reasoning cycle. First, we
have to consider where the shields are stored. Since each shield is
attached to a certain plan and each plan is executed as an intention,
then a shield can be attached to such intention. Thus, the shield is
used to analyse events concerning the corresponding intention.

Catching Violations (Failure Detection). Since the entire agent’s
reasoning cycle depends on which plans are selected as relevant1
and, consequently, applicable. One possible way to enforce the sat-
isfaction of a formal property is by extending the standard 𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠
function. The goal of such an extension is to take a property into
consideration while selecting the relevant plans for a triggering
event. The updated version is as follows:

𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠 (𝑝𝑙𝑎𝑛𝑠, 𝑡𝑒, 𝑆) =
{𝑝𝜎 | 𝑝 ∈ 𝑝𝑙𝑎𝑛𝑠 ∧ 𝜎 =𝑚𝑔𝑢 (𝑡𝑒,𝑇𝐸 (𝑝)) ∧ �𝑠∈𝑆 .𝑠𝜎 · 𝑡𝑒 ̸ |= 𝑠𝜑 }

where 𝑆 denotes the set of shields associated to the current selected
intention, and · denotes the concatenation amongst trace of events.
In this way, we can check whether the triggering event 𝑡𝑒 violates
at least one shield 𝑠 in 𝑆 (with 𝑠𝜎 the trace observed up to now by
𝑠 , and 𝑠𝜑 the property checked by 𝑠). If that is the case, 𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠
returns the empty set.

Besides updating the 𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠 function, we also need to update
the corresponding rule that makes use of it in the operational se-
mantics. In particular the 𝑅𝑒𝑙1 rule, which is defined as follows:

(𝑅𝑒𝑙1)
𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠 (𝑝𝑙𝑎𝑛𝑠, 𝑡𝑒) ≠ ∅
𝐶,𝑏𝑒𝑙𝑖𝑒 𝑓 𝑠 → 𝐶′, 𝑏𝑒𝑙𝑖𝑒 𝑓 𝑠

𝐶𝜖=⟨𝑡𝑒,𝑖⟩, 𝐶𝐴𝑝=𝐶𝑅=∅

𝑤ℎ𝑒𝑟𝑒 𝐶 ′
𝑅
= 𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠 (𝑝𝑙𝑎𝑛𝑠, 𝑡𝑒)

𝑅𝑒𝑙1 takes the current event in𝐶𝜖 , and extracts the set of relevant
plans for the specific triggering event 𝑡𝑒 . Its extension, which uses
the new version of 𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠 , is defined as follows:

(𝑅𝑒𝑙1′ )
𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠 (𝑝𝑙𝑎𝑛𝑠, 𝑡𝑒, 𝑆) ≠ ∅
𝐶,𝑏𝑒𝑙𝑖𝑒 𝑓 𝑠 → 𝐶′, 𝑏𝑒𝑙𝑖𝑒 𝑓 𝑠

𝐶𝜖=⟨𝑡𝑒,𝑖⟩, 𝐶𝐴𝑝=𝐶𝑅=∅, ⟨𝑖,𝑆⟩∈𝐶𝐼

1A plan is relevant for a triggering event if the triggering event can successfully be
unified with the plan’s head.

𝑤ℎ𝑒𝑟𝑒 𝐶 ′
𝑅
= 𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠 (𝑝𝑙𝑎𝑛𝑠, 𝑡𝑒, 𝑆)

𝐶 ′
𝐼
= (𝐶𝐼 \ {⟨𝑖, 𝑆⟩}) ∪ {⟨𝑖, 𝑆 ′⟩}

𝑆 ′ = {⟨𝜎 ′, 𝜑, 𝑖 ′⟩ | ⟨𝜎, 𝜑, 𝑖 ′⟩ ∈ 𝑆 ∧ 𝜎 ′ = 𝜎 · 𝑡𝑒}
The updated rule is necessary to keep track of the events into

𝑆’s shields. Each time an event is considered in the agent’s rea-
soning cycle, it is also stored in every active shield in 𝑆 for the
corresponding intention 𝑖 , to be evaluated in future executions.

Note that, when the triggering event (𝑡𝑒) violates at least one
shield in 𝑆 , 𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠 returns the empty set. Thus, no relevant plan
is available (𝐶𝑅 = ∅), as well as no applicable plan (𝐶𝐴𝑝 = ∅); since
𝐴𝑝𝑝𝑃𝑙𝑎𝑛𝑠 is defined on top of 𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠 . Consequently, no plan can
be selected and the resulting plan failure handling is triggered; as
shown in 𝐴𝑝𝑝𝑙 rule, this is achieved by adding the corresponding
plan deletion event (−%𝑎𝑡 ).

(𝐴𝑝𝑝𝑙 )
𝐴𝑝𝑝𝑃𝑙𝑎𝑛𝑠 (𝐶𝑅, 𝑏𝑒𝑙𝑖𝑒 𝑓 𝑠) = ∅
𝐶,𝑏𝑒𝑙𝑖𝑒 𝑓 𝑠 → 𝐶′, 𝑏𝑒𝑙𝑖𝑒 𝑓 𝑠

𝐶𝜖=⟨𝑡𝑒,𝑖⟩, 𝐶𝐴𝑝=∅, 𝐶𝑅≠∅

𝑤ℎ𝑒𝑟𝑒 𝐶 ′
𝐸 =

{
𝐶𝐸 ∪ {⟨−%𝑎𝑡, 𝑖⟩} if 𝑡𝑒 = +%𝑎𝑡 with % ∈ {!, ?}
𝐶𝐸 ∪ {𝐶𝜖 } otherwise

By updating 𝑅𝑒𝑙𝑃𝑙𝑎𝑛𝑠 to consider a formal specification in the plan
selection, we can enforce the reasoning cycle to only consider events
which do not violate a certain property.

4 IMPLEMENTATION
As a proof of concept, we implemented a prototype2 in the JaCaMo
multi-agent development framework [3, 4]. Jason [5], which is the
implementation of AgentSpeak(L) used in JaCaMo, is one of the
most used and well-known BDI programming languages [7].

Specifically, we decided to use JaCaMo instead of Jason, because
the former supports artifacts which are well-suited for implement-
ing the shields and interfacing with the monitors. Artifacts allows
agents to have better control over their shields, while in Jason this
would have to be done in a shared Java environment. The artifact
maintains all the information on the shields, and it is the object
consulted when a shield needs to be added, removed, or updated.

5 CONCLUSIONS AND FUTUREWORK
In this extended abstract, we summarise the design and implemen-
tation of safety shields for BDI agents. We formally specify how to
enhance the agent’s reasoning cycle to enforce the satisfaction of
safety properties through shields. Some resulting extended infer-
ence rules are reported. The contribution is not only theoretical,
but it comprises a practical component as well. A prototype of our
approach is proposed, along with its integration in the JaCaMo
platform.

For future work, we are interested in improving the integration
in JaCaMo. The current implementation is based on instrumenta-
tion, which is a less invasive way to approach the problem at the
implementation level. However, instrumentation has implications
at the engineering level, and it is less ideal in the long run w.r.t.
the actual agent’s reasoning cycle modification (as proposed in
the theory of this work). Also on the implementation side, we are
interested in extending the work from using one single artifact per
agent, to one artifact per shield. This extension should bring to
better performances, above all in the case of nested shields.

2https://github.com/AngeloFerrando/SafetyShieldsBDI
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