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ABSTRACT
In the field of informed decision-making, the usage of a single
diagnostic expert system has limitations when dealing with compli-
cated circumstances. The usage of a multi-agent information fusion
(MAIF) system can mitigate this situation, as it allows multiple a-
gents collaborating to solve the problems in a complex environment.
However, the MAIF system needs to handle the uncertainty prob-
lem between different agents objectively at the same time. Target to
this goal, this study reconstructs the generation of basic probability
assignments (BPAs) based on the framework of evidence theory,
and presents the uncertainty relationship between recognition sets,
which are beneficial to the applications of the MAIF system. On
the basis of evidence distance measurement, our method demon-
strates the effectiveness and extendibility in numerical examples,
and improves the accuracy and anti-interference ability during the
identification process in the MAIF system.
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1 INTRODUCTION
In modern engineering applications, electronic information sys-
tems tend to be highly integrated and have many components and
complex functions. Thus, concurrency, suddenness, complexity are
the three main problems that might occur when equipment fails
[29, 38, 45]. Among many information systems, multi-source in-
formation systems occupy a certain degree of proportion, which
are often used to represent complex information [50] from mul-
tiple sources. However, how to effectively integrate multi-source
information [36] and measure its uncertainty to ensure the cor-
rectness and anti-interference in the process of information fusion
and diagnosis has become the focus of many scholars [8, 21, 31].
The single diagnostic method like neural networks [11] or expert
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evaluation [22, 43] used in the past has certain limitations and is not
able to accurately feedback the status of the current information
system in the realistic environment [20]. Therefore, it is necessary
to comprehensively weigh the information [25] from many aspects
to get the correct conclusion. The multi-agent information fusion
(MAIF) system based on the fusion agent provides a solution from
the distribution to the unity.

The multi-agent information fusion system mainly studies the
interactive communication, coordinative cooperation, and conflict
resolution between various agents. It focuses on the fusion analysis
of information between multiple agents, rather than the autonomy
and development of individual agent. In the process of multi-agent
information fusion, considering that the inference models used by
each agent are not necessarily the same, the given conclusions may
be inconsistent even under the circumstances that all agents use
the same original detected data at the starting point. This inconsis-
tency is mainly reflected in two situations. Firstly, different agents
conclude the same answer while their credibility degree towards
it is different. For instance, suppose a MAIF system needs to iden-
tify the type of failure, both agent 𝐴 and 𝐵 thought the fault was
attributed to "connection failure", but agent 𝐴 gave the probability
of 90% while agent 𝐵 did 75%, saying that agent 𝐴’s credibility is
higher even if they have the same conclusion. Secondly, different
conclusions emerge between different agents, indicating that the
information is contradictory. For the first situation, we require to
optimize the information fusion process for obtaining a result with
higher accuracy. As for the second situation, it is crucial to reduce
interference when facing highly conflicting information effectively.
In response to these two situations, there have been many attempts
to improve the performance, such as distributed weighting [9] and
relative reliability evaluation [6, 24].

However, they fail to focus on the measurement of uncertainty
between information sources from various agencies, and the meth-
ods are somewhat a little bit rough when combining conclusions
for the multi-agent information fusion process. If introducing the
metric of uncertainty modeling [14, 48], it could characterize the
range of the measured value, such as the representative information
of the degree to which the measured raw information cannot be
determined. The primary process of uncertain modeling is using the
original field data, removing the severe errors in the original data,
extract and converting the useful information to the fusion layer
for selection. For example, Hunter [15] used an adaptive algorithm
for merging multiple source uncertain information by assessing the
coherence of the information in each subset which helps the fusion
process can integrate both conjunctive and disjunctive operators
more flexibly.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1494



In the field of MAIF, evidence theory has good applicability and
scalability in dealing with uncertainty information, so it is the po-
tential to be integrated into the MAIF system. However, the D-S
evidence theory may fail in the case of high conflicting situation-
s, making it difficult to guarantee the fusion result. Two types of
approaches have been identified to improve the performance of
MAIF: modifying the fusion rules, and preprocessing the uncertain-
ty information in the system prior to the step of data fusion. The
previous studies have put forward the strategy of preprocessing and
provided the distance measurement for effectively measuring the
uncertainty of MAIF system, but the measurement object is mainly
based on multiple sources of data as a whole, lacking measuring
a specific distinction between two sources of data. Therefore, the
method proposed in this paper will cover the advantages of both
ideas and perform better data preprocessing. In this study, we devel-
oped a new concept call reconstructed basic probability assignment
(BPA) by measuring detailed uncertainties within the framework
of evidence theory, and proposed a comprehensive fusion method
by combining with evidence distance to show its effectiveness in
the application of MAIF systems.

The remaining parts of this paper are arranged as follows. In
Section 2, we briefly introduce the basic definition of evidence the-
ory and evidence distance. In Section 3, our proposed method is
presented based on reconstructed BPA and the previous concept
mentioned. In Section 4, we show the performance of our proposed
method based on two numerical examples. Furthermore, the sensi-
tivity test is given in Section 5. Finally, the conclusion of this paper
is put forward in Section 6.

2 PRELIMINARIES
In this section, some basic information on MAIF system, Dempster-
Shafer evidence theory, Jousselme evidence distance, and its rele-
vant combination rule will be briefly introduced.

2.1 MAIF system
MAIF is short for Multi-Agent Information Fusion System, which
presents as an autonomous scheme that solves system problems
employing information fusion between agents in a multi-agent
system. The concepts of the agent, multi-agent system (MAS), and
information fusion will be introduced in detail.

2.1.1 The definition of agent. The following definitions are wide-
ly recognized in the field. Wooldridge and Jennings [16] released
a simple definition: an agent is a computer system in an environ-
ment that has the ability to act autonomously in this environment
to achieve its design goals. Then, Minsky [19] believes that each
agent possesses its own wisdom to do some simple tasks. When
we use a specific method to form these agents into an agent group,
the agent intelligence comes along. For the development of agent
software tools, it describes agents as the software programs that
can perform specific tasks for users, showing a certain degree of
intelligence when performing tasks autonomously and interacting
with the environment.

2.1.2 Multi-agent system. MAS [34] is an agent society com-
posed of multiple agents and is considered as a distributed au-
tonomous system. It suggests that the multi-agent system contains

multiple computing units, referred to as agents, which can inter-
act with each other. The performance of MAS could be achieved
through the interaction of agents, by investigating how multiple
agents coordinate their knowledge, goals, plans, and strategies to
take joint actions or solve problems.

2.1.3 Information fussion. Information fusion [2] is an applied
area about combining data from multiple sources to support deci-
sion analysis. At present, research methods such as fuzzy theory,
neural network, evidence theory and etc. occupy a considerable pro-
portion in this field. Because MAS and information fusion method
have some commonality in processing data, agent-based informa-
tion fusion technology in recent years is expected to provide a
new perspective for processing problems in complex engineering
application systems and military areas.

2.2 Dempster-Shafer evidence theory
The D-S evidence theory was proposed by Harvard mathematician
A.P. Dempster in 1967 [3]who first introduced the concept of upper
and lower bound to solve the multivalued mapping problem. After
that, his student G. Shafer further refined the evidence theory by
proposing belief function, forming a group of evidence combination
to illustrate uncertainty reasoning.

D-S evidence theory is an extension [41] of Bayes theory. Differ-
ent from Bayes theory requiring prior information for probability
calculation, evidence theory showed the better performance to deal
with uncertain information without prior probability.

2.2.1 Framework of discernment. Suppose there is a problem
that needs to be judged. For all the possible solutions (e.g., 𝜃1)
recognized by this problem, they are depicted by an exhaustive and
finite set Θ, which is also known as the framework of discernment
(FOD). The expression in details is:

Θ = {𝜃1, 𝜃2, · · · , 𝜃𝑛}. (1)

Where 𝜃𝑖 (𝑖 = 1, 2, ..., 𝑛) is an element or event in the FOD and let
2Θ indicates the power set of Θ, namely:

2Θ = {∅, 𝜃1, · · · , 𝜃𝑛, {𝜃1, 𝜃2}, {𝜃1, 𝜃3}, · · · ,Θ}. (2)

2.2.2 Basic probability assignment. The D-S evidence theory
assigns a probability to each hypothesis in the framework of dis-
cernment (FOD), referred as basic probability assignment (BPA) due
to good scalability [7, 32]. The corresponding assignment function
is called the mass function. Let Θ be the discernment framework, if
the set function𝑚 : 2Θ → [0, 1] satisfies:∑

𝐴⊆Θ
𝑚(𝐴) = 1 𝑚(∅) = 0 (3)

where𝑚 is the basic probability assignment function or mass func-
tion of the FOD 2Θ and𝑚(𝐴) is the BPA value of proposition 𝐴,
indicating the degree which evidence trust in 𝐴. The value of𝑚(∅)
is 0.

2.2.3 D-S evidence combination rule. D-S combination rule is
the core of D-S evidence theory, which combines the information
generated by multiple subjects [42] (it may be different experts’
predictions, data obtained from different sensors or diagnostic re-
sults of different electronic devices, etc.). It has the following three
advantages: 1) satisfy weaker conditions than Bayes probability
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theory; 2) integrate a variety of data or knowledge; 3) express "un-
certainty" directly.
Suppose there exist two BPAs𝑚1 and𝑚2 on the same FOD.𝐵1, ..., 𝐵𝑘
and 𝐶1, ...,𝐶𝑘 are the focal elements of𝑚1 and𝑚2 respectively. Ac-
cording to the D-S combination rule, the belief function𝑚(𝐴) is:

𝑚1
⊕

𝑚2 (𝐴) =
1
𝐾

∑
𝐵∩𝐶=𝐴

𝑚1 (𝐵) ·𝑚2 (𝐶)

where 𝐾=
∑

𝐵∩𝐶≠𝜙
𝑚1 (𝐵)·𝑚2 (𝐶) = 1 −

∑
𝐵∩𝐶=𝜙

𝑚1 (𝐵) ·𝑚2 (𝐶)
(4)

Where𝐾 is a normalization coefficient which represents the conflict
degree between two evidences, characterized as an empty intersec-
tion of 𝐵 and 𝐶 .

2.3 Evidence distance
D-S combination rule can be counterintuitive in the case of highly
conflicting evidence occur. To mitigate this problem, a previous
study [5] presented the concept of evidence distance to measure
the similarity between evidence, which is important in the appli-
cation of evidence theory. Same as the traditional distance defi-
nition, the evidence distance should satisfy the characteristics of
non-negative, symmetrical, reflexive, and triangular inequality. The
evidence distance is generally divided into two types according to
different construction methods. One is indirectly defined by other
measures related to the evidence, and the evidence itself directly
determines the other. Jousselme proposed the Jousselme distance
formula [18] based on evidence theory’s geometric interpretation,
which is proved to be a rigorous distance definition because it
satisfies the four axiomatization conditions mentioned above.

2.3.1 Jousselme evidence distance. Assume that the discernment
frameworkΘ contains𝑁 elements, a high-dimensional space can be
constructed by identifying the elements in the frame as coordinates.
Each evidence is represented as a point or a vector in this space.
If𝑚𝑖 ,𝑚 𝑗 are two independent evidences in the FOD, representing
them as vectors in space is −→𝑚𝑖 , −→𝑚 𝑗 . Then, the Jousselme distance
between −→𝑚𝑖 , −→𝑚 𝑗 is defined as:

𝑑𝐵𝑃𝐴 (𝑚𝑖 ,𝑚 𝑗 ) =
√

1
2
(−→𝑚𝑖 − −→𝑚 𝑗 )𝑇𝐷 (−→𝑚𝑖 − −→𝑚 𝑗 ) (5)

Where 𝐷 represents a matrix whose size is 2𝑁 ×2𝑁 , and 𝑁 is the
number of elements contained in the FOD. Inmatrix𝐷 ,𝐷 (𝐴, 𝐵)=𝐴∩𝐵

𝐴∪𝐵
which 𝐴, 𝐵 represent the subset of FOD. The detailed calculation of
Jousselme evidence distance is:

𝑑𝐵𝑃𝐴 (𝑚𝑖 ,𝑚 𝑗 ) =
√

1
2
(∥ ®𝑚𝑖 ∥2 +

 ®𝑚 𝑗

2 − 2 < −→𝑚𝑖 ,
−→𝑚 𝑗 >) (6)

< −→𝑚𝑖 ,
−→𝑚 𝑗 >=

2Θ∑
𝑖=1

2Θ∑
𝑗=1

𝑚1 (𝐴𝑠 )𝑚2 (𝐵𝑡 )
|𝐴𝑠 ∩ 𝐵𝑡 |
|𝐴𝑠 ∪ 𝐵𝑡 |

(7)

| · | is modulo operation, and 𝐴𝑠 , 𝐵𝑡 are the subsets of FOD. For
𝑑𝐵𝑃𝐴 ∈ [0, 1], the greater the value of 𝑑𝐵𝑃𝐴 , the greater difference
between the two evidences.

2.3.2 Combine belief function based on evidence distance. Using
evidence distance can optimize the combination of belief function,
and several methods [23] have been proposed. Here, we introduce
the common one by exploring similarity matrix to generate weights
based on Jousselme evidence distance.
The similarity of two bodies of evidence is denoted as 𝑆𝑖𝑚𝑚𝑖 ,𝑚 𝑗

,
the definition is:

𝑆𝑖𝑚(𝑚𝑖 ,𝑚 𝑗 ) = 1 − 𝑑𝐵𝑃𝐴 (𝑚𝑖 ,𝑚 𝑗 ) (8)

Assume there are 𝑘 pieces of evidence, the similarity measure ma-
trix(SMM) is constructed by calculating all the similarity among
these evidences and 𝑆𝑖 𝑗 is short for 𝑆𝑖𝑚(𝑚𝑖 ,𝑚 𝑗 ).

𝑆𝑀𝑀 =



1 𝑆12 · · · 𝑆1𝑗 · · · 𝑆1𝑘
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

𝑆𝑖1 𝑆𝑖2 · · · 𝑆𝑖 𝑗 · · · 𝑆𝑖𝑘
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

𝑆𝑘1 𝑆𝑘2 · · · 𝑆𝑘 𝑗 · · · 1


(9)

For a evidence𝑚𝑖 (𝑖 = 1, 2, ..., 𝑘), its support degree is obtained by:

𝑆𝑢𝑝 (𝑚𝑖 ) =
𝑘∑

𝑗=1, 𝑗≠𝑖
𝑆𝑖 𝑗 =

𝑘∑
𝑗=1, 𝑗≠𝑖

𝑆𝑖𝑚(𝑚𝑖 ,𝑚 𝑗 ) (10)

The credibility degree 𝐶𝑟𝑑𝑖 shows the weight of corresponding evi-
dence after normalization, therefore, it is obvious that

∑𝑘
𝑖=1𝐶𝑟𝑑𝑖 =

1. The definition of 𝐶𝑟𝑑𝐼 is:

𝐶𝑟𝑑𝑖 =
𝑆𝑢𝑝 (𝑚𝑖 )∑𝑘
𝑖=1 𝑆𝑢𝑝 (𝑚𝑖 )

(11)

After obtaining the credibility degree, the modified average of evi-
dence (MAE) is given by assigning the weight [47]:

𝑀𝐴𝐸 (𝑚) =
𝑘∑
𝑖=1
(𝐶𝑟𝑑𝑖 ×𝑚𝑖 ) (12)

3 OUR PROPOSED METHOD FOR
UNCERTAINTY MODELING

3.1 Construct uncertainty level of FOD
In the process of information transmits and exchanges, it can often
be affected by various factors. For an information detector, the mes-
sage it receives at the receiving end may be any possible results in
its FOD. For example, suppose the FOD of a color detection sensor
is Θ = {𝑟𝑒𝑑,𝑦𝑒𝑙𝑙𝑜𝑤,𝑏𝑙𝑢𝑒}. At a certain moment, an information
source emitted a red light signal. The sensor received the signal and
gave the recognition result based on its own knowledge which is
𝑚(𝑟𝑒𝑑) = 0.6,𝑚({𝑟𝑒𝑑,𝑦𝑒𝑙𝑙𝑜𝑤}) = 0.3,𝑚(Θ) = 0.1. When process-
ing the detected information, the sensor displayed uncertainty [10],
mainly in the following two parts. Firstly, the sensor recognized
the color with a probability of 0.6, but such recognition accuracy is
not accurate enough to be applied in many high-precision systems.
Secondly, the three answers given by the sensor all contain the
element {𝑟𝑒𝑑}, but their weight of saying "the light source is red" is
different. Therefore, to solve these two problems, a reconstructed
BPA (basic probability assignment) method will be proposed with

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1496



uncertainty measurement in the context of multi-source informa-
tion. The following figure shows the construction of the uncertainty
level in FOD.

Figure 1: Relationship between uncertainty and identifica-
tion sets

Each of the cases in the FOD is treated as a recognition set, and
there are 2Θ recognition sets. The uncertainty of the recognition
set is related to the number of elements it contains. To construct
the uncertainty relationship between the sets of FOD, from bottom
to top in Fig.1, it indicates that the information is gradually blurred,
and the determined information at level 0 forms the recognition
set located in the upper layer after gradual interference. When
the information enters the next uncertainty level, an element will
be added to the recognition set. Since the newly added element
combines with all the recognition sets of the previous layer, the
uncertainty is increased by a power series of 2 and the recognition
set of a single element at the level 0 is regarded as "1". The purpose
of information processing is to reduce the uncertainty to the bottom
layer gradually, where the grey dot density indicates the uncertainty
degree of recognition set.

3.2 Reconstructed BPA
For a mass function𝑚, the BPA is reconstructed by the uncertainty
measurement between recognition sets in the mass function. The
definition of reconstructed BPA𝑚𝑟 is as follows. For each𝑚(𝐴𝑖 ) ≠ 0
in𝑚: 

𝑚𝑟 (𝐴𝑖 ) =
∑

𝐴𝑖 ⊆𝐴 𝑗

𝑚(𝐴 𝑗 )
2𝑘 − 1

∀𝐴𝑖 , 𝐴 𝑗 ⊂ Θ,𝑚(𝐴𝑖 ) ≠ 0

𝑚𝑟 (Θ) =
𝑚(Θ)
2𝑛 − 1

(13)

Where 𝐴𝑖 , 𝐴 𝑗 are the subsets in the FOD Θ of the mass function
𝑚, and the 𝐴𝑖 set can be composed by either a single element or
multiple elements. 𝑘 is the number of elements corresponding to
the set 𝐴 𝑗 , 2𝑘 − 1 means the potential states in subset 𝐴 𝑗 in this
case.
From the perspective of the reconstruction equation, there are
two main advantages when reconstructing BPAs. First, for every
statement given by a piece of evidence, the supporting source for
it comes not only from its own set, but also from the upper sets
which contain it. However, as previously described, the determined

information may become vague during the propagation process
due to interference. Therefore, the receiving end might get various
combinations of interference information and original determined
information. For instance, for a recognition set {𝐴} which has its
own credibility, its upper sets {𝐴, 𝐵}, {𝐴, 𝐵,𝐶} also contribute a
certain degree of support for {𝐴} on the premise that this kind
of support is different when the elements increase. Secondly, the
equation measures the uncertainty factor of mass function, and
the relationship of supporting degree between sets is built. When
a recognition set contains more elements, it shows more blurred
information, which corresponds to higher uncertainty. For , it has
no upper set, so there is no need for summation.
To satisfy the format of mass function in evidence theory after the
correction, it is necessary to normalize the reconstructed BPA. Use
the sum of the calculation results in Eq.(13) as the denominator,
and the operation of normalization is:

𝑚
′
(𝐴𝑖 ) =

𝑚𝑟 (𝐴𝑖 )∑2Θ
𝑖 𝑚𝑟 (𝐴𝑖 )

(14)

3.3 Comprehensive steps for multi-agent
information fusion

For a MAIF system, its task is to enable multiple agents to read
the information first correctly, and to combine their information
according to the chosen rule to analyze the identification target,
which has the highest credibility. In the MAIF system, based on
the principle of task decomposition and data classification [26, 40],
the system decomposes the tasks to identify and generate multiple
agents for performing individually respective tasks. Knowledge
sharing [35] between different agents lays a good foundation for
completing the information fusion process. In the context of this
study, the information fusion method of identifying a certain target
is chosen as a task, which is decomposed to ensure that different
agents process different types of information. There is awide variety
of agents, such as expert system agents, neural network system
agents, or sensoring-based agents, which are collectively referred to
as identification agents. To complete an identification task, multiple
identification agents are required to cooperate to complete the
recognition of the target.
For a multi-agent information fusion system, the assumption is that
a group of diagnostic agents 𝐴 = {𝐴1, 𝐴2, ..., 𝐴𝑚} have the same
framework of discernment (FOD), which contains 𝑛 elements. For
a diagnostic agent 𝐴𝑖 , the recognition outcome is expressed as the
following form.

𝐴𝑖 =


𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖2𝑛

𝑐𝑖1 𝑐𝑖2 · · · 𝑐𝑖2𝑛

 (15)

The upper line in the equation represents the recognition object
given by agent 𝐴𝑖 . Since there are a total of 𝑛 elements in the
FOD, there are 2𝑛 recognition objects, and the following line is the
credibility corresponding to each recognition object.
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Figure 2: Flow chart shows the process of multi-agent infor-
mation fusion system

The comprehensive processing flow chart of the multi-agent
information fusion system based on evidence theory is shown in
Figure 2, and the details is explained as pseudocode form in Algo-
rithm 1:
Step 1. Convert the data of agent𝐴𝑖 to a mass function and the form
is (𝐴𝑖 ,𝑚𝑖 )= (

[{
𝑆𝑖1
}
, 𝑐𝑖1

]
,
[{
𝑆𝑖2
}
, 𝑐𝑖2

]
, ... ,

[{
𝑆𝑖2𝑛

}
, 𝑐𝑖2𝑛

]
).

Step 2. Generate the reconstructed BPA according to Eq.(13) and
execute normalization in Eq.(14).
Step 3. Calculate the Jousselme evidence distance between the BPAs
by Eq.(6).
Step 4. By Eq.(8) Eq.(12), combining the belief function based on
Jousselme evidence to obtain the MAE.
Step 5. Using the D-S combination rule for fusion multiple times
[28] to achieve the result.

4 NUMERICAL EXAMPLES
In this section, two classic application cases are presented to show
the validity of the proposed method in the context of multi-agent
information fusion system. One is the situation when system faces
highly conflicting evidences [44], and the other one is a typical
target recognition task [27] with anti-interfere function.

4.1 Target recognition in a highly conflicting
environment

In real-life scenarios [4, 37, 39], agents might be interfered when
reading data information, so that they are not able to work properly.
One of the most common situations [49] is that the interfered agent
makes a high degree of conflict when making a decision [21] or
reasoning [46] compared with other agents in the system. Thus,
the following example presents how to use the proposed method
to effectively avoid such problems in the MAIF system.
In a maritime operation, a group of multi-category sensor agents
𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5} are used to identify a object at sea, and

Algorithm 1 COMPREHENSIVE FUSION(𝑆𝑖𝑥 , 𝑐𝑖𝑥 , 𝑘)

Input: 𝑆𝑖𝑥 : statement detected by agents; 𝑐𝑖𝑥 : corresponding credi-
bility given by agents; 𝑘 : the number of agent

Output: 𝑚𝑐 (𝑆𝑖 ): combined mass function after processed by pro-
posed method

1: (𝐴𝑖 ,𝑚𝑖 ) ←(
[{
𝑆𝑖1
}
, 𝑐𝑖1

]
,
[{
𝑆𝑖2
}
, 𝑐𝑖2

]
, ... ,

[{
𝑆𝑖2𝑛

}
, 𝑐𝑖2𝑛

]
).

2: for each subset 𝑆𝑖 ≠ 0 in𝑚𝑖 do
3: if 𝑆𝑥 ≠Θ then
4: 𝑚𝑖

𝑟 :𝑚𝑟 (𝑆𝑖𝑥 ) ←
∑
𝑆𝑥 ⊆𝑆𝑦

𝑚 (𝑆𝑦 )
2𝑗−1

% 𝑗 : number of element contained in 𝑆𝑦
5: else
6: 𝑚𝑖

𝑟 :𝑚𝑟 (Θ𝑖 ) ← 𝑚 (Θ)
2𝑛−1

% 𝑛: number of element contained in Θ
7: end if
8: end for
9: 𝑚′

𝑖
←𝑚𝑖

𝑟 after normalization
10: for 𝑖 = 1→ 𝑘 − 1 do
11: for 𝑗 = 𝑖 + 1→ 𝑘 do

12: 𝑑𝐵𝑃𝐴 (𝑚′𝑖 ,𝑚
′
𝑗
) ←

√
1
2 (∥ ®𝑚𝑖 ∥2 +

 ®𝑚 𝑗

2 − 2 < −→𝑚𝑖 ,
−→𝑚 𝑗 >)

13: 𝑆𝑖𝑚(𝑚′
𝑖
,𝑚′

𝑗
) ← 1 − 𝑑𝐵𝑃𝐴 (𝑚′𝑖 ,𝑚

′
𝑗
)

14: 𝑆𝑀𝑀 [𝑖] [ 𝑗] ← 𝑆𝑖𝑚(𝑚′
𝑖
,𝑚′

𝑗
)

15: 𝑆𝑀𝑀 [ 𝑗] [𝑖] ← 𝑆𝑀𝑀 [𝑖] [ 𝑗]
16: end for
17: end for
18: for 𝑖 = 1→ 𝑘 do
19: for 𝑗 = 1→ 𝑘 do
20: if 𝑖 ≠ 𝑗 then
21: 𝑆𝑢𝑝 (𝑚′

𝑖
) ← ∑

𝑆𝑀𝑀 [𝑖] [ 𝑗]
22: end if
23: end for
24: 𝑇𝑜𝑡𝑎𝑙_𝑆𝑢𝑝+ = 𝑆𝑢𝑝 (𝑚′

𝑖
)

25: end for
26: 𝐶𝑟𝑑𝑖 ←

𝑆𝑢𝑝 (𝑚′𝑖 )
𝑇𝑜𝑡𝑎𝑙_𝑆𝑢𝑝

27: 𝑀𝐴𝐸 (𝑚) ← ∑𝑘
𝑖=1 (𝐶𝑟𝑑𝑖 ×𝑚′𝑖 )

28: for each subset 𝑆𝑖 in𝑀𝐴𝐸 (𝑚𝑖 ) do
29: 𝑚𝑐 (𝑆𝑖 ) ← (𝑀𝐴𝐸 (𝑚)

⊕
𝑀𝐴𝐸 (𝑚)

⊕
· · ·𝑀𝐴𝐸 (𝑚)) (𝑆𝑖 )

%𝑀𝐴𝐸 (𝑚) fusion by 𝑘 − 1 times
30: end for
31: return 𝑚𝑐 (𝑆𝑖 )

the agents are acoustic sensor agent, speed sensor agent, pressure
sensitive sensor agent and photosensitive sensor agent respectively.
The FOD is Θ = {𝐴, 𝐵,𝐶}. The data obtained by the corresponding
agent is shown as follows (data source from Deng et al.[12]):

𝐴1 =

{
𝐴 𝐵 𝐶

0.5 0.2 0.3

}
𝐴2 =

{
𝐴 𝐵 𝐶

0 0.9 0.1

}
𝐴3 =

{
𝐴 𝐵 𝐴,𝐶

0.55 0.1 0.35

}
𝐴4 =

{
𝐴 𝐵 𝐴,𝐶

0.55 0.1 0.35

}
𝐴5 =

{
𝐴 𝐵 𝐴,𝐶

0.6 0.1 0.3

}
Obviously, the data monitored by agent 𝐴2 is different from that
in other agents when the system assigned most of its credibility to
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object 𝐵 while others did 𝐴. Therefore, the uncertainty level should
be analyzed between the agents. The following shows the main
procedure of dealing with the situation.
(1) The form of mass function has been converted as follows.

(𝐴1,𝑚1) = ( [{𝐴} , 0.5] , [{𝐵} , 0.2] , [{𝐶} , 0.3])
(𝐴2,𝑚2) = ( [{𝐴} , 0] , [{𝐵} , 0.9] , [{𝐶} , 0.1])
(𝐴3,𝑚3) = ( [{𝐴} , 0.55] , [{𝐵} , 0.1] , [{𝐴,𝐶} , 0.35])
(𝐴4,𝑚4) = ( [{𝐴} , 0.55] , [{𝐵} , 0.1] , [{𝐴,𝐶} , 0.35])
(𝐴5,𝑚5) = ( [{𝐴} , 0.6] , [{𝐵} , 0.1] , [{𝐴,𝐶} , 0.3])

(2) Reconstruct and normalize the original BPAs based on Eq.(13)
and Eq.(14).

𝑚
′
1 𝑚

′
2 𝑚

′
3 𝑚

′
4 𝑚

′
5

{𝐴} 0.5 0 0.7547 0.7547 0.7
{𝐵} 0.2 0.9 0.1132 0.1132 0.2
{𝐶} 0.3 0.1 0 0 0
{𝐴,𝐶} 0 0 0.1321 0.1321 0.1
{Θ} 0 0 0 0 0

(3) Get the similarity measure matrix (SMM) by calculating Jous-
selme evidence distance.

SMM=


1 0.3755 0.7052 0.7052 0.7450

0.3755 1 0.1930 0.1930 0.2720
0.7052 0.1930 1 1 0.9184
0.7052 0.1930 1 1 0.9184
0.7450 0.2720 0.9184 0.9184 1


(4) The support and corresponding credibility degree are obtained
by Eq.(10) and Eq.(11)

𝑆𝑢𝑝 (𝑚1) = 2.5309 𝑆𝑢𝑝 (𝑚2) = 1.0335 𝑆𝑢𝑝 (𝑚3) = 2.8166
𝑆𝑢𝑝 (𝑚4) = 2.8166 𝑆𝑢𝑝 (𝑚5) = 2.8538

𝐶𝑟𝑑1 = 0.2100 𝐶𝑟𝑑2 = 0.0858 𝐶𝑟𝑑3 = 0.2337
𝐶𝑟𝑑4 = 0.2337 𝐶𝑟𝑑5 = 0.2368

(5) Assign the credibility weights to mass functions for modified
average evidence (MAE).

𝑚({𝐴}) = 0.6235 𝑚({𝐵}) = 0.2195
𝑚({𝐶}) = 0.0716 𝑚({𝐴,𝐶}) = 0.0854

(6) By fusing the MAE four times, the result given by multi-agent
information fusion system is:

𝑚({𝐴}) = 0.9966 𝑚({𝐵}) = 0.0028
𝑚({𝐶}) = 0.0005 𝑚({𝐴,𝐶}) = 0.00002

The table below compares the diagnostic results by using four fu-
sion methods in the context of a multi-agent information fusion
system. From the original data, it is clear that the data gave by agent
𝐴2 is highly conflicting. In this case, the traditional D-S combina-
tion method did not work well and produced a counter-intuitive
answer by treating𝐶 as a diagnosis result. The other three methods
can correctly diagnose the object 𝐴, but there is a divergence in
terms of accuracy. Murphy’s method is usually mentioned in the
test comparison, which achieved the outcome by averaging 𝑛 pieces
of BPAs and fusing them 𝑛−1 times afterward. In Murphy’s method,

all evidence weights are equal, but the real situation is often not
showing this case. Therefore, although it can solve the problem of
highly conflicting scenes to a certain extent, the accuracy is not
high enough. Furthermore, Deng et al.’s modified average method
is based on the Murphy method and fully considered the differ-
ences between the pieces of evidence before the fusion process. The
distance between the pieces of evidence can effectively highlight
the differences between the agents in the MAIF system. The out-
come obtained by using Deng et al.’s modified average combination
method was superior to that of Murphy’s method. Moving to our
proposed method, in the case of reconstructing BPAs to measure
the relationship of uncertainty, the deviation was corrected well at
the beginning step, and the fusion accuracy performed better than
that in the existing two presented methods.

4.2 Identification in a real-time dynamic scene
In some practical engineering applications, objects identified from
the system may continuously change over times [13]. In this sce-
nario, the multi-agent information fusion system needs to collect
the information in real time and make decision analysis correspond-
ingly [1].
Suppose there is a MAIF system in a military base to identify the
type of an target. The system uses three agents for real-time infor-
mation reading, where 𝐴1 is an expert system agent, 𝐴2 is a neural
network agent, and 𝐴3 is a GPS positioning agent. The FOD of the
system Θ = {𝐴,𝐻, 𝐹 } refers to Airplane, Helicopter, and Fighter. To
detect the type of dataset correctly, three agents have to read the in-
formation in real time. Table 2 shows the details of the multi-agent
system reading information at three points in a certain time (data
source from Song et al.[30]).
The SMM obtained at three time points is shown as follows.

𝑆𝑀𝑀𝑡1 =

[
1 0.9678 0.9678

0.9678 1 0.9941
0.9678 0.9941 1

]
𝑆𝑀𝑀𝑡2 =

[
1 0.8869 0.7

0.8869 1 0.8128
0.7 0.8128 1

]
𝑆𝑀𝑀𝑡3 =

[
1 0.9725 0.9579

0.9725 1 0.9854
0.9579 0.9854 1

]
Obtain the support degree and credibility degree at three time
points.
𝑇 1 : 𝑆𝑢𝑝 (𝑚1) = 1.9356 𝑆𝑢𝑝 (𝑚2) = 1.9619 𝑆𝑢𝑝 (𝑚3) = 1.9619

𝐶𝑟𝑑1 = 0.3303 𝐶𝑟𝑑2 = 0.3348 𝐶𝑟𝑑3 = 0.3348
𝑇 2 : 𝑆𝑢𝑝 (𝑚1) = 1.5869 𝑆𝑢𝑝 (𝑚2) = 1.6997 𝑆𝑢𝑝 (𝑚3) = 1.5128

𝐶𝑟𝑑1 = 0.3306 𝐶𝑟𝑑2 = 0.3541 𝐶𝑟𝑑3 = 0.3152
𝑇 3 : 𝑆𝑢𝑝 (𝑚1) = 1.9304 𝑆𝑢𝑝 (𝑚2) = 1.9579 𝑆𝑢𝑝 (𝑚3) = 1.9433

𝐶𝑟𝑑1 = 0.3310 𝐶𝑟𝑑2 = 0.3357 𝐶𝑟𝑑3 = 0.3332

Three pieces of MAE were calculated as follow:
𝑇 1 : 𝑚({𝐴}) = 0.3953 𝑚({𝐻 }) = 0.5206

𝑚({𝐴,𝐻 }) = 0.0777 𝑚({Θ}) = 0.0064
𝑇 2 : 𝑚({𝐻 }) = 0.7482 𝑚({𝑅}) = 0.0744

𝑚({𝐴,𝐻 }) = 0.1037 𝑚({Θ}) = 0.0737
𝑇 3 : 𝑚({𝐻 }) = 0.9546 𝑚({Θ}) = 0.0454
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Table 1: The fusion result obtained by using different methods

𝐴1, 𝐴2 𝐴1, 𝐴2, 𝐴3 𝐴1, 𝐴2, 𝐴3, 𝐴4 A1, 𝐴2, 𝐴3, 𝐴4, 𝐴5

Dempster-Shafer’s 𝑚 (𝐴)=0 𝑚 (𝐴)=0 𝑚 (𝐴)=0 m(A)=0
combination rule 𝑚 (𝐵)=0.8571 𝑚 (𝐵)=0.6316 𝑚 (𝐵) =0.3288 m(B)=0.1228

𝑚 (𝐶)=0.1429 𝑚 (𝐶)=0.3684 𝑚 (𝐶) =0.6712 m(C)=0.8772

Murphy’s average 𝑚 (𝐴)=0.1543 𝑚 (𝐴)=0.3500 𝑚 (𝐴)=0.6027 m(A)=0.7958
combination rule [28] 𝑚 (𝐵)=0.7469 𝑚 (𝐵)=0.5224 𝑚 (𝐵) =0.2627 m(B)=0.0932

𝑚 (𝐶)=0.0988 𝑚 (𝐶)=0.1276 𝑚 (𝐶) =0.1346 m(C)=0.1110

Deng et al’s 𝑚 (𝐴)=0.1543 𝑚 (𝐴)=0.4861 𝑚 (𝐴)=0.7773 m(A)=0.8909
modified average [12] 𝑚 (𝐵)=0.7469 𝑚 (𝐵)=0.3481 𝑚 (𝐵) =0.0628 m(B)=0.0086
combination rule 𝑚 (𝐶)=0.0988 𝑚 (𝐶)=0.1657 𝑚 (𝐶) =0.1600 m(C)=0.1005

Proposed method 𝑚 (𝐴)=0.8718 𝑚 (𝐴)=0.9610 𝑚 (𝐴) =0.9885 m(A)=0.9966
𝑚 (𝐵)=0.0848 𝑚 (𝐵)=0.0286 𝑚 (𝐵) =0.0091 m(B)=0.0028
𝑚 (𝐶)=0.0306 𝑚 (𝐶)=0.0088 𝑚 (𝐶) =0.0022 m(C)=0.0005

Table 2: Identification information read by agents

𝑡1 𝑡2 𝑡3

A1 𝑚 ( {𝐴})=0.3666 𝑚 ( {𝐻 })=0.8176 𝑚 ( {𝐻 })=0.6229
𝑚 ( {𝐻 })=0.4563 𝑚 ( {𝐹 })=0.0003 𝑚 ( {Θ}) =0.3771
𝑚 ( {𝐴,𝐻 })=0.1185 𝑚 ( {𝐴,𝐻 })=0.1553
𝑚 ( {Θ})=0.0586 𝑚 ( {Θ})=0.0268

A2 𝑚 ( {𝐴})=0.2793 𝑚 ( {𝐻 })=0.5658 𝑚 ( {𝐻 })=0.7660
𝑚 ( {𝐻 })=0.4151 𝑚 ( {𝐹 })=0.0009 𝑚 ( {Θ}) =0.2340
𝑚 ( {𝐴,𝐻 })=0.2652 𝑚 ( {𝐴,𝐻 })=0.0646
𝑚 ( {Θ})=0.0404 𝑚 ( {Θ})=0.3687

A3 𝑚 ( {𝐴})=0.2897 𝑚 ( {𝐻 })=0.2403 𝑚 ( {𝐻 })=0.8598
𝑚 ( {𝐻 })=0.4331 𝑚 ( {𝐹 })=0.0004 𝑚 ( {Θ}) =0.1402
𝑚 ( {𝐴,𝐻 })=0.2470 𝑚 ( {𝐴,𝐻 })=0.0141
𝑚 ( {Θ})=0.0302 𝑚 ( {Θ})=0.7452

The fusion result of this multi-agent information fusion system is:
𝑇 1 : 𝑚({𝐴}) = 0.3786 𝑚({𝐻 }) = 0.6094

𝑚({𝐴,𝐻 }) = 0.0120
𝑇 2 : 𝑚({𝐻 }) = 0.9451 𝑚({𝑅}) = 0.00189

𝑚({𝐴,𝐻 }) = 0.0298 𝑚({Θ}) = 0.0062
𝑇 3 : 𝑚({𝐻 }) = 0.9979 𝑚({Θ}) = 0.0021

Using different methods to assess the performance of this appli-
cation, Table 3 shows the comparison of the fusion results among
the five chosen methods. It can be known from the original data
that agent 𝐴3 had a problem at time 𝑡2, which was manifested as
the inability to determine the information of the identified object.
But we can tell from this table that from time node 𝑡1 to 𝑡3, the
probability of identifying the target as {𝐻 } is gradually increasing.
Obviously, each method can recognize the flight target 𝐻𝑒𝑙𝑖𝑐𝑜𝑝𝑡𝑒𝑟
when there is no highly conflicting situation. The fusion result of
the proposed method shows high recognition accuracy, and it is
consistent with the performance using other methods.

5 SENSITIVITY TEST
In real practical applications, the MAIF system might face a large
number of objects to be detected with complex information mixing
together, which results in the growth in the scale of the correspond-
ing interference information. Therefore, we will expand the scope
of identification and detect the performance of the reconstructed
BPA method in a greater demand. The following content will show
the sensitivity test of the proposed reconstructed BPA method to
proof the validity of it.
Suppose there is a FOD containing 8 elements, which are referred
as Θ = {1, 2, ..., 8} with 28 subsets in it. Assume that there are two

agents 𝐴 = {𝐴1, 𝐴2} in the MAIF system, and the target has been
correctly identified (element 1 was set as the recognition result in
this scene). According to the principle of control experiment, the
data read by the two agents is the same by default. Afterwards,
interference was imposed on one of the agents, which showed that
the recognition of element 1 gradually became blurred. The detect-
ed information given by the two agents is as follows.
Step 1. Have two originally same detected mass functions (initial
value:𝑋=1), whose the recognition result is element 1.
(𝐴1,𝑚1):
𝑚({𝑋 }) = 0.8 𝑚({1, 2}) = 0.1 𝑚({3, 4, 5}) = 0.05 𝑚({6}) = 0.05
(𝐴2,𝑚2):
𝑚({1}) = 0.8 𝑚({1, 2}) = 0.1 𝑚({3, 4, 5}) = 0.05 𝑚({6}) = 0.05
Step 2. One element is added to the 𝑋 set of agent 𝐴1 each time.
Step 3.
(1)Use the traditional D-S combination rule, directly combine𝑚1
and𝑚2 after each change.
(2)Use reconstructed BPA method,𝑚1 is firstly reconstructed and
normalized, and then combine with𝑚2 by traditional D-S combina-
tion rule.

Table 4: Credibility performance comparison by two meth-
ods.

Method credibility weight of m(X)
Reconstructed BPA D-S combination

𝑋 = {1} 0.9021 0.8000
𝑋 = {1, 2} 0.8041 0.9000
𝑋 = {1, 2, 3} 0.2963 0.8000

𝑋 = {1, · · · , 4} 0.2021 0.8000
𝑋 = {1, · · · , 5} 0.1100 0.8000
𝑋 = {1, · · · , 6} 0.0611 0.8000
𝑋 = {1, · · · , 7} 0.0346 0.8000
𝑋 = {1, · · · , 8} 0.0180 0.8000
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Table 3: Fusion results based on different methods

𝑡1 𝑡2 𝑡3

Dempster-Shafer 𝑚 ( {𝐴})=0.3376 𝑚 ( {𝐻 })=0.9399 𝑚 ( {𝐻 })=0.9876
combination rule 𝑚 ( {𝐻 })=0.6317 𝑚 ( {𝐹 })=0.0001 𝑚 ( {Θ})=0.0124

𝑚 ( {𝐴,𝐻 })=0.0305 𝑚 ( {𝐴,𝐻 })=0.0526
𝑚 ( {Θ})=0.0001 𝑚 ( {Θ})=0.0074

Song et al’s 𝑚 ( {𝐴})=0.3375 𝑚 ( {𝐻 })=0.8998 𝑚 ( {𝐻 })=0.9850
combination method in [30] 𝑚 ( {𝐻 })=0.6308 𝑚 ( {𝐹 })=0.0002 𝑚 ( {Θ})=0.0150

𝑚 ( {𝐴,𝐻 })=0.0315 𝑚 ( {𝐴,𝐻 })=0.0581
𝑚 ( {Θ})=0.0002 𝑚 ( {Θ})=0.0419

The method in [17] 𝑚 ( {𝐴})=0.3384 𝑚 ( {𝐻 })=0.8861 𝑚 ( {𝐻 })=0.9621
𝑚 ( {𝐻 })=0.5904 𝑚 ( {𝐹 })=0.0002 𝑚 ( {Θ})=0.0371
𝑚 ( {𝐴,𝐻 })=0.0651 𝑚 ( {𝐴,𝐻 })=0.0582
𝑚 ( {Θ})=0.0061 𝑚 ( {Θ})=0.0555

The method in [33] 𝑚 ( {𝐴})=0.3318 𝑚 ( {𝐻 })=0.8891 𝑚 ( {𝐻 })=0.9784
𝑚 ( {𝐻 })=0.6332 𝑚 ( {𝐹 })=0.0003 𝑚 ( {Θ})=0.0216
𝑚 ( {𝐴,𝐻 })=0.0349 𝑚 ( {𝐴,𝐻 })=0.0427
𝑚 ( {Θ})=0.0001 𝑚 ( {Θ})=0.0679

Proposed method 𝑚 ( {𝐴})=0.3786 𝑚 ( {𝐻 })=0.9451 𝑚 ( {𝐻 })=0.9979
𝑚 ( {𝐻 })=0.6094 𝑚 ( {𝐹 })=0.0189 𝑚 ( {Θ})=0.0021
𝑚 ( {𝐴,𝐻 })=0.0120 𝑚 ( {𝐴,𝐻 })=0.0298

𝑚 ( {Θ})=0.0062

Table 4 shows the credibility weights for different𝑚(𝑋 ) when
𝑋 gradually increases. Obviously, traditional D-S combination rule
faced a counter-intuitive situation. It is manifested that although
the interference elements of the set 𝑋 are gradually increasing, the
credibility weight of𝑚(𝑋 ) is basically unchanged, and the same
value is always used throughout the whole fusion process. On the
contrary, by reconstructing BPA, the results show that as the num-
ber of elements contained in subset 𝑋 increases, the credibility
weight of𝑚(𝑋 ) decreases at an exponential rate, indicating that
more and more interference comes into subset 𝑋 . Since the increas-
ing interference information will combine with the subsets in 𝑋 ,
the number of sets which contain interference increases by a power
of 2. Therefore, the uncertainty level of𝑚(𝑋 ) rises up significantly.

Figure 3: Comparison between reconstructed BPA method
and traditional D-S combination rule

Figure 3 compares the recognition rate of the target between
the reconstructed BPA method and traditional D-S combination
rule. It can be clearly seen that the reconstructed BPA method has
a stronger ability of anti-interference and the overall recognition
accuracy is better than the traditional method. Moreover, in the
traditional method, sometimes the recognition rate is unchanged

while the interference increases, which is not so reasonable in real-
life scenario. By contrast, the the curve of reconstructed BPA keeps
changing within a small range. Therefore, it is suitable to conclude
the validity and reliability of proposed method.

6 CONCLUSIONS
As the information of multiple sources is often changeable and
easily disturbed, it is critical to improving the performance of the
multi-agent system performance by considering the uncertain rela-
tionship from the fusion process of various sources. In this study,
we addressed the modeling of the uncertainty relationship between
the recognition objects in a multi-agent information fusion system.
We investigated the improvement of fusion performance during the
multi-agent identification process. Here, we developed the uncer-
tainty modeling by reconstructing BPA and combining the factor
of evidence distance to leverage the uncertainty relationship in
evidence theory. The results showed the validity of the proposed
method, especially when multi-agents face a highly adverse situ-
ation. In brief, our work provides a valuable view to measure the
uncertainty in the context of MAIF system.
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