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ABSTRACT
The problem of promoting cooperative behaviour in a complex dy-
namical network of interacting individuals (e.g. social and epidemic
networks or networks of opinion) has been intensely investigated
across diverse fields of behavioural, social and computational sci-
ences. In most studies, cooperation is assumed to emerge from the
combined actions of participating individuals within the population,
without taking into account the possibility of external intervention
and how it can be performed in a cost-efficient way. The prob-
lem of cost-efficient external intervention is important in a wide
range of application domains, ranging from drug prevention pro-
grammes and wildlife conservation initiatives to environmental
governance or safety compliance in developing technology. Inter-
national institutions, such as the UN or the EU, also often need to
make investments to promote a certain population state such as
peace and social diversity, at a minimal cost.
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1 INTRODUCTION
The problem of explaining collective behaviours among self-interested
individuals in evolving dynamical systems has fascinated researchers
from many fields, and is a well studied research topic in evolution-
ary game theory [8]. It can be found in a variety of real-world
situations, ranging from ecosystems to human organisations, tech-
nological innovations and social networks [6, 16, 17, 20].

In this context, cooperation is typically assumed to emerge from
the combined actions of individuals within the system. However,
in many scenarios, such behaviours are advocated and promoted
by an external party, which is not part of the system, calling for
a new set of heuristics capable of engineering a desired collective
behaviour in a self-organised complex system [15]. For instance,
if one considers a near future, where hybrid societies comprising
humans and machines shall prevail, it is important to identify the
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most effective incentives to be included towards leveraging cooper-
ation in such hybrid collectives [14]. It may be the case, also, that
such incentives would consider polycentric systems [13], where the
self-organisation of justice systems is in constant interplay with
higher level institutions.

In a different context, let us consider a wildlife management
organisation (e.g., the WWF) that aims to maintain a desired level
of biodiversity in a particular region. In order to do that, the or-
ganisation, not being part of the region’s ecosystem, has to decide
whether to modify the current population of some species, and if
so, then when, and in what degree to interfere in the ecosystem (i.e.,
to modify the composition of the population) [10].

Moreover, due to the evolutionary dynamics of the ecosystem
(e.g., frequency and structure dependence) [17], undesired behaviours
can reoccur over time, for example when the interference was not
sufficiently strong in the past. Given this, the decision-maker also
has to take into account the fact that it will have to repeatedly in-
terfere in the ecosystem in order to sustain the level of biodiversity
over time. That is, it has to find an efficient interference mechanism
that leads to its desired goals, while also minimising its total cost.

This question has been studied previously in the context of pop-
ulations distributed on regular graphs, namely complete or square
lattice graphs [5, 7]. In this type of network, every individual has
the same degree of connectivity (i.e. the number of neighbours).
However, in social graphs and real-world populations, individuals
typically have a diverse social connectivity [1, 18]. Hence, in my
thesis, I aim to study cost-effective interference in various types
of networks, among which heterogenous ones, such as different
types of scale-free networks, which have been shown to adequately
capture real-world networks (such as the World Wide Web [11]).

The main research aims of the project are therefore to generalise
intervention models to real-world structures with different levels of
heterogeneity in connectivity and connection strengths, as well as
dynamical structures with or without mobility, to identify and for-
malise the presence of exogenous (i.e. institutions) and endogenous
(i.e. self-organised) governing mechanisms and finally to apply the
developed models to analyse real-world, complex networks (such
as Facebook or Twitter).

To achieve the aim and objectives of the project, I have, and
continue to, systematically develop a number of computational
models based on agent-based simulation techniques and analyti-
cal methods from Evolutionary Game Theory. The project aims to
contribute novel and fundamental understanding into the litera-
ture of AI optimization and decision making in complex systems,
providing mechanistic insights about how to achieve high system
performance in a cost-effective way.
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2 MODELS AND METHODS
2.1 Evolutionary Game Theoretic Models
All the analysis and numerical results obtained, until now, use
evolutionary game theoretic methods, using replicator dynamics
for infinite populations [9] and agent-based simulation for finite
populations [12, 19]. In this setting, the payoff for each agent rep-
resents their fitness or social success. Evolutionary dynamics are
then shaped by social learning [9, 19], whereby the most successful
individuals tend to be imitated more often by others.

In order to simulate evolutionary dynamics, this project will
make use of various economic games, with an emphasis on the Pris-
oner’s Dilemma (PD) which I explore using replicator dynamics and
simulations. By choosing the most competitive social dilemma [9],
the project explores the toughest environment for the emergence
of cooperation, therefore increasing the relevance of any observed
effects.

Replicator dynamics are used to study the growth of each fraction
(of strategies) in the population, as a function of their frequency and
relative fitness [9, 19]. According to replicator dynamics, whenever
a gradient of selection is positive, the frequency of that particular
strategy grows in the population. This method is useful for de-
riving evolutionarily stable strategies and conditions, mainly on
homogenous networks.

In the case of complex networks, I resort to agent-based meth-
ods and simulations. Social learning is usually modelled using the
pairwise comparison rule [21], a standard approach in studying
evolutionary dynamics within the framework of evolutionary game
theory. After formalising different models, the evolutionary process
is simulated until a stationary state or a cyclic pattern is reached.

2.2 Network Creation
The project has, so far, made use of homogenous (namely complete
and structured graphs) and two types of heterogeneous networks,
with two different levels of clustering.

For SF networks with low clustering, I adopt the famous Barabási-
Albert (BA) model [1]. Starting from a complete graph of𝑚0 nodes,
at every time-step one adds new node with𝑚 ≤ 𝑚0 edges linking
to existing nodes, which are chosen with a probability that is pro-
portional to the number of links that the existing nodes already
have.

To obtain a SF network with high clustering, I resort to the
Dorogovtsev-Mendes-Samukhin (DMS) model [4]. Contrary to the
BA model, each new node attaches to both ends of a randomly
chosen edge. As a result, there is favouritism towards the creation
of triangular relations between individuals, thereby greatly enhanc-
ing the clustering coefficient of the final network. As in the BA
model, the process of choosing the edge implicitly promotes the
preferential choice of highly connected nodes, leading to the same
degree distribution.

3 INTERESTING RESULTS SO FAR
In our published output so far, we have shown that network topol-
ogy plays a very important role when selecting interference strate-
gies, at least in the case of positive incentives towards cooperators
[2]. Even in the case of identical connectivity values, the presence
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Figure 1: Simple interference based on population compo-
sition for BA model (top row) vs DMS model (bottom row),
for varying per-individual cost of investment 𝜃 , as well as
the threshold cooperation in the population 𝑝𝐶 . The left col-
umn reports the frequency of cooperation while the right
one reports the total cost imposed on the institution.

of triangular motifs in the network (i.e. high degree of clustering),
greatly influences the effect of exogenous interference. Interestingly
and counter-intuitively so, simple incentive mechanisms can some-
times lead to the demotion of cooperators and, implicitly, negatively
impacts cooperation levels when compared to control experiments
(See Figure 1). By rewarding cooperators in certain network topolo-
gies (low clustering with lowly specific candidate selection), this
can lead to cyclic behaviours wherein artificially enabling the sur-
vival of cooperators in defector neighbourhoods can lead to the
exploitation of said cooperators resulting in large defector clusters
which cannot self-sustain.

We have also shown how the previously mentioned phenomena
can be avoided and why investing in scale-free networks with
large degrees of clustering requires less specific information about
the network and lessens the burden of continuous investment. In
other words, a sufficiently high, initial investment can lead to the
emergence of cooperation in highly clustered scale-free networks.
These results present us with multiple questions regarding the
selection between reward and punishment based not only on initial
network conditions or state of cooperation, but also on network
structure and topology.

Currently, we are investigating how signalling mechanisms can
influence the emergence of peer punishment, and how fear of pun-
ishment can be leveraged to promote cooperation and increase
social welfare (See Preprint [3]). By gaining further insight into this
topic, we could begin exploring interference mechanisms which
advertise threat of punishment and/or promise of reward, avoiding
the actual act of punishment and therefore reducing the overall
cost of interference.
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