
Mechanism Design for Public Projects via Neural Networks
Guanhua Wang

School of Computer Science

University of Adelaide

Adelaide, Australia

guanhua.wang@adelaide.edu.au

Runqi Guo

School of Computer Science

University of Adelaide

Adelaide, Australia

runqi.guo@student.adelaide.edu.au

Yuko Sakurai

National Institute of Advanced

Industrial Science and Technology

Japan

yukoskr@gmail.com

Muhammad Ali Babar

School of Computer Science

University of Adelaide

Adelaide, Australia

ali.babar@adelaide.edu.au

Mingyu Guo

School of Computer Science

University of Adelaide

Adelaide, Australia

mingyu.guo@adelaide.edu.au

ABSTRACT
We study mechanism design for nonexcludable and excludable bi-

nary public project problems. We aim to maximize the expected

number of consumers and the expected agents’ welfare. For the

nonexcludable public project model, we identify a sufficient con-

dition on the prior distribution for the conservative equal costs

mechanism to be the optimal strategy-proof and individually ratio-

nal mechanism. For general distributions, we propose a dynamic

program that solves for the optimal mechanism. For the excludable

public project model, we identify a similar sufficient condition for

the serial cost sharing mechanism to be optimal for 2 and 3 agents.

We derive a numerical upper bound. Experiments show that for

several common distributions, the serial cost sharing mechanism is

close to optimality.

The serial cost sharing mechanism is not optimal in general. We

design better performing mechanisms via neural networks. Our

approach involves several technical innovations that can be applied

to mechanism design in general. We interpret the mechanisms as

price-oriented rationing-free (PORF) mechanisms, which enables us

to move the mechanism’s complex (e.g., iterative) decision making

off the neural network, to a separate simulation process.We feed the

prior distribution’s analytical form into the cost function to provide

high-quality gradients for efficient training. We use supervision

to manual mechanisms as a systematic way for initialization. Our

approach of “supervision and then gradient descent” is effective for

improving manual mechanisms’ performances. It is also effective

for fixing constraint violations for heuristic-based mechanisms that

are infeasible.

KEYWORDS
Mechanism Design; Deep Learning; Public Project Problem

ACM Reference Format:
GuanhuaWang, Runqi Guo, Yuko Sakurai, MuhammadAli Babar, andMingyu

Guo. 2021. Mechanism Design for Public Projects via Neural Networks. In

Proc. of the 20th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

1 INTRODUCTION
Many multiagent system applications (e.g., crowdfunding) are re-
lated to the public project problem. The public project problem

is a classic economic model that has been studied extensively in

both economics and computer science [7–9]. Under this model, a

group of agents decide whether or not to fund a nonrivalrous public
project — when one agent consumes the project, it does not prevent

others from using it. We study both the nonexcludable and the

excludable versions of the binary public project problem. The bi-

nary decision is either to build or not. If the decision is not to build,

then no agents can consume the project. For the nonexcludable
version, once a project is built, all agents can consume it, including

those who do not pay. For example, if the public project is an open

source software project, then once the project is built, everyone

can consume it. For the excludable version, the mechanism has the

capability to exclude agents from the built project. For example, if

the public project is a swimming pool, then we could impose the

restriction that only the paying agents have access to it.

Our aim is to design mechanisms that maximize expected per-

formances. We consider two design objectives. One is to maximize

the expected number of consumers (expected number of agents

who are allowed to consume the project).
1
The other objective is

to maximize the agents’ expected welfare. We argue that max-

imizing the expected number of consumers is more fair in some

applications. When maximizing the number of consumers, agents

with lower valuations are treated as important as high-value agents.

With slight technical adjustments, we adopt the existing char-

acterization results from Ohseto [11] for strategy-proof and indi-
vidually rational mechanisms for both the nonexcludable and the

excludable public project problems. Under various conditions, we

show that existing mechanisms or mechanisms derived via classic

mechanism design approaches are optimal or near optimal. When

existing mechanism design approaches do not suffice, we propose

a neural network based approach, which successfully identifies

better performing mechanisms. Mechanism design via deep learn-

ing/neural networks has been an emerging topic [4–6, 13]. Duetting

et.al. [4] proposed a general approach for revenue maximization

via deep learning. The high-level idea is to manually construct

often complex network structures for representing mechanisms

for different auction types. The cost function is the negate of the

1
For the nonexcludable version, this is simply to maximize the probability of building.

Main Track AAMAS 2021, May 3-7, 2021, Online

1380

revenue. By minimizing the cost function via gradient descent,

the network parameters are adjusted, which leads to better per-

forming mechanisms. The mechanism design constraints (such

as strategy-proofness) are enforced by adding a penalty term to

the cost function. The penalty is calculated by sampling the type

profiles and adding together the constraint violations. Due to this

setup, the final mechanism is only approximately strategy-proof.

The authors demonstrated that this technique scales better than

the classic mixed integer programming based automated mecha-

nism design approach [2]. Shen et.al. [13] proposed another neural

network based mechanism design technique, involving a seller’s

network and a buyer’s network. The seller’s network provides a

menu of options to the buyers. The buyer’s network picks the

utility-maximizing menu option. An exponential-sized hard-coded

buyer’s network is used (e.g., for every discretized type profile,

the utility-maximizing option is pre-calculated and stored in the

network). The authors mostly focused on settings with only one

buyer. Our approach is different from previous approaches, and

it involves three technical innovations, which can be applied to

neural network-based mechanism design in general.

Calculating mechanism decisions off the network by interpreting
mechanisms as price-oriented rationing-free (PORF) mechanisms [15]:
A mechanism often involves binary decisions. A common way to

model binary decisions on neural networks is by using the sigmoid
function. In our setting, a mechanism involves iterative decision
making where the number of “rounds” depends on the agents’ types.

We could stack multiple sigmoid functions to model this. However,

stacking sigmoid functions leads to vanishing gradients and signifi-

cant numerical errors. Instead, we rely on the PORF interpretation:

every agent faces a set of options (outcomes with prices) deter-

mined by the other agents. We single out a randomly chosen agent

𝑖 , and draw a sample of the other agents’ types 𝑣−𝑖 . We use a separate

program (off the network) to calculate the options 𝑖 would face. We

no longer need to construct complex network structures like the

approach in [4] or resort to exponential-sized hard-coded buyer

networks like the approach in [13]. After calculating 𝑖’s options,

we link the options together using terms that contain network

parameters, which enables backpropagation.

Feeding prior distribution into the cost function: In conventional ma-

chine learning, we have access to a finite set of samples, and the

process of machine learning is essentially to infer the true prob-

ability distribution of the samples. For existing neural network

mechanism design approaches [4, 13] (as well as this paper), it is as-

sumed that the prior distribution is known. After calculating agent

𝑖’s options, we make use of 𝑖’s distribution to figure out the prob-

abilities of all the options, and then derive the expected objective

value from 𝑖’s perspective. We assume that the prior distribution is

continuous. If we have the analytical form of the prior distribution,

then the probabilities can provide quality gradients for our training

process. This is due to the fact that probabilities are calculated based

on neural network outputs. In summary, we combine both samples

and distribution in our cost function.

Supervision to manual mechanisms as initialization: We start our

training by first conducting supervised learning. We teach the net-

work to mimic an existing manual mechanism, and then leave it to

gradient descent. This is essentially a systematic way to improve

manual mechanisms. In our experiments, we considered different

heuristic-based manual mechanisms as starting points. One heuris-

tic is feasible but not optimal, and the gradient descent process is

able to improve its performance. The second heuristic is not always

feasible, and the gradient descent process is able to fix the constraint

violations. Supervision to manual mechanisms is often better than

random initializations. For one thing, the supervision step often

pushes the performance to a state that is already somewhat close

to optimality. It may take a long time for random initializations to

catch up. In computational expensive scenarios, it may never catch

up. Secondly, supervision to a manual mechanism is a systematic

way to set good initialization point, instead of trials and errors.

It should be noted that unlike many conventional deep learning

application domains, for mechanism design, we often have simple

and well-performing mechanisms to be used as starting points.

2 MODEL DESCRIPTION
𝑛 agents need to decide whether or not to build a public project.

The project is binary (build or not build) and nonrivalrous (the cost
of the project does not depend on how many agents are consuming

it). We normalize the project cost to 1. Agent 𝑖’s type 𝑣𝑖 ∈ [0, 1]
represents her private valuation for the public project. We assume

that the 𝑣𝑖 are drawn i.i.d. from a known prior distribution. Let

𝐹 and 𝑓 be the CDF and PDF, respectively. We assume that the

distribution is continuous and 𝑓 is differentiable.

• For the nonexcludable public project model, agent 𝑖’s valua-

tion is 𝑣𝑖 if the project is built, and 0 otherwise.

• For the excludable model, the outcome space is {0, 1}𝑛 . Under
outcome (𝑎1, 𝑎2, . . . , 𝑎𝑛), agent 𝑖 consumes the public project

if and only if 𝑎𝑖 = 1. If for all 𝑖 , 𝑎𝑖 = 0, then the project is not

built. As long as 𝑎𝑖 = 1 for some 𝑖 , the project is built.

Agent 𝑖’s payment 𝑝𝑖 is nonnegative. We require that 𝑝𝑖 = 0 for

all 𝑖 if the project is not built and
∑
𝑝𝑖 = 1 if the project is built.

An agent’s payment is also referred to as her cost share. An agent’s

utility is 𝑣𝑖 − 𝑝𝑖 if she gets to consume the project, and 0 otherwise.

We focus on strategy-proof and individually rational mechanisms.

3 CHARACTERIZATIONS AND BOUNDS
We adopt a list of existing characterization results from [11], which

characterizes strategy-proof and individual rational mechanisms for

both nonexcludable and excludable public project problems. A few

technical adjustments are needed for the existing characterizations

to be valid for our problem. The characterizations in [11] were

not proved for quasi-linear settings. However, we verify that the

assumptions needed by the proofs are valid for our model setting.

One exception is that the characterizations in [11] assume that every

agent’s valuation is strictly positive. This does not cause issues for

our objectives as we are maximizing for expected performances

and we are dealing with continuous distributions.
2
We are also

safe to drop the citizen sovereign assumption mentioned in one

2
Let𝑀 be the optimal mechanism. If we restrict the valuation space to [𝜖, 1], then
𝑀 is Pareto dominated by an unanimous/largest unanimous mechanism𝑀′

for the

nonexcludable/excludable setting. The expected performance difference between𝑀

and𝑀′
vanishes as 𝜖 approaches 0. Unanimous/largest unanimous mechanisms are

still strategy-proof and individually rational when 𝜖 is set to exactly 0.

Main Track AAMAS 2021, May 3-7, 2021, Online

1381

of the characterizations
3
, but not the other two minor technical

assumptions called demand monotonicity and access independence.

3.1 Nonexcludable Mech. Characterization
Definition 3.1 (Unanimous mechanism [11]). There is a constant

cost share vector (𝑐1, 𝑐2, . . . , 𝑐𝑛) with 𝑐𝑖 ≥ 0 and

∑
𝑐𝑖 = 1. The

mechanism builds if and only if 𝑣𝑖 ≥ 𝑐𝑖 for all 𝑖 . Agent 𝑖 pays

exactly 𝑐𝑖 if the decision is to build. The unanimous mechanism is

strategy-proof and individually rational.

Theorem 3.2 (Nonexcludable mech. characterization [11]).

For the nonexcludable public project model, if a mechanism is strategy-
proof, individually rational, and citizen sovereign, then it is weakly
Pareto dominated by an unanimous mechanism.
Citizen sovereign: Build and not build are both possible outcomes.

Mechanism 1 weakly Pareto dominates Mechanism 2 if every

agent weakly prefers Mechanism 1 under every type profile.

Example 3.3 (Conservative equal costs mechanism [10]). An exam-

ple unanimous mechanism works as follows: we build the project

if and only if every agent agrees to pay
1

𝑛 .

3.2 Excludable Mech. Characterization
Definition 3.4 (Largest unanimous mechanism [11]). For every

nonempty coalition of agents 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑘 }, there is a con-
stant cost share vector 𝐶𝑆 = (𝑐𝑆1 , 𝑐𝑆2 , . . . , 𝑐𝑆𝑘) with 𝑐𝑆𝑖 ≥ 0 and∑
1≤𝑖≤𝑘 𝑐𝑆𝑖 = 1. 𝑐𝑆𝑖 is agent 𝑆𝑖 ’s cost share under coalition 𝑆 . If

agent 𝑖 belongs to two coalitions 𝑆 and 𝑇 with 𝑆 ⊊ 𝑇 , then 𝑖’s cost

share under 𝑆 must be greater than or equal to her cost share under

𝑇 . Agents in 𝑆 unanimously approve the cost share vector 𝐶𝑆 if

and only if 𝑣𝑆𝑖 ≥ 𝑐𝑆𝑖 for all 𝑖 ∈ 𝑆 . The mechanism picks the largest

coalition 𝑆∗ satisfying that𝐶𝑆∗ is unanimously approved. If 𝑆∗ does
not exist, then the decision is not to build. If 𝑆∗ exists, then it is

always unique, in which case the decision is to build. Only agents

in 𝑆∗ are consumers and they pay according to 𝐶𝑆∗ . The largest

unanimous mechanism is strategy-proof and individually rational.

The mechanism essentially specifies a constant cost share vector

for every non-empty coalition. The cost share vectors must satisfy

that if we remove some agents from a coalition, then under the re-

maining coalition, every remaining agent’s cost share must be equal

or higher. The largest unanimously approved coalition become the

consumers/winners and they pay according to this coalition’s cost

share vector. The project is not built if there are no unanimously

approved coalitions.

Another way to interpret the mechanism is that the agents start

with the grand coalition of all agents. Given the current coalition, if

some agents do not approve their cost shares, then they are forever

removed. The remaining agents form a smaller coalition, and they

face increased cost shares. We repeat the process until all remaining

agents approve their shares, or when all agents are removed.

Theorem 3.5 (Excludable mech. characterization [11]). For
the excludable public project model, if a mechanism is strategy-proof,
individually rational, and satisfies the following assumptions, then it
is weakly Pareto dominated by a largest unanimous mechanism.
3
If a mechanism always builds, then it is not individually rational in our setting. If a

mechanism always does not build, then it is not optimal.

Demand monotonicity: Let 𝑆 be the set of consumers. If for every
agent 𝑖 in 𝑆 , 𝑣𝑖 stays the same or increases, then all agents in 𝑆 are
still consumers. If for every agent 𝑖 in 𝑆 , 𝑣𝑖 stays the same or increases,
and for every agent 𝑖 not in 𝑆 , 𝑣𝑖 stays the same or decreases, then the
set of consumers should still be 𝑆 .

Access independence: For all 𝑣−𝑖 , there exist 𝑣𝑖 and 𝑣 ′𝑖 so that agent
𝑖 is a consumer under type profile (𝑣𝑖 , 𝑣−𝑖) and is not a consumer
under type profile (𝑣 ′

𝑖
, 𝑣−𝑖).

Example 3.6 (Serial cost sharingmechanism [10]). For every nonempty

subset of agents 𝑆 with |𝑆 | = 𝑘 , the cost share vector is (1
𝑘
, 1
𝑘
, . . . , 1

𝑘
).

The mechanism picks the largest coalition where the agents are

willing to pay equal shares.

Deb and Razzolini [3] proved that if we further require an equal
treatment of equals property (if two agents have the same type,

then they should be treated the same), then the only strategy-proof

and individually rational mechanism left is the serial cost sharing

mechanism. For many distributions, we are able to outperform the

serial cost sharing mechanism. That is, equal treatment of equals

(or requiring anonymity) does hurt performances.

3.3 Nonexcludable Public Project Analysis
We start with an analysis on the nonexcludable public project. The

results presented in this section will lay the foundation for the more

complex excludable public project model coming up next.

Due to the characterization results, we focus on the family of

unanimous mechanisms. That is, we are solving for the optimal

cost share vector (𝑐1, 𝑐2, . . . , 𝑐𝑛), satisfying that 𝑐𝑖 ≥ 0 and

∑
𝑐𝑖 = 1.

Recall that 𝑓 and 𝐹 are the PDF and CDF of the prior distribution.

The reliability function 𝐹 is defined as 𝐹 (𝑥) = 1 − 𝐹 (𝑥). We define

𝑤 (𝑐) to be the expected utility of an agent when her cost share is 𝑐 ,

conditional on that she accepts this cost share.

𝑤 (𝑐) =
∫
1

𝑐
(𝑥 − 𝑐) 𝑓 (𝑥)𝑑𝑥∫

1

𝑐
𝑓 (𝑥)𝑑𝑥

One condition we will use is log-concavity: if log(𝑓 (𝑥)) is concave
in 𝑥 , then 𝑓 is log-concave. We also introduce another condition

called welfare-concavity, which requires𝑤 to be concave.

Theorem 3.7. If 𝑓 is log-concave, then the conservative equal
costs mechanism maximizes the expected number of consumers. If 𝑓
is log-concave and welfare-concave, then the conservative equal costs
mechanism maximizes the expected agents’ welfare.

Proof. Let𝐶 = (𝑐1, 𝑐2, . . . , 𝑐𝑛) be the cost share vector. Maximiz-

ing the expected number of consumers is equivalent to maximizing

the probability of 𝐶 getting unanimously accepted, which equals

𝐹 (𝑐1)𝐹 (𝑐2) . . . 𝐹 (𝑐𝑛). Its log equals

∑
1≤𝑖≤𝑛 log(𝐹 (𝑐𝑖)). When 𝑓 is

log-concave, so is 𝐹 according to [1]. This means that when cost

shares are equal, the above probability is maximized.

The expected agents’ welfare under the cost share vector𝐶 equals∑
𝑤 (𝑐𝑖), conditional on all agents accepting their shares. This is

maximized when shares are equal. Furthermore, when all shares are

equal, the probability of unanimous approval is also maximized. □

𝑓 being log-concave is also called the decreasing reversed failure
rate condition [12]. Bagnoli and Bergstrom [1] proved log-concavity

Main Track AAMAS 2021, May 3-7, 2021, Online

1382

for many common distributions, including the distributions in Ta-

ble 1 (for all distribution parameters). All distributions are restricted

to [0, 1]. We also list some limited results for welfare-concavity. We

prove that the uniform distribution is welfare-concave, but for the

other distributions, the results are based on simulations. Finally,

we include the conditions for 𝑓 being nonincreasing, which will be

used in the excludable public project model.

Table 1: Example Log-Concave Distributions

Welfare-Concavity Nonincreasing

Uniform𝑈 (0, 1) Yes Yes

Normal No (𝜇 = 0.5, 𝜎 = 0.1) 𝜇 ≤ 0

Exponential Yes (𝜆 = 1) Yes

Logistic No (𝜇 = 0.5, 𝜎 = 0.1) 𝜇 ≤ 0

Even when optimal, the conservative equal costs mechanism

performs poorly. We take the uniform𝑈 (0, 1) distribution as an ex-

ample. Every agent’s cost share is
1

𝑛 . The probability of acceptance

for one agent is
𝑛−1
𝑛 , which approaches 1 asymptotically. However,

we need unanimous acceptance, which happens with much lower

probability. For the uniform distribution, asymptotically, the proba-

bility of unanimous acceptance is only
1

𝑒 ≈ 0.368. In general, we

have the following bound:

Theorem 3.8. If 𝑓 is Lipschitz continuous, then when 𝑛 goes to in-
finity, the probability of unanimous acceptance under the conservative
equal costs mechanism is 𝑒−𝑓 (0) .

Without log-concavity, the conservative equal costs mechanism

is not necessarily optimal. We present the following dynamic pro-

gram (DP) for calculating the optimal unanimous mechanism. We

only present the formation for welfare maximization.
4

We assume that there is an ordering of the agents based on their

identities. We define 𝐵(𝑘,𝑢,𝑚) as the maximum expected agents’

welfare under the following conditions:

• The first 𝑛−𝑘 agents have already approved their cost shares,

and their total cost share is 1 −𝑚. That is, the remaining 𝑘

agents need to come up with𝑚.

• The first 𝑛 − 𝑘 agents’ total expected utility is 𝑢.

The optimal agents’ welfare is then 𝐵(𝑛, 0, 1). We recall that 𝐹 (𝑐)
is the probability that an agent accepts a cost share of 𝑐 , we have

𝐵(𝑘,𝑢,𝑚) = max

0≤𝑐≤𝑚
𝐹 (𝑐)𝐵(𝑘 − 1, 𝑢 +𝑤 (𝑐),𝑚 − 𝑐)

The base case is 𝐵(1, 𝑢,𝑚) = 𝐹 (𝑚) (𝑢 +𝑤 (𝑚)). In terms of imple-

mentation of this DP, we have 0 ≤ 𝑢 ≤ 𝑛 and 0 ≤ 𝑚 ≤ 1. We need

to discretize these two intervals. If we pick a discretization size of

1

𝐻
, then the total number of DP subproblems is about 𝐻2𝑛2.

To compare the performance of the conservative equal costs

mechanism and our DP solution, we focus on distributions that are

not log-concave (hence, uniform and normal are not eligible). We

introduce the following non-log-concave distribution family:

4
Maximizing the expected number of consumers can be viewed as a special case where

every agent’s utility is 1 if the project is built

Definition 3.9 (Two-PeakDistribution (𝜇1, 𝜎1, 𝜇2, 𝜎2, 𝑝)). With prob-

ability 𝑝 , the agent’s valuation is drawn from the normal distri-

bution 𝑁 (𝜇1, 𝜎1) (restricted to [0, 1]). With probability 1 − 𝑝 , the

agent’s valuation is drawn from 𝑁 (𝜇2, 𝜎2) (restricted to [0, 1]).

The motivation behind the two-peak distribution is that there

may be two categories of agents. One category is directly benefiting

from the public project, and the other is indirectly benefiting. For

example, if the public project is to build bike lanes, then cyclists

are directly benefiting, and the other road users are indirectly ben-

efiting (e.g., less congestion for them). As another example, if the

public project is to crowdfund a piece of security information on

a specific software product (e.g., PostgreSQL), then agents who

use PostgreSQL in production are directly benefiting and the other

agents are indirectly benefiting (e.g., every web user is pretty much

using some websites backed by PostgreSQL). Therefore, it is natu-

ral to assume the agents’ valuations are drawn from two different

distributions. For simplicity, we do not consider three-peak, etc.
For the two-peak distribution (0.1, 0.1, 0.9, 0.1, 0.5), DP signifi-

cantly outperforms the conservative equal costs (CEC) mechanism.

E(no. of consumers) E(welfare)

n=3 CEC 0.376 0.200

n=3 DP 0.766 0.306

n=5 CEC 0.373 0.199

n=5 DP 1.426 0.591

3.4 Excludable Public Project
Due to the characterization results, we focus on the family of largest

unanimous mechanisms. We start by showing that the serial cost

sharing mechanism is optimal in some scenarios.

Theorem 3.10. 2 agents case: If 𝑓 is log-concave, then the serial
cost sharingmechanismmaximizes the expected number of consumers.
If 𝑓 is log-concave and welfare-concave, then the serial cost sharing
mechanism maximizes the expected agents’ welfare.

3 agents case: If 𝑓 is log-concave and nonincreasing, then the serial
cost sharingmechanismmaximizes the expected number of consumers.
If 𝑓 is log-concave, nonincreasing, and welfare-concave, then the serial
cost sharing mechanism maximizes the agents’ welfare.

For 2 agents, the conditions are identical to the nonexcludable

case. For 3 agents, we also need 𝑓 to be nonincreasing. Example

distributions satisfying these conditions were listed in Table 1.

Proof. We only present the proof for welfare maximization

when 𝑛 = 3. The largest unanimous mechanism specifies constant

cost shares for every coalition of agents.We use 𝑐123 to denote agent

2’s cost share when the coalition is {1, 2, 3}. Similarly, 𝑐23 denotes

agent 2’s cost share when the coalition is {2, 3}. If the largest unan-
imous coalition has size 3, then the expected welfare gained due

to this case is: 𝐹 (𝑐123)𝐹 (𝑐123)𝐹 (𝑐123) (𝑤 (𝑐123) +𝑤 (𝑐123) +𝑤 (𝑐123)).
Given log-concavity of 𝐹 (implied by the log-concavity of 𝑓) and

welfare-concavity and 𝑐123 +𝑐123 +𝑐123 = 1, we have that the above

is maximized when all agents have equal shares. If the largest

unanimous coalition is {1, 2}, then the expected agents’ welfare

gained due to this case is 𝐹 (𝑐12)𝐹 (𝑐12)𝐹 (𝑐123) (𝑤 (𝑐12) + 𝑤 (𝑐12)).
𝐹 (𝑐123) is the probability that agent 3 does not join in the coali-

tion. The above is maximized when 𝑐12 = 𝑐12, so it simplifies to

Main Track AAMAS 2021, May 3-7, 2021, Online

1383

2𝐹 (1
2
)2𝑤 (1

2
)𝐹 (𝑐123). The welfare gain from all size 2 coalitions is

then 2𝐹 (1
2
)2𝑤 (1

2
) (𝐹 (𝑐123) + 𝐹 (𝑐123) + 𝐹 (𝑐123)). Since 𝑓 is nonin-

creasing, we have that 𝐹 is concave, the above is again maximized

when all cost shares are equal. Finally, the probability of coalition

size 1 is 0. Therefore, throughout the proof, all terms referenced

are maximized when the cost shares are equal. □

For 4 agents and uniform distribution, we have a similar result.

Theorem 3.11. Under the uniform distribution𝑈 (0, 1), when 𝑛 =

4, the serial cost sharing mechanism maximizes the expected number
of consumers and the expected agents’ welfare.

For 𝑛 ≥ 4 and for general distributions, we propose a numerical

method for calculating the performance upper bound. A largest

unanimous mechanism can be carried out by the following process:

we make cost share offers to the agents one by one based on an

ordering of the agents. Whenever an agent disagrees, we remove

this agent and move on to a coalition with one less agent. We repeat

until all agents are removed or all agents have agreed. We introduce

the following mechanism based on a Markov process. The initial

state is {(0, 0, . . . , 0︸ ︷︷ ︸
𝑛

), 𝑛}, which represents that initially, we only

know that the agents’ valuations are at least 0, and we have not

made any cost share offers to any agents yet (there are 𝑛 agents yet

to be offered). We make a cost share offer 𝑐1 to agent 1. If agent 1

accepts, then we move on to state {(𝑐1, 0, . . . , 0︸ ︷︷ ︸
𝑛−1

), 𝑛 − 1}. If agent 1

rejects, then we remove agent 1 and move on to reduced-sized state

{(0, . . . , 0︸ ︷︷ ︸
𝑛−1

), 𝑛 − 1}. In general, let us consider a state with 𝑡 users

{(𝑙1, 𝑙2, . . . , 𝑙𝑡), 𝑡}. The 𝑖-th agent’s valuation lower bound is 𝑙𝑖 . Sup-

pose we make offers 𝑐1, 𝑐2, . . . , 𝑐𝑡−𝑘 to the first 𝑡 −𝑘 agents and they

all accept, then we are in a state {(𝑐1, . . . , 𝑐𝑡−𝑘︸ ︷︷ ︸
𝑡−𝑘

, 𝑙𝑡−𝑘+1, . . . , 𝑙𝑡︸ ︷︷ ︸
𝑘

), 𝑘}.

The next offer is 𝑐𝑡−𝑘+1. If the next agent accepts, then we move

on to {(𝑐1, . . . , 𝑐𝑡−𝑘+1︸ ︷︷ ︸
𝑡−𝑘+1

, 𝑙𝑡−𝑘+2, . . . , 𝑙𝑡︸ ︷︷ ︸
𝑘−1

), 𝑘 − 1}. If she disagrees (she is

then the first agent to disagree), then wemove on to a reduced-sized

state {(𝑐1, . . . , 𝑐𝑡−𝑘︸ ︷︷ ︸
𝑡−𝑘

, 𝑙𝑡−𝑘+2, . . . , 𝑙𝑡︸ ︷︷ ︸
𝑘−1

), 𝑡 − 1}. Notice that whenever we

move to a reduced-sized state, the number of agents yet to be of-

fered should be reset to the total number of agents in this state.

Whenever we are in a state with all agents offered {(𝑐1, . . . , 𝑐𝑡), 0},
we have gained an objective value of 𝑡 if the goal is to maximize

the number of consumers. If the goal is to maximize welfare, then

we have gained an objective value of

∑
1≤𝑖≤𝑡 𝑤 (𝑐𝑖). Any largest

unanimous mechanism can be represented via the above Markov

process. So for deriving performance upper bounds, it suffices to

focus on this Markov process.

Starting from a state, we may end up with different objective

values. A state has an expected objective value, based on all the

transition probabilities. We define 𝑈 (𝑡, 𝑘,𝑚, 𝑙) as the maximum

expected objective value starting from a state that satisfies:

• There are 𝑡 agents in the state.

• There are 𝑘 agents yet to be offered. The first 𝑡 − 𝑘 agents

(those who accepted the offers) have a total cost share of

1 −𝑚. That is, the remaining 𝑘 agents are responsible for a

total cost share of𝑚.

• The 𝑘 agents yet to be offered have a total lower bound of 𝑙 .

The upper bound we are looking for is then 𝑈 (𝑛, 𝑛, 1, 0), which
can be calculated via the following DP process:

𝑈 (𝑡, 𝑘,𝑚, 𝑙) = max

0≤𝑙∗≤𝑙
𝑙∗≤𝑐∗≤𝑚

(
𝐹 (𝑐∗)
𝐹 (𝑙∗)

𝑈 (𝑡, 𝑘 − 1,𝑚 − 𝑐∗, 𝑙 − 𝑙∗)

+(1 − 𝐹 (𝑐∗)
𝐹 (𝑙∗)

)𝑈 (𝑡 − 1, 𝑡 − 1, 1, 1 −𝑚 + 𝑙 − 𝑙∗)
)

In the above, there are 𝑘 agents yet to be offered. We maximize

over the next agent’s possible lower bound 𝑙∗ and the cost share 𝑐∗.
That is, we look for the best possible lower bound situation and the

corresponding optimal offer.
𝐹 (𝑐∗)
𝐹 (𝑙∗)

is the probability that the next

agent accepts the cost share, in which case, we have 𝑘 − 1 agents

left. The remaining agents need to come up with𝑚 − 𝑐∗, and their

lower bounds sum up to 𝑙 − 𝑙∗. When the next agent does not accept

the cost share, we transition to a new state with 𝑡 − 1 agents in

total. All agents are yet to be offered, so 𝑡 − 1 agents need to come

up with 1. The lower bounds sum up to 1 −𝑚 + 𝑙 − 𝑙∗.
There are two base conditions. When there is only one agent,

she has 0 probability for accepting an offer of 1, so𝑈 (1, 𝑘,𝑚, 𝑙) = 0.

When there is only 1 agent yet to be offered, the only valid lower

bound is 𝑙 and the only sensible offer is𝑚. Therefore,

𝑈 (𝑡, 1,𝑚, 𝑙) = 𝐹 (𝑚)
𝐹 (𝑙)

𝐺 (𝑡) + (1 − 𝐹 (𝑚)
𝐹 (𝑙)

)𝑈 (𝑡 − 1, 𝑡 − 1, 1, 1 −𝑚)

Here, 𝐺 (𝑡) is the maximum objective value when the largest

unanimous set has size 𝑡 . For maximizing the number of consumers,

𝐺 (𝑡) = 𝑡 . For maximizing welfare,

𝐺 (𝑡) = max
𝑐1,𝑐2,...,𝑐𝑡

𝑐𝑖 ≥0∑
𝑐𝑖=1

∑
𝑖

𝑤 (𝑐𝑖)

The above 𝐺 (𝑡) can be calculated via a trivial DP.

Now we compare the performances of the serial cost sharing

mechanism against the upper bounds. All distributions used here

are log-concave. In every cell, the first number is the objective value

under serial cost sharing, and the second is the upper bound. We

see that the serial cost sharing mechanism is close to optimality

in all these experiments. We include both welfare-concave and

non-welfare-concave distributions (uniform and exponential with

𝜆 = 1 are welfare-concave). For the two distributions not satisfying

welfare-concavity, the welfare performance is relatively worse.

E(no. of consumers) E(welfare)

n=5𝑈 (0, 1) 3.559, 3.753 1.350, 1.417

n=10𝑈 (0, 1) 8.915, 8.994 3.938, 4.037

n=5 𝑁 (0.5, 0.1) 4.988, 4.993 1.492, 2.017

n=10 𝑁 (0.5, 0.1) 10.00, 10.00 3.983, 4.545

n=5 Exponential 𝜆 = 1 2.799, 3.038 0.889, 0.928

n=10 Exponential 𝜆 = 1 8.184, 8.476 3.081, 3.163

n=5 Logistic(0.5, 0.1) 4.744, 4.781 1.451, 1.910

n=10 Logistic(0.5, 0.1) 9.873, 9.886 3.957, 4.487

Main Track AAMAS 2021, May 3-7, 2021, Online

1384

Example 3.12. Here we provide an example to show that the

serial cost sharing mechanism can be far away from optimality. We

pick a simple Bernoulli distribution, where an agent’s valuation is

0 with 0.5 probability and 1 with 0.5 probability.5 Under the serial

cost sharing mechanism, when there are 𝑛 agents, only half of

the agents are consumers (those who report 1s). So in expectation,

the number of consumers is
𝑛
2
. Let us consider another simple

mechanism. We assume that there is an ordering of the agents

based on their identities (not based on their types). The mechanism

asks the first agent to accept a cost share of 1. If this agent disagrees,

she is removed from the system. The mechanism then moves on to

the next agent and asks the same, until an agent agrees. If an agent

agrees, then all future agents can consume the project for free. The

number of removed agents follows a geometric distribution with

0.5 success probability. So in expectation, 2 agents are removed.

That is, the expected number of consumers is 𝑛 − 2.

4 MECH. DESIGN VS NEURAL NETWORKS
For the rest of this paper, we focus on the excludable public project

model and distributions that are not log-concave. Due to the charac-

terization results, we only need to consider the largest unanimous

mechanisms. We use neural networks and deep learning to solve

for well-performing largest unanimous mechanisms. Our approach

involves several technical innovations as discussed in Section 1.

4.1 Mech. Design via Neural Networks
We start with an overview of automated mechanism design (AMD)

via neural networks. Previous papers on mechanism design via

neural networks [4–6, 13] all fall into this general category.

• Use neural networks to represent the full (or a part of the)

mechanism. Like mechanisms, neural networks are essen-

tially functions with multi-dimensional inputs and outputs.

• Training is essentially to adjust the network parameters in or-

der to move toward a better performing network/mechanism.

Training is just parameter optimization.

• Training samples are not real data. Instead, the training type

profiles are generated based on the known prior distribu-

tion. We can generate infinitely many fresh samples. We use

these generated samples to build the cost function, which

is often a combination of mechanism design objective and

constraint penalties. The cost function must be differentiable

with respect to the network parameters.

• The testing data are also type profiles generated based on the

known prior distribution. Again, we can generate infinitely

many fresh samples, so testing is based on completely fresh

samples. We average over enough samples to calculate the

mechanism’s expected performance.

4.2 Network Structure
A largest unanimous mechanism specifies constant cost shares for

every coalition of agents. The mechanism can be characterized

by a neural network with 𝑛 binary inputs and 𝑛 outputs. The 𝑛

binary inputs present the coalition, and the 𝑛 outputs represent the

5
Our paper assumes that the distribution is continuous, so technically we should

be considering a smoothed version of the Bernoulli distribution. For the purpose of

demonstrating an elegant example, we ignore this technicality.

constant cost shares. We use
®𝑏 to denote the input vector (tensor)

and ®𝑐 to denote the output vector. We use 𝑁𝑁 to denote the neural

network, so 𝑁𝑁 (®𝑏) = ®𝑐 . There are several network constraints:

• All cost shares are nonnegative: ®𝑐 ≥ 0.

• For input coordinates that are 1s, the output coordinates

should sum up to 1. For example, if 𝑛 = 3 and
®𝑏 = (1, 0, 1)

(the coalition is {1, 3}), then ®𝑐1 + ®𝑐3 = 1 (agent 1 and 3 are to

share the total cost).

• For input coordinates that are 0s, the output coordinates

are irrelevant. We set these output coordinates to 1s, which

makes it more convenient for the next constraint.

• Every output coordinate is nondecreasing in every input

coordinate. This is to ensure that the agents’ cost shares are

nondecreasing when some other agents are removed. If an

agent is removed, then her cost share offer is kept at 1, which

makes it trivially nondecreasing.

All constraints except for the last is easy to achieve. We will

simply use 𝑂𝑈𝑇 (®𝑏) as output instead of directly using 𝑁𝑁 (®𝑏)6:

𝑂𝑈𝑇 (®𝑏) = softmax(𝑁𝑁 (®𝑏) − 1000(1 − ®𝑏)) + (1 − ®𝑏)

Here, 1000 is an arbitrary large constant. For example, let
®𝑏 =

(1, 0, 1) and ®𝑐 = 𝑁𝑁 (®𝑏) = (𝑥,𝑦, 𝑧). We have

𝑂𝑈𝑇 (®𝑏) = softmax((𝑥,𝑦, 𝑧) − 1000(0, 1, 0)) + (0, 1, 0)

= softmax((𝑥,𝑦 − 1000, 𝑧)) + (0, 1, 0)

= (𝑥 ′, 0, 𝑧′) + (0, 1, 0) = (𝑥 ′, 1, 𝑦′)

In the above, softmax((𝑥,𝑦 − 1000, 𝑧)) becomes (𝑥 ′, 0, 𝑦′) with
𝑥 ′, 𝑦′ ≥ 0 and 𝑥 ′ + 𝑦′ = 1 because the second coordinate is very

small so it (essentially) vanishes after softmax. Softmax always

produces nonnegtive outputs that sum up to 1. Finally, the 0s in the

output are flipped to 1s per our third constraint.

The last constraint is enforced using a penalty function. For
®𝑏

and
®𝑏 ′, where ®𝑏 ′ is obtained from

®𝑏 by changing one 1 to 0, we

should have that 𝑂𝑈𝑇 (®𝑏) ≤ 𝑂𝑈𝑇 (®𝑏 ′), which leads to this penalty:

ReLU(𝑂𝑈𝑇 (®𝑏) −𝑂𝑈𝑇 (®𝑏 ′))

Another way to enforce the last constraint is to use themonotonic
networks structure [14]. This idea has been used in [5], where the

authors also dealt with networks that take binary inputs and must

be monotone. However, we do not use this approach because it is

incompatible with our design for achieving the other constraints.

There are two other reasons for not using the monotonic network

structure. One is that it has only two layers. Some argue that having

a deep model is important for performance in deep learning [16].

The other is that under our approach, we only need a fully con-

nected network with ReLU penalty, which is highly optimized in

state-of-the-art deep learning toolsets (while the monotonic net-

work structure is not efficiently supported by existing toolsets). In

our experiments, we use a fully connected network with four layers

(100 nodes each layer) to represent our mechanism.

6
This is done by appending additional calculation structures to the output layer.

Main Track AAMAS 2021, May 3-7, 2021, Online

1385

4.3 Cost Function
We focus on maximizing the expected number of consumers. Only

slight adjustments are needed for welfare maximization.

Previous approaches of mechanism design via neural networks

used static networks [4–6, 13]. Our largest unanimous mechanism

involves iterative decision making, and the number of rounds is not

fixed, as it depends on the users’ inputs. To model iterative decision

making via a static network, we could adopt the following process.

The initial offers are𝑂𝑈𝑇 ((1, 1, . . . , 1)). The remaining agents after

the first round are then 𝑆 = sigmoid(𝑣−𝑂𝑈𝑇 ((1, 1, . . . , 1))). Here, 𝑣
is the type profile sample. The next round of offers are then𝑂𝑈𝑇 (𝑆).
The remaining agents afterwards are then sigmoid(𝑣 −𝑂𝑈𝑇 (𝑆)).
We repeat this 𝑛 times because the largest unanimous mechanism

have at most 𝑛 rounds. The final coalition is a converged state, so

even if the mechanism terminates before the 𝑛-th round, having

it repeat 𝑛 times does not change the result (except for additional

numerical errors). Once we have the final coalition 𝑆 𝑓 , we include∑
𝑥 ∈𝑆 𝑓 𝑥 (number of consumers) in the cost function. However, this

approach performs abysmally, due to the vanishing gradient problem
and numerical errors caused by stacking 𝑛 sigmoid functions.

We would like to avoid stacking sigmoid to model iterative deci-

sion making. Sigmoid is heavily used in existing works on neural

networkmechanism design, but it is the culprit of significant numer-

ical errors. We propose an alternative approach, where decisions

are simulated off the network using a separate program (e.g., any
Python function). The advantage of this approach is that it is now

trivial to handle complex decision making. However, given a type

profile sample 𝑣 and the current network 𝑁𝑁 , if we simulate the

mechanism off the network to obtain the number of consumers

𝑥 , and include 𝑥 in the cost function, then training will fail com-

pletely. This is because 𝑥 is not a differentiable function of network

parameters and cannot support backpropagation at all.

One way to resolve this is to interpret the mechanisms as price-

oriented rationing-free (PORF) mechanisms [15]. That is, if we

single out one agent, then her options (outcomes combined with

payments) are completely determined by the other agents and she

simply has to choose the utility-maximizing option. Under a largest

unanimous mechanism, an agent faces only two results: either

she belongs to the largest unanimous coalition or not. If an agent

is a consumer, then her payment is a constant due to strategy-

proofness, and the constant payment is determined by the other

agents. Instead of sampling over complete type profiles, we sample

over 𝑣−𝑖 with a random 𝑖 . To better convey our idea, we consider a

specific example. Let 𝑖 = 1 and 𝑣−1 = (·, 1
2
, 1
2
, 1
4
, 0). We assume that

the current state of the neural network is exactly the serial cost

sharing mechanism. Given a sample, we use a separate program to

calculate the following entries.

• The objective value if 𝑖 is a consumer (𝑂𝑠). Under the exam-

ple, if 1 is a consumer, then the decision must be 4 agents

each pays
1

4
. So the objective value is 𝑂𝑠 = 4.

• The objective value if 𝑖 is not a consumer (𝑂 𝑓). Under the

example, if 1 is not a consumer, then the decision must be 2

agents each pay
1

2
. So the objective value is 𝑂 𝑓 = 2.

• The binary vector that characterizes the coalition that de-

cides 𝑖’s offer (®𝑂𝑏). Under the example, ®𝑂𝑏 = (1, 1, 1, 1, 0).

𝑂𝑠 , 𝑂 𝑓 , and
®𝑂𝑏 are constants without network parameters. We

link them together using terms with network parameters, which is

then included in the cost function:

(1 − 𝐹 (𝑂𝑈𝑇 (®𝑂𝑏)𝑖))𝑂𝑠 + 𝐹 (𝑂𝑈𝑇 (®𝑂𝑏)𝑖)𝑂 𝑓 (1)

1− 𝐹 (𝑂𝑈𝑇 (®𝑂𝑏)𝑖) is the probability that agent 𝑖 accepts her offer.
𝐹 (𝑂𝑈𝑇 (®𝑂𝑏)𝑖) is then the probability that agent 𝑖 rejects her offer.

𝑂𝑈𝑇 (®𝑂𝑏)𝑖 carries gradients as it is generated by the network. We

use the analytical form of 𝐹 , so the above term carries gradients.
7

The above approach essentially feeds the prior distribution into

the cost function. We also experimented with two other approaches.

One does not use the prior distribution. It uses a full profile sample

and uses one layer of sigmoid to select between 𝑂𝑠 or 𝑂 𝑓 :

sigmoid(𝑣𝑖 −𝑂𝑈𝑇 (®𝑂𝑏)𝑖)𝑂𝑠 + sigmoid(𝑂𝑈𝑇 (®𝑂𝑏)𝑖 − 𝑣𝑖))𝑂 𝑓 (2)

The other approach is to feed “even more” distribution informa-

tion into the cost function. We single out two agents 𝑖 and 𝑗 . Now

there are 4 options: they both win or both lose, only 𝑖 wins, and

only 𝑗 wins. We still use 𝐹 to connect these options together.

In Section 5, in one experiment, we show that singling out one

agent works the best. In another experiment, we show that even

if we do not have the analytical form of 𝐹 , using an analytical

approximation also enables successful training.

4.4 Supervision as Initialization
We introduce an additional supervision step in the beginning of

the training process as a systematic way of initialization. We first

train the neural network to mimic an existing manual mechanism,

and then leave it to gradient descent. We considered three different

manual mechanisms. One is the serial cost sharing mechanism. The

other two are based on two different heuristics:

Definition 4.1 (One Directional Dynamic Programming). Wemake

offers to the agents one by one. Every agent faces an offer based

on how many agents are left, the objective value cumulated so

far by the previous agents, and how much money still needs to

be raised. If an agent rejects an offer, then she is removed. At the

end of the algorithm, if we collected 1, the project is built and all

agents not removed are consumers. This mechanism belongs to

the largest unanimous mechanism family. This mechanism is not

optimal because we cannot go back and increase an agent’s offer.

Definition 4.2 (Myopic Mechanism). For coalition size 𝑘 , we treat

it as a nonexcludable public project problem with 𝑘 agents. The

offers are calculated based on the dynamic program proposed at the

end of Subsection 3.3. This mechanism is not necessarily feasible,

because the agents’ offers are not necessarily nondecreasing when

some agents are removed.

5 EXPERIMENTS
The experiments are conducted on a machine with Intel i5-8300H

CPU.
8
The largest experiment with 10 agents takes about 3 hours.

Smaller scale experiments take only about 15 minutes.

7
PyTorch has built-in analytical CDFs of many common distributions.

8
We experimented with both PyTorch and Tensorflow (eager mode). The PyTorch

version runs significantly faster, because we are dealing with dynamic graphs.

Main Track AAMAS 2021, May 3-7, 2021, Online

1386

Figure 1: Effect of Distribution Info on Training

In our experiments, unless otherwise specified, the distribution

considered is two-peak (0.15, 0.1, 0.85, 0.1, 0.5). The x-axis shows
the number of training rounds. Each round involves 5 batches of

128 samples (640 samples each round). Unless otherwise specified,

the y-axis shows the expected number of nonconsumers (so lower

values represent better performances). Random initializations are

based on Xavier normal with bias 0.1.

Figure 1 (Left) shows the performance comparison of three dif-

ferent ways for constructing the cost function: using one layer of

sigmoid (without using distribution) based on (2), singling out one

agent based on (1), and singling out two agents. All trials start from

random initializations. In this experiment, singling out one agent

works the best. The sigmoid-based approach is capable of moving

the parameters, but its result is noticeably worse. Singling out two

agents has almost identical performance to singling out one agent,

but it is slower in terms of time per training step.

Figure 1 (Right) considers the Beta (0.1, 0.1) distribution. We

use Kumaraswamy (0.1, 0.354)’s analytical CDF to approximate the

CDF of Beta (0.1, 0.1). The experiments show that if we start from

random initializations (Random) or start by supervision to serial

cost sharing (SCS), then the cost function gets stuck. Supervision

to one directional dynamic programming (DP) and Myoptic mech-

anism (Myopic) leads to better mechanisms. So in this example

scenario, approximating CDF is useful when analytical CDF is not

available. It also shows that supervision to manual mechanisms

works better than random initializations in this case.

Figure 2 (Top-Left 𝑛 = 3, Top-Right 𝑛 = 5, Bottom-Left 𝑛 = 10)

shows the performance comparison of supervision to different man-

ual mechanisms. For 𝑛 = 3, supervision to DP performs the best.

Random initializations is able to catch up but not completely close

the gap. For 𝑛 = 5, random initializations caught up and actually

became the best performing one. The Myopic curve first increases

and then decreases because it needs to first fix the constraint vi-

olations. For 𝑛 = 10, supervision to DP significantly outperforms

the others. Random initializations closes the gap with regard to

serial cost sharing, but it then gets stuck. Even though it looks like

the DP curve is flat, it is actually improving, albeit very slowly. A

magnified version is shown in Figure 2 (Bottom-Right).

Figure 3 shows two experiments on maximizing expected agents’

welfare (y-axis) under two-peak (0.2, 0.1, 0.6, 0.1, 0.5). For 𝑛 = 3,

Figure 2: Supervision to Different Manual Mechanisms

Figure 3: Maximizing Agents’ Welfare

supervision to DP leads to the best result. For 𝑛 = 5, SCS is actually

the best mechanism we can find (the cost function barely moves).

It should be noted that all manual mechanisms before training have

very similar welfares: 0.7517 (DP), 0.7897 (SCS), 0.7719 (Myopic).

Even random initialization before training has a welfare of 0.7648.

In this case, there is just little room for improvement.

6 CONCLUSION
In this paper, we studied optimal-in-expectation mechanism de-

sign for the public project model. We are the first to use neural

networks to design iterative mechanisms. To avoid modeling iter-

ative decision making via the sigmoid function, we simulate the

different options an agent faces under an iterative mechanism and

combine the options using distribution information to build the cost

function for our optimal-in-expectation objective. We showed that

under various conditions, existing mechanisms or mechanisms de-

rived via classic mechanism design approaches are optimal. When

classic mechanism design approaches do not suffice, we derived

better mechanisms via neural networks by first training the neural

networks to mimic manual mechanisms and then improving by

gradient descent.

Main Track AAMAS 2021, May 3-7, 2021, Online

1387

REFERENCES
[1] Mark Bagnoli and Ted Bergstrom. 2005. Log-concave probability and its applica-

tions. Economic Theory 26, 2 (01 Aug 2005), 445–469. https://doi.org/10.1007/

s00199-004-0514-4

[2] Vincent Conitzer and Tuomas Sandholm. 2002. Complexity of Mechanism De-

sign. In UAI ’02, Proceedings of the 18th Conference in Uncertainty in Artificial
Intelligence, University of Alberta, Edmonton, Alberta, Canada, August 1-4, 2002,
Adnan Darwiche and Nir Friedman (Eds.). Morgan Kaufmann, 103–110.

[3] Rajat Deb and Laura Razzolini. 1999. Voluntary cost sharing for an excludable

public project. Mathematical Social Sciences 37, 2 (1999), 123 – 138.

[4] Paul Duetting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Srivatsa

Ravindranath. 2019. Optimal Auctions through Deep Learning. In Proceedings of
the 36th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.).

PMLR, Long Beach, California, USA, 1706–1715.

[5] Noah Golowich, Harikrishna Narasimhan, and David C. Parkes. 2018. Deep

Learning for Multi-Facility Location Mechanism Design. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18.
International Joint Conferences on Artificial Intelligence Organization, 261–267.

[6] Padala Manisha, C. V. Jawahar, and Sujit Gujar. 2018. Learning Optimal Re-

distribution Mechanisms Through Neural Networks. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2018, Stockholm, Sweden, July 10-15, 2018, Elisabeth André, Sven Koenig, Mehdi

Dastani, and Gita Sukthankar (Eds.). International Foundation for Autonomous

Agents and Multiagent Systems Richland, SC, USA / ACM, 345–353.

[7] Andreu Mas-Colell, Michael Whinston, and Jerry R. Green. 1995. Microeconomic
Theory. Oxford University Press.

[8] J. Moore. 2006. General Equilibrium and Welfare Economics: An Introduction.
Springer.

[9] H. Moulin. 1988. Axioms of Cooperative Decision Making. Cambridge University

Press.

[10] Hervé Moulin. 1994. Serial Cost-Sharing of Excludable Public Goods. The Review
of Economic Studies 61, 2 (1994), 305–325.

[11] Shinji Ohseto. 2000. Characterizations of Strategy-Proof Mechanisms for Exclud-

able versus Nonexcludable Public Projects. Games and Economic Behavior 32, 1
(2000), 51 – 66.

[12] Ran Shao and Lin Zhou. 2016. Optimal allocation of an indivisible good. Games
and Economic Behavior 100 (2016), 95 – 112.

[13] Weiran Shen, Pingzhong Tang, and Song Zuo. 2019. Automated Mechanism

Design via Neural Networks. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems (Montreal QC, Canada) (AAMAS
’19). International Foundation for Autonomous Agents and Multiagent Systems,

Richland, SC, 215–223.

[14] Joseph Sill. 1998. Monotonic Networks. In Proceedings of the 1997 Conference on
Advances in Neural Information Processing Systems 10 (Denver, Colorado, USA)
(NIPS ’97). MIT Press, Cambridge, MA, USA, 661–667.

[15] Makoto Yokoo. 2003. Characterization of Strategy/False-name Proof Combinato-

rial Auction Protocols: Price-oriented, Rationing-free Protocol. In Proceedings of
the 18th International Joint Conference on Artificial Intelligence (Acapulco, Mexico)

(IJCAI’03). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 733–739.

[16] Zhi-Hua Zhou and Ji Feng. 2017. Deep Forest: Towards an Alternative to Deep

Neural Networks. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence (Melbourne, Australia) (IJCAI’17). AAAI Press, 3553–3559.

Main Track AAMAS 2021, May 3-7, 2021, Online

1388

https://doi.org/10.1007/s00199-004-0514-4
https://doi.org/10.1007/s00199-004-0514-4

	Abstract
	1 Introduction
	2 Model Description
	3 Characterizations and Bounds
	3.1 Nonexcludable Mech. Characterization
	3.2 Excludable Mech. Characterization
	3.3 Nonexcludable Public Project Analysis
	3.4 Excludable Public Project

	4 Mech. Design vs Neural Networks
	4.1 Mech. Design via Neural Networks
	4.2 Network Structure
	4.3 Cost Function
	4.4 Supervision as Initialization

	5 Experiments
	6 CONCLUSION
	References

