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ABSTRACT
Network security games (NSGs) are widely used in security related

domain to model the interaction between the attacker and the

defender. However, due to the complex graph structure of the entire

network, finding a Nash equilibrium even when the attacker is fully

rational is not well-studied yet. There is no efficient algorithms

knownwith valid guarantees.We identify twomajor issues of NSGs:

i) non-linearity ii) correlation between edges. NSGs with non-linear

objective function are usually hard to optimize, while correlated

edges might create exponentially many strategies and impact the

scalability. In this paper, we analyze the distortion of linear and

non-linear formulations of NSGs with fully rational attacker. We

provide theoretical bounds on these different formulations, which

can quantify the approximation ratio between linear and non-linear

assumption. This result can help us understand how much loss will

the linearization incur in exchange for the scalability.
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1 INTRODUCTION
Many real-world security problems present the challenge of limited

budget, including airport protection, wildlife conservation, and web

security. Stackelberg security games (SSGs) are commonly used

to model the interaction between the attacker and the defender.

This game theory analysis can usually help us to plan ahead and

strategically allocate the limited resource to protect our targets.

Network security games (NSGs) are a generalized version of SSGs,

which involves an underlying graph structure. The defender moves

first, choosing a set of edges under budget constraint to allocate

checkpoints, while the attacker moves second, observing the de-

fender’s mixed strategy and then choosing the optimal path to

reach one of the target. Since the strategies of both the attacker

and the defender are graph dependent, the underlying game theory

structure becomes much more sophisticated.
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The previous works of NSGs with fully rational attacker gener-

ally face into two main challenges: i) edge coverage dependency

ii) non-linear objective function. While assuming the attacker to

be perfectly rational, the equilibrium finding problem can be en-

coded as a bilevel optimization problem. RANGER [9] and ESVVT

algorithm [8] were proposed to solve NSGs. However, both of them

require the objective function to be linear and the coverage of each

edge to be independent. Double oracle [4, 5] was then proposed

to address coverage dependency. They argued that ignoring the

dependency can significantly reduce the defender utility. However,

this approach does not have a theoretical guarantee and still cannot

deal with non-linear objective function, which implicitly rules out

the cases where the checkpoint could be imperfect and we re-screen

check the same person multiple times. Mc Carthy et al. introduced

the imperfect checkpoints and allowed the attacker to be checked

multiple times, allowing the objective function to be non-linear.

Unfortunately, their approach does not have a theoretical guarantee.

Boundedly rational attacker is relatively less studied in the do-

main of NSGs. Yang et al. proposed to fit a quantal response model

and the historical data by a neural network. Ford et al. proposed

to fit a subjective utility quantal response model [7], which allows

more flexibility in the adversarial behavior. These approaches gen-

erally ignore the underlying graph structure and just rely on the

local feature.Wang et al. proposed to adopt graph convolutional net-

works to further utilize the graph structure. However, the common

challenges of boundedly rational behavior is the lack of theoretical

guarantee. The performance depends on the sufficiency of the data

and the generalizability of the behavioral model.

In this paper, we focus on fully rational attacker. We provide the-

oretical analysis of the difference between non-linear formulation

and linear formulation. This theoretical analysis helps understand

how much loss will be incurred if we linearize the non-linear term

in NSGs. Our approximation result shows that at most a constant

ratio of the optimality will be lost due to linearization, where we

can achieve scalability while maintaining a reasonable optimality.

2 DEFINITION
Given a graph 𝐺 = (𝑉 , 𝐸), we denote 𝑆 to be the set of all possible

sources and 𝑇 to be the set of all possible targets. The defender is

trying to allocate checkpoints on some edges in 𝐸 to prevent the

attacker from reaching to a target. The resources are limited so the

defender can only allocate up to 𝐵 checkpoints. The attacker, after

observing the defender strategy, is trying to avoid being caught and

maximize his own expected reward. Each target comes with payoffs

𝑈
𝑎/𝑑
𝑐/𝑢 (𝑡) which respectively refer to the uncaught (u) and caught

(c) payoffs of the attacker (a) and defender (d). In this paper (so far),
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we only consider the zero-sum case. Thus, 𝑈 𝑎
𝑐 (𝑡) = −𝑈𝑑

𝑐 (𝑡) and
𝑈 𝑎
𝑢 (𝑡) = −𝑈𝑑

𝑢 (𝑡). We assume all the uncaught payoffs𝑈 𝑎
𝑢 (𝑡) ∀𝑡 ∈ 𝑇

for the attacker are non-negative and all the caught penalties𝑈 𝑎
𝑐 (𝑡)

are non-positive.

3 FULLY RATINOAL ATTACKER
When all the resources are homogeneous, we can use the marginal

probability of covering edge 𝑒 ∈ 𝐸 as the defender mixed strategy.

We assume the independence across edge coverage 𝑥𝑒 , which im-

plies that there is probability 𝑥𝑒 that the attacker will get caught

when the attacker passes edge 𝑒 , and this probability is indepen-

dent of all other edges. The defender also suffers from a budget

constraint 𝐵, where in expectation

∑
𝑒∈𝐸 𝑥𝑒 ≤ 𝐵.

Therefore, given a defender strategy 𝑥 , the attacker’s payoff of

using a path 𝑃 toward target 𝑡 can be given by:∏
𝑒∈𝑃 (1 − 𝑥𝑒 )𝑈 𝑎

𝑢 (𝑡) + (1 −
∏

𝑒∈𝑃 (1 − 𝑥𝑒 ))𝑈 𝑎
𝑐 (𝑡) (1)

Since the attacker is fully rational, he can enumerate all the possible

paths and find the best one to use. From the defender’s perspective,

the defender aims to minimize the attacker’s expected payoff by

optimally allocating the limited resource. For simplicity, we assume

the NSGs to be zero-sum, where the attacker wants to maximize his

utility while the defender wants to minimize the attacker’s utility.

Therefore, NSGs can be written as a minimax problem.

3.1 Non-linear Minimax Problem
The defender’s optimization problem can be written as a minimax

problem with exponentially many constraints:

min 𝑈 𝑎
(2)

s.t. 𝑈 𝑎 ≥
∏

𝑒∈𝑃 (1 − 𝑥𝑒 )𝑈 𝑎
𝑢 (𝑡) + (1 −

∏
𝑒∈𝑃 (1 − 𝑥𝑒 ))𝑈 𝑎

𝑐 (𝑡)
∀𝑡 ∈ 𝑇,∀ path 𝑃 toward 𝑡 (3)∑

𝑒∈𝐸 𝑥𝑒 ≤ 𝐵

Let us simply denote the minimax value of optimization problem 2

with budget 𝐵 by 𝑓 (𝐵). Notice that this formulation is non-linear

and non-convex in 𝑥 . In practice, we can still apply non-convex

optimization solver to find a solution.

3.2 Linear Minimax Problems
If we replace the right hand side of inequality (3) in the optimiza-

tion problem by only the first order term

∑
𝑒∈𝑃 𝑥𝑒 , then the entire

minimax optimization problem will underestimate the defender

payoff, providing a lower bound formulation.

Lower bound: the new optimization problem can be written as:

min 𝑈 𝑎
(4)

s.t. 𝑈 𝑎 ≥ (1 − 𝑦𝑃 )𝑈 𝑎
𝑢 (𝑡) + 𝑦𝑃𝑈 𝑎

𝑐 (𝑡) ∀𝑃, 𝑡 ∈ 𝑇

𝑦𝑃 = min(
∑

𝑒∈𝑃 𝑥𝑒 , 1),
∑

𝑒∈𝐸 𝑥𝑒 ≤ 𝐵, 0 ≤ 𝑥𝑒 ≤ 1

Let us denote the optimum of this optimization problem by 𝑔(𝐵).

3.3 Approximation Ratio
Given the lower bound 𝑔(𝐵), we can analyze the approximation

ratio between the real optimum and the lower bound, which even-

tually gives us the following result:

Theorem 3.1. The optimum of optimization problem 4 is (1−𝑒−1)2
approximate to the optimum of the optimization problem 2.

In practice, many existing works [8, 9] chose to adopt the linear

formulation (Equation 4). Other works using the non-linear formu-

lation either require best response oracle [4, 5] or a constraint pro-

gramming optimizer [6] to find the optimal solution. Theorem 3.1

provides an insight of the balance of scalability and optimality. In

exchange of the scalability, we can adopt the linear formulation but

need to sacrifice at most constant ratio of the optimality.

4 BOUNDEDLY RATIONAL ATTACKER
When the attacker is boundedly rational, we can use a behavior

function q(x, 𝜉) to represent the attacker’s boundedly rational be-

havior, where x refers to the marginal coverage that the attacker

perceives and 𝜉 refers to the context or information revealed to

both defender and the attacker, e.g., target values and graph struc-

ture. The defender utility under coverage x, context 𝜉 , and attacker

behavior q can be given by:

DefU(x; q) =
∑

𝑃 ∈A q𝑃 (x, 𝜉)
(
𝑈𝑑
𝑢 (𝑃)

∏
𝑒∈𝑃 (1 − x𝑒 )+

𝑈𝑑
𝑐 (𝑃) (1 −

∏
𝑒∈𝑃 (1 − x𝑒 ))

)
(5)

However, unlike the fully rational case, the number of attacker pure

strategies A could be exponential or infinite when cycles exist. It

is impossible to exactly compute Equation 5.

Interestingly, we found that when the attacker follows Markov-

ian behavior, the attacker’s movement can be represented as an

absorbing Markov chain, where the attacker only gets absorbed

when he reaches a target or gets caught. More specifically, we say

the attacker is Markovian if when the attacker is choosing the next

edge, he makes decision based on the current location and static

information only. In other words, the attacker is memoryless. Under

the memoryless condition, we can efficiently compute the defender

utility in Equation 5 as discussed in [2, 3, 10]. Then the optimization

problem can be solved by any non-convex optimization solver.

It is interesting that howmuchwewill losewhenwe approximate

a memory-dependent behavior with a memoryless behavior. Similar

to the fully rational case, we know that we will lose a constant ratio

of optimality. We are also interested in how much we will lose by

using a memoryless approximation.

5 CONCLUSION
In Section 3, we introduce two common formulation of network

security games (Equation 2, 4). Although Equation 2 correctly en-

codes the non-linear defender utility, it is usually hard to solve,

requiring non-convex optimization solver which might also lead

to suboptimality. Instead, Equation 4 is linear and easy to compute.

The result in Section 3.3 shows that we can approximate the non-

linear formulation by the linear formulation with a constant ratio

of optimality gap. In Section 4, we present an defender optimiza-

tion problem when the attacker is boundedly rational. We point

out that exponentially many attacker pure strategies commonly

exist in network security games with boundedly rational attacker.

This can be resolved by approximating the attacker behavior with a

memoryless behavior, where the defender utility can be efficiently

computed and optimized.
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