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ABSTRACT
We consider Deep Reinforcement Learning (DRL) approaches to
devise mapless navigation strategies for mobile platforms. We pro-
pose a Genetic Deep Reinforcement Learning (GDRL) method that
combines Genetic Algorithms (GA) with discrete and continuous
action space DRL approaches. The goal of GDRL is to reduce the
sensitivity of DRL approaches to their hyper-parameter tuning and
to provide robust exploration strategies. We evaluate GDRL in com-
bination with Rainbow and Proximal Policy Optimization (PPO)
in two navigation scenarios: i) a wheeled robot avoiding obstacles
in an indoor environment and ii) a water drone that must reach a
predefined location in presence of waves. Our empirical evaluation
demonstrates that GDRL outperforms state-of-the-art DRL and GA
methods as well as a previous hybrid approach.
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1 INTRODUCTION
The key to successfully apply DRL in robotics is the ability of
adapting to the surrounding environment by generalizing from
the training experiences. Robotic applications, however, have to
cope with the uncertainties of both the physical hardware and the
operational environment, hence they usually require a huge number
of trials to achieve reasonable and stable performances. For this
reason, devising stable learning approaches while reducing training
time is a key issue for the application of DRL in real applications.
Despite the promising results of DRL in robotics [8, 9, 17, 18, 22],
these approaches still present open challenges such as avoiding
fast convergence to a local optimal, mainly caused by the lack of
diverse exploration when operating in high-dimensional spaces. An
effective approach to address these challenges is the optimization
of Evolutionary Strategies (ES) [2] and, in particular, GA [10].

In this paper, we propose a novel hybrid methodology, which
we refer to as Genetic Deep Reinforcement Learning (Figure 1), to
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Figure 1: High level schematic of GDRL.

combine GA with DRL. Our goal is to exploit the high sampling-
efficiency of DRL algorithms while incorporating a GA-based eval-
uation to search for a better-performing policy, hence improving
the stability of the training and reducing training time. To validate
our framework in the wide area of DRL, we propose the application
of GDRL to both discrete and continuous action space domains,
using two state-of-the-art learning algorithms such as Rainbow [5]
and PPO [15]. This extends the use of our methodology beyond
actor-critic settings of previous approaches, allowing the use of
powerful discrete action space optimizations [3, 4, 14, 19, 21].

2 GENETIC DRL
Recently, there has been an increasing interest in the use of ES as
an alternative for DRL [13]. In particular, [16] shows how a simple
GA, based only on mutations, can be a competitive alternative to
more complex gradient-based alternatives (e.g., DQN). Following
these results, an emergent research direction focuses on combine
gradient-free and gradient-based solutions into a hybrid framework
[1, 6, 12]. These works share a common baseline in the first attempt
to merge ES and DRL, called Evolutionary Reinforcement Learning
(ERL) [6]; given this as a shared baseline architecture for [1, 12],
we choose to compare GDRL with ERL.

In contrast to previous works, we evaluate GDRL on two map-
less navigation scenarios, a well-known benchmark in recent DRL
literature [18, 20, 22]. In particular, we consider a wheeled robot
that must reach a target point while avoiding obstacles in an in-
door environment, and an aquatic drone that must reach a target
point in presence of waves. Our two environments present differ-
ent characteristics (e.g., static and dynamic environments, sparse
and dense rewards), and we show that using only the evolutionary
component of the framework it is not possible to deal with the high
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generalization required by the indoor scenario1. We show how we
combine both discrete (i.e., Rainbow) and a continuous (i.e., PPO)
action space DRL algorithms with a pure GA method [16]. These
combinations result in two algorithms named GRainbow and GPPO.
We compare the performance of GDRL to the stand-alone GA, Rain-
bow [5], PPO [15] and the to ERL framework introduced in [6] and
applied to the PPO approach (we refer the interested reader to the
original papers for details on the considered algorithms).

2.1 Genetic Evaluation
In this section, we show the details of the periodical evaluation.

Overall approach: as in a standard training setup, a main DRL
agent (𝑑𝑟𝑙𝑎 , with weights 𝜃𝑎) starts to collect experiences interact-
ing with its environment. Such experiences are stored in a replay
buffer to train the network. Periodically, GDRL generates a popu-
lation of children, each one characterized by a different genome.
Each child is generated by applying a mutation function to 𝜃𝑎 . Fur-
thermore, a separate thread is instantiated for each child, along
with a copy of the environment. The weights in 𝜃𝑎 are used to
create the 𝑁 individuals applying Gaussian noise to the parameter
vector: 𝜃𝑎 +𝑚𝑢𝑡𝑝𝑛, where 𝑛 ∼ 𝑁 (0,𝑚𝑢𝑡𝑣) and𝑚𝑢𝑡𝑝 is the mutation
probability. These children, together with a copy of 𝜃𝑎 are then
evaluated over a set 𝑆 of episodes in their copy of the 𝑑𝑟𝑙𝑎 environ-
ment and the best performing individual is replaced to the current
𝑑𝑟𝑙𝑎 . We use the same genetic hyper-parameters for both GRainbow
and GPPO. In particular, the size 𝑁 of the population 𝑃 is set to
10 and the number of trials conducted in the evaluation phase, to
compute the fitness score, ranging from 10 to 20 across tasks. The
mutation probability of a network weight is𝑚𝑢𝑡𝑝 = {0.75, 0.4, 0.1}
based on the current success rate (i.e., the number of obstacle-free
trajectories that reach the target over the last 100 episodes) and
a constant mutation value𝑚𝑢𝑡𝑣 = 0.1. Our evaluation shows that
in contrast to [6] our mutation pattern finds more often a better
policy. In particular, in [6] the network switch occurs more rarely
≈ 25 times over 250 trials, while in our case we have ≈ 30 times in
45 evaluations.

GRainbow for the indoor navigation: the genetic evaluation
of the Rainbow agent presents some challenges given the instability
of the training algorithm and all its optimizations which have to
cooperate in order to successfully train the agent 2. In particular,
when the genome of the 𝑑𝑟𝑙𝑎 is switched with one of the mutated
children a soft update of the target network is performed with
𝜏 = 0.1 to approach the new weights 𝜃𝑎 ; we tried different setup
for this, but copying the 10% of the weights showed us the better
performance. Moreover, we exploit the redundancy offered by the
population, to introduce some of the experience of the genetic
evaluation into the same prioritized buffer of the 𝑑𝑟𝑙𝑎 .

GPPO for the water drone scenario: in contrast to GRainbow,
the genetic evaluation phase of the continuous PPO agent does not
present particular issues, given the simple setup of the algorithm
and the reduced number of hyper-parameters. Given the limited
size of the buffer, we did not include the experience of the children
agent in this case.

1In contrast, GA have been successfully used in locomotion [7, 11]
2Such instability are a known drawback of DQN-based algorithms. Nonetheless, this
remains the stat-of-the-art for discrete action space.

Table 1: Average Performance in the Evaluation Phase

Algorithm Reward Step Sim. Time (s) Speed (m/s)

Rainbow 36.2 370 42 constant
GRainbow 38.2 272 32 constant

PPO 4.5 98 27 0.22
GPPO 4.8 89 22 0.23

Figure 2: Top: Success rate for the Turtlebot3: GA-Rainbow-
GRainbow (left) and for the water scenario: GA-GPPO
(right). Bottom: PPO-GPPO (left) and ERL-GPPO (right).

3 EMPIRICAL EVALUATION
The collected data in Figure 2 are related to training phases per-
formed on an Intel i7-8550U. After the learning phase, the trained
models are able to navigate, generalizing: (i) robot starting position,
(ii) target position, (iii) velocity. We evaluated the trained models of
Rainbow, GRainbow, PPO and GPPO to compare the performance
of each method; Table 1 resumes the collected data. Crucially, GDRL
based algorithms outperform the standard methods in every con-
sidered metrics.

4 DISCUSSION
We presented GDRL, a novel hybrid framework that exploits the
robustness of population-based GA to improve DRL agents. Cru-
cially, our GDRL method is the first framework that combines GA
and DRL for both continuous and discrete action space methods in
navigation scenarios. This work paves the way for several interest-
ing research directions which includes the possibility of extending
GDRL in a multi-agent scenario, exploiting the crossover of similar
agents.
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