
Automated Configuration of Negotiation Strategies
Bram M. Renting

Delft University of Technology
Delft, The Netherlands
bramrenting@gmail.com

Holger H. Hoos∗
Leiden University

Leiden, The Netherlands
H.H.Hoos@liacs.leidenuniv.nl

Catholijn M. Jonker∗
Delft University of Technology &

Leiden University
Delft, The Netherlands
C.M.Jonker@tudelft.nl

ABSTRACT
Bidding and acceptance strategies have a substantial impact on
the outcome of negotiations in scenarios with linear additive and
nonlinear utility functions. Over the years, it has become clear
that there is no single best strategy for all negotiation settings, yet
many fixed strategies are still being developed. We envision a shift
in the strategy design question from: What is a good strategy?,
towards: What could be a good strategy? For this purpose, we
developed a method leveraging automated algorithm configuration
to find the best strategies for a specific set of negotiation settings.
By empowering automated negotiating agents using automated
algorithm configuration, we obtain a flexible negotiation agent that
can be configured automatically for a rich space of opponents and
negotiation scenarios.

To critically assess our approach, the agent was tested in an
ANAC-like bilateral automated negotiation tournament setting
against past competitors. We show that our automatically config-
ured agent outperforms all other agents, with a 5.1% increase in
negotiation payoff compared to the next-best agent. We note that
without our agent in the tournament, the top-ranked agent wins
by a margin of only 0.01%.

KEYWORDS
Automated Negotiation; Automated Algorithm Configuration; Ne-
gotiation Strategy
ACM Reference Format:
BramM. Renting, Holger H. Hoos, and Catholijn M. Jonker. 2020. Automated
Configuration of Negotiation Strategies. In Proc. of the 19th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020),
Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
As of the 1980s, researchers have tried to design algorithms (or
software agents) that can assist or act on behalf of humans in ne-
gotiations. Early adopters in this field are Smith, Sycara, Robinson,
Rosenschein and Klein [18, 26, 27, 29–31].

In 2010, the General Environment for Negotiation with Intel-
ligent multi-purpose Usage Simulation [20] (GENIUS) platform
was created to provide a test-bed for evaluating new developments
in the field of automated negotiation. Alongside, the Automated
Negotiating Agents Competition [8] (ANAC) competition series

∗Alphabethical order due to equal contribution

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

was organized to stimulate the development of negotiation algo-
rithms in academia. Every year, ANAC poses a new challenge for
contestants to cope with. Today, the combined effort of GENIUS
and ANAC has resulted in a standardized test-bed with more than
100 negotiating agents and negotiation scenarios that are readily
accessible for research on automated negotiation [4].

The negotiators are generally hard-coded software agents, based
on a strategy with fixed parameters that are tuned at design time to
optimize its behavior. The difficulty lies not in developing a negotia-
tor, but in winning the competition, as both the configuration space
and the space of negotiation scenarios are large, and the competing
agents change every year.

This makes manual configuration on larger sets of negotiation
instances tedious, time-consuming and impractical. Furthermore,
note that evaluating a single strategy on a large set of negotiation
scenarios takes too much time to be practical.

To avoid these difficulties, agents have been configured on smaller
sets [22]. Attempts were made to automate this process, for exam-
ple using genetic programming [13], but again only on specific and
simplified test sets. For instance, agents were only tested in one or
two scenarios, or merely optimized against themselves [11, 12]. The
resulting agents are highly specialized with unpredictable perfor-
mance when negotiating outside of their comfort zone. No attempts
have been reported at automating this configuration task on large-
scale, broad sets of negotiation scenarios and opponent strategies.

In this work, we present a solution for the automated algorithm
configuration problem for automated negotiation on large problem
sets. We recreate a negotiation agent from literature [19] that is con-
figured manually, combine it with contemporary opponent learning
techniques and create a configuration space of its strategic behav-
ior. To automatically configure this conceptually rich and highly
parametric design, we use Sequential Model-based optimization for
general Algorithm Configuration [15] (SMAC), a general-purpose
automated algorithm configuration procedure that has been used
previously to optimize the performance of cutting-edge solvers for
Boolean Satisfiability (SAT), Mixed Integer Programming (MIP) and
other NP-hard problems. We note that here, we apply automated
algorithm configuration for the first time to a multi-agent problem.

The aim of this work is to automatically configure a negotiation
algorithm with no fixed or pre-defined strategy. This agent can be
configured to performwell on a user-defined set of training problem
instances, with little restrictions on the size of the instances or
instance sets. To demonstrate its performance, we configure the
agent in an attempt to win an ANAC-like bilateral tournament.

We show that we can win such a tournament with a comfortable
margin of 5.1% in increased negotiation payoff compared to the
number two. These margins are not observed in a tournament

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1116

without our negotiation agent, where the winning strategy obtains
a marginal improvement in negotiation payoff of 0.012%.

2 RELATEDWORK
In this section, we discuss related work in the field of automated
algorithm configuration, as well as some past applications in the
research area of automated negotiation.

2.1 Automated algorithm configuration
In literature, automated algorithm configuration is also referred
to as parameter tuning or hyperparameter optimization (in ma-
chine learning). It can be formally described as follows: given a
parameterized algorithm 𝐴, a set of problem instances 𝐼 and a cost
metric 𝑐 , find parameter settings of 𝐴 that minimize 𝑐 on 𝐼 [15].
The configuration problem occurs for example in solvers for MIP
problems [14], neural networks, classification pipelines, and every
other algorithm that contains performance-relevant parameters.

These configuration problems can be solved by basic approaches
such as manual search, random search, and grid search, but over
the years researchers developed more intelligent methods to obtain
the best possible configuration for an algorithm. Two separate part
within these methods can be identified: how new configurations are
selected for evaluation and how a set of configurations is compared.

F-Race [10] races a set of configurations against each other on
an incremental set of target instances and drops low performing
configurations in the process. This saves computational budget, as
not all configurations have to be tested on the full target instance
set. The set of configurations to test can be selected either manually,
as a grid search, or at random. Balaprakash et al. [9] extended upon
F-Race by implementing it as a model-based search [34], which
iteratively models and samples the configuration space in search of
promising candidate configurations.

ParamILS [16] does not use a model, but instead performs a
local tree search operation to iteratively find better configurations.
Like F-Race, ParamILS is capable of eliminating low performing
configurations without evaluating them on the full set of instances.

Another popular method of algorithm configuring is GGA [1],
whichmakes use of genetic programming to find configurations that
perform well. This method does not model the configuration space
and has no method to eliminate low performing configurations
early.

The final method we want to mention is SMAC, which is an
algorithm configuration method that uses a random forest model to
predict promising configurations. It also includes an early elimina-
tion mechanism for promising configurations by comparing them
with a dominant incumbent configuration on individual problem
instances.

2.2 Automated configuration in negotiation
agents

Earlier attempts for solving the automated configuration problem in
automated negotiation mostly used basic approaches, such as ran-
dom and grid search. The only advanced method used to configure
negotiation strategies is the genetic algorithm.

Matos et al. [22] encoded a mix of baseline tactics as an chro-
mosome and deployed a genetic algorithm to find the best mix.

They assumed perfect knowledge of the opponents preferences
and their strategy is only tested against itself on a single negotia-
tion scenario. Eymann [12] encoded a more complex strategy as a
chromosome with 6 parameters, again only testing its performance
against itself and using the same scenario. Dworman et al. [11]
implement the genetic algorithm in a coalition game with 3 players,
with a strategy in the form of a hard coded if-then-else rule. The
parameters of the rule are implemented as a chromosome. The
strategy is tested against itself on a coalition game with varying
coalition values. Lau et al. [19] use a genetic algorithm to explore
the outcome space during a negotiation session, but do not use it
to change the strategy.

3 PRELIMINARIES
Automated negotiation is performed by software agents called par-
ties, negotiation agents or simply agents. Agents that represent
opposing parties in negotiation are also referred to as opponents.
We focus solely on negotiations between two parties, which is
known as bilateral negotiation. The software platform that we use
for agent construction and testing is GENIUS [20], which contains
all the necessary components to setup a negotiation, allowing us
to focus solely on agent construction.

In this paper, we use the Stacked Alternating Offers Protocol [2]
(SAOP) as negotiation protocol, which is the formalization of the
Stacked Alternating Offers Protocol [24, 28] (AOP) in GENIUS. Here,
agents take turns and at each turn either make an (counter) offer,
accept the current offer, or walk away. This continues until one
of the parties agrees, or a deadline is reached, which is set to 60
seconds in this paper (normalized to 𝑡 ∈ [0, 1]).

Besides a protocol we need a set of opponent agents 𝐴 to negoti-
ate against and a set of scenarios 𝑆 to negotiate over. We call the
combination of a single opponent 𝑎 ∈ 𝐴 and a single scenario 𝑠 ∈ 𝑆
a negotiation setting or negotiation instance 𝜋 ∈ Π = 𝐴 × 𝑆 .

3.1 Scenario
The negotiations in this paper are performed over multi-issue sce-
narios. Past research has already described on how to define and
use such scenarios in automated negotiation [3, 21, 25]. We adopt
these standards in this paper and describe them briefly.

An issue is a sub-problem in the negotiation for which an agree-
ment must be found. It can be either numerical or categorical. The
set of possible solutions in an issue is denoted by 𝐼 and the Cartesian
product of all the issues in a scenario forms the total outcome space
Ω. An outcome is denoted by 𝜔 ∈ Ω.

Every party has his own preferences over the outcome space Ω
expressed through a utility function𝑢 (𝜔), such that𝑈 : Ω → [0, 1],
where a score of 1 is the maximum. We refer to our own utility func-
tion with 𝑢 (𝜔) and to the opponents utility function with 𝑢𝑜 (𝜔).
The negotiations are performed under incomplete information, so
the utility of the opponent is predicted, which is denoted by 𝑢𝑜 (𝜔).

Each scenario has a Nash bargaining solution [23] that we will
use for performance analyses. Equation 1 defines this equilibrium.

𝜔𝑁𝑎𝑠ℎ = arg max
𝜔 ∈Ω

(𝑢 (𝜔) ∗ 𝑢𝑜 (𝜔)) (1)

We simplify in this paper, by eliminating the reservation utility
and discount factor from the scenarios for the experiments.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1117

3.2 Dynamic agent
We first create a Dynamic Agent with a flexible strategy equivalent
to a configuration space. We implement a few popular components
and add their design choices to the configuration space, increas-
ing the chances that it contains a successful strategy. We refer to
this configuration space (or strategy space) with Θ. We name the
constructed agent Dynamic Agent 𝐷𝐴(𝜃), with strategy 𝜃 ∈ Θ.

The dynamic agent is constructed on the basis of the BOA-
architecture [3]. We use this structure to give a brief overview
of the workings of the dynamic agent and its configuration space.

3.2.1 Bidding strategy. The implemented bidding strategy ap-
plies a fitness value to the outcome space Ω and selects the outcome
with the highest fitness as the offer, which is an approach used by
Lau et al. [19]. This fitness function 𝑓 (𝜔, 𝑡) balances between our
utility, the opponent’s utility and the remaining time towards the
deadline. Such a tactic is also known as a time dependent tactic and
generally concedes towards the opponent as time passes.

The fitness function in Equation 2 has three parameters:
• A trade-off factor 𝛿 that balances between the importance
of our own utility and the importance of reaching an agree-
ment.

• A factor to control an agents eagerness to concede relative
to time, where 𝑒 . Boulware if 0 < 𝑒 < 1, linear conceder if
𝑒 = 1, conceder if 𝑒 > 1.

• A categorical parameter 𝑛 that sets the outcome where the
fitness function concedes towards over time (Equation 3).
Here, 𝑥𝑙𝑎𝑠𝑡 is the last offer made by the opponent and 𝑥+ is
the best offer the opponent made in terms of our utility.

𝑓 (𝜔, 𝑡) = 𝐹 (𝑡) ∗ 𝑢 (𝜔) + (1 − 𝐹 (𝑡)) ∗ 𝑓𝑛 (𝜔)
𝐹 (𝑡) = 𝛿 ∗ (1 − 𝑡

1
𝑒)

(2)

𝑓1 (𝜔) = 1 − |𝑢𝑜 (𝜔) − 𝑢𝑜 (𝑥𝑙𝑎𝑠𝑡) |
𝑓2 (𝜔) = min(1 + 𝑢𝑜 (𝜔) − 𝑢𝑜 (𝑥𝑙𝑎𝑠𝑡), 1)
𝑓3 (𝜔) = 1 − |𝑢𝑜 (𝜔) − 𝑢𝑜 (𝑥+) |
𝑓4 (𝜔) = min(1 + 𝑢𝑜 (𝜔) − 𝑢𝑜 (𝑥+), 1)
𝑓5 (𝜔) = 𝑢𝑜 (𝜔)

(3)

Outcome space exploration. The outcome space is potentially
large. To reduce computational time and to ensure a fast response
time of our agent, we apply a genetic algorithm to explore the
outcome space in search of the best outcome. Standard procedures
such as, elitism, mutation and uniform crossover are applied and the
parameters of the genetic algorithm are added to the configuration
space.

Configuration space. The configuration space of the bidding strat-
egy is summarized in Table 1.

3.2.2 Opponent model. The Smith Frequency model [32] is used
to estimate the opponents utility function 𝑢𝑜 (𝜔). According to an
analysis by Baarslag et al. [5], the performance of this opponent
modelling method is already quite close to that of the perfect model.
No parameters are added to the configuration space of the Dynamic
Agent.

Description Symbol Domain

Trade-off factor 𝛿 [0, 1]
Conceding factor 𝑒 (0, 2]
Conceding goal 𝑛 {1, 2, 3, 4, 5}
Population size 𝑁𝑝 [50, 400]
Tournament size 𝑁𝑡 [1, 10]
Evolutions 𝐸 [1, 5]
Crossover rate 𝑅𝑐 [0.1, 0.5]
Mutation rate 𝑅𝑚 [0, 0.2]
Elitism rate 𝑅𝑒 [0, 0.2]

Table 1: Configuration space in bidding strategy

3.2.3 Acceptance strategy. The acceptance strategy decideswhen
to accept an offer from the opponent. Baarslag et al. [7] performed
an isolated and empirical research on popular acceptance condi-
tions. They combined acceptance conditions and showed that a
combined approach outperforms its parts. Baarslag et al. defined
four parameters and performed a grid-search in search of the best
strategy. We adopt the combined approach and add its parameters
(Table 2) to the configuration space of the Dynamic Agent. For more
details on the combined acceptance condition, see [7].

Description Symbol Domain

Scale factor 𝛼 [1, 1.1]
Utility gap 𝛽 (0, 0.2]
Accepting time 𝑡𝑎𝑐𝑐 [0.9, 1]
Lower boundary utility 𝛾 {𝑀𝐴𝑋𝑊 , 𝐴𝑉𝐺𝑊 }
Table 2: Configuration space in acceptance strategy

3.3 Problem definition
The negotiation agents in the GENIUS environment are mostly
based on manually configured strategies by competitors in ANAC.
These agents almost always contain parameters that are set by trial
and error, despite the abundance of automated algorithm configura-
tion techniques (e.g. Genetic Algorithm [13]). Manual configuration
is a difficult and tedious job due to the dimensionality of both the
configuration and the negotiation problem space.

A few attempts were made to automate this process as discussed
in Section 2, but only on very specific negotiation settings with few
configuration parameters. The main reason for this, is that many
automated configuration algorithms require to evaluate a challeng-
ing configuration on the full training set. To illustrate, evaluating
the performance of a single configuration on the full training set
that we use in this paper would take 1̃8.5 hours, regardless of the
hardware due to the real-time deadline. These methods of algorithm
configuration are therefore impractical.

Automated strategy configuration. We have an agent called Dy-
namic Agent 𝐷𝐴(𝜃), with strategy 𝜃 . We want to configure this
agent, such that it performs generally well, using automated config-
uration methods. More specifically, we want the agent to perform

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1118

generally well in bilateral negotiations with a real time deadline of
60[𝑠]. To do so, we take a diverse and large set of both agents𝐴𝑡𝑟𝑎𝑖𝑛

of size |𝐴𝑡𝑟𝑎𝑖𝑛 | = 20 and scenarios 𝑆𝑡𝑟𝑎𝑖𝑛 of size |𝑆𝑡𝑟𝑎𝑖𝑛 | = 56 that
we use for training, making the total amount of training instances
|Π𝑡𝑟𝑎𝑖𝑛 | = |𝐴𝑡𝑟𝑎𝑖𝑛 | ∗ |𝑆𝑡𝑟𝑎𝑖𝑛 | = 1120. Running all negotiation set-
tings in the training set would take 1120 minutes or ∼ 18.5 hours,
regardless of the hardware as we use real time deadlines.

Now suppose we have a setting for the Dynamic Agent based on
the literature 𝜃𝑙 and a setting that is hand tuned based on intuition,
modern literature and manual tuning 𝜃𝑚 that we consider baselines.
Can we automatically configure a strategy 𝜃𝑜𝑝𝑡 ∈ Θ that outper-
forms the baselines and wins an ANAC-like bilateral tournament
on a never before seen test set of negotiation instances Π𝑡𝑒𝑠𝑡 ?

4 AUTOMATED CONFIGURATION
The goal of our work is to create an agent that can be configured to
obtain a negotiation strategy that performs well in a given setting.
This requires us to define what it mean for a strategy to perform
well. An obvious performancemeasure is the utility𝑜 (𝜃, 𝜋) obtained
using strategy 𝜃 in negotiation instance 𝜋 . As we are interested
in optimizing performance on the full set of training instances
rather than for a single instance, we define the performance of a
configuration on an instance set as the average utility:

𝑂 (𝜃,Π) = 1
|Π | ·

∑
𝜋 ∈Π

𝑜 (𝜃, 𝜋), (4)

where:
𝑜 : utility of configuration 𝜃 on instance 𝜋
𝑂 : average utility of configuration 𝜃 on instance set Π
𝜃 ∈ Θ : parameter configuration
𝜋 : single negotiation instance consisting of opponent

agent 𝑎 ∈ 𝐴 and scenario 𝑠 ∈ 𝑆 , where 𝜋 = ⟨𝑎, 𝑠⟩ ∈ Π
Π : set of negotiation instances

As stated in Section 3.3, automated configuration methods that
require evaluation on the full training set of instances, thus requir-
ing Equation 4 to be calculated, are impractical for our application.
A second component that influences the amount of required evalu-
ations, is the mechanism that selects configurations for evaluation.
This is not a straightforward problem, as the configuration space
is large, and simple approaches, such as random search and grid
search, suffer from the curse of dimensionality.

4.1 SMAC
To solve the problem defined in Section 3.3, we bring SMAC, a promi-
nent, general-purpose algorithm configuration procedure [15], into
the research area of automated negotiation. We note that SMAC
is well suited for tackling the configuration problem arising in the
context of our study:

(1) It can handle different types of parameters, including real-
and integer-valued as well as categorical parameters.

(2) It can configure on subsets of the training instance set, re-
ducing the computational expense.

(3) It has a mechanism to terminate poorly performing config-
urations early, saving computation time. If it detects that a
configuration is performing very poorly on a small set of

instances (e.g., a very eager conceder), it stops evaluating
and drops the configuration.

(4) It models the relationship between parameter settings, ne-
gotiation instance features and performance, which tends to
significantly reduce the effort of finding good configurations.

(5) It permits straightforward parallelization of the configura-
tion process by means of multiple independent runs, which
leads to significant reductions in wall-clock time.

SMAC keeps a run history (Equation 5), consisting of a config-
uration 𝜃𝑖 with its associated utility 𝑜𝑖 on a negotiation instance
that is modeled by a feature set F (𝜋). A random forest regression
model is fitted to this run history, mapping the configuration space
and negotiation instance space to a performance estimate 𝑜 (Equa-
tion 6). This model is then used to predict promising configurations,
which are subsequently raced against the best configuration found
so far, until an overall time budget is exhausted. We refer the reader
to [15] for further details on SMAC.

𝑅 = {(⟨𝜃1, F (𝜋)⟩, 𝑜1), . . . , (⟨𝜃𝑛, F (𝜋)⟩, 𝑜𝑛)} (5)

M : (Θ × Π) → 𝑜 (6)

In order for SMAC to be successful in predicting promising con-
figurations, it requires an accurate feature description of the nego-
tiation instances that captures differences in complexity between
these instances.

Automated algorithm configuration. Suppose we have a set of
opponent agents 𝐴 and a set of negotiation scenarios 𝑆 , such that
combining a single agent 𝑎 ∈ 𝐴 and a single scenario 𝑠 ∈ 𝑆 creates
a new negotiation setting or instance 𝜋 ∈ Π. Can we derive a set of
features for both the opponent and the scenario that characterize
the complexity of the negotiation instance?

We approach this question empirically, by analyzing if a can-
didate feature set helps the automated algorithm configuration
method in finding better configurations within the same computa-
tional budget.

5 INSTANCE FEATURES
The negotiation instances consist of an opponent and a scenario.
We will extract features for both component separately and then
combine them as a feature set of an instance (Equation 7). This
feature description is used to by the configuration method to predict
promising strategies for our Dynamic Agent 𝐷𝐴(𝜃).

F : Π → (𝑋𝑠𝑐 × 𝑋𝑜𝑝𝑝) (7)

5.1 Scenario features
A negotiation scenario consists of a shared domain and individual
preference profiles. Ilany et al. [17] specified a list of features to
model a scenario that they used for strategy selection in bilateral
negotiation. Although the usage differs in their paper, the goal
to model the scenario is the same, so we will follow Ilany et al..
The features are fully independent of the opponents behavior. An
overview of the scenario features is provided in Table 3.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1119

Feature type Description Equation Notes

Domain Number of issues |𝐼 |
Domain Average number of

values per issue
1
|𝐼 |

∑
𝑖∈𝐼

|𝑉𝑖 |

Domain Number of possible
outcomes

|Ω |

Preference Standard deviation of
issue weights

√
1
|𝐼 |

∑
𝑖∈𝐼

(𝑤𝑖 − 1
|𝐼 |)

2

Preference Average utility of all
possible outcomes

1
|Ω |

∑
𝜔 ∈Ω

𝑢 (𝜔) denoted
by 𝑢 (�̄�)

Preference Standard deviation utility
of all possible outcomes

√
1
|Ω |

∑
𝜔 ∈Ω

(𝑢 (𝜔) − 𝑢 (�̄�))2

Table 3: Scenario features

5.2 Opponent features
This section describes the opponent features in detail. For each
opponent, we store both the mean and the Coefficient of Variance
(CoV) of all features.

5.2.1 Normalized time. The time 𝑡 ∈ [0, 1] it takes to reach an
agreement with the opponent.

5.2.2 Concession rate. To measure how much an opponent is
willing to concede towards our agent, we use the notion of Con-
cession Rate (CR) introduced by Baarslag et al. [6]. The CR is a
normalized ratio 𝐶𝑅 ∈ [0, 1], where 𝐶𝑅 = 1 means that the oppo-
nent fully conceded and 𝐶𝑅 = 0 means that the opponent did not
concede at all. By using a ratio instead of an absolute value (utility),
the feature is disassociated from the scenario.

To calculate the CR, Baarslag et al. [6] used two constants. The
minimum utility an opponent has demanded during the negotiation
session 𝑢𝑜 (𝑥−𝑜) and the Full Yield Utility (FYU), which is the utility
that the opponent receives at our maximum outcome 𝑢𝑜 (𝜔+).

We present a formal description of the CR in Equation 8 and a
visualization in Figure 1.

𝐶𝑅(𝑥−𝑜) =
{

1 if 𝑢𝑜 (𝑥−𝑜) ≤ 𝑢𝑜 (𝜔+),
1−𝑢𝑜 (𝑥−

𝑜)
1−𝑢𝑜 (𝜔+) otherwise.

(8)

5.2.3 Average rate. We introduce the Average Rate (AR) that
indicates the average utility an opponent has demanded as a ratio
depending on the scenario. The two constants needed are the FYU
(𝑢𝑜 (𝜔+)) as described in the previous section and the average utility
an opponent demanded (𝑢𝑜 (𝑥)). The AR is a normalized ratio 𝐴𝑅 ∈
[0, 1], where 𝐴𝑅 = 0 means that the opponent only offered his
maximum outcome and 𝐴𝑅 = 1 means that the average utility the
opponent demanded is less than or equal to the FYU. We present a
definition of the AR in Equation 9 and a visualization in Figure 2.

𝐴𝑅(𝑥) =
{

1 if 𝑢𝑜 (𝑥) ≤ 𝑢𝑜 (𝜔+),
1−𝑢𝑜 (𝑥)

1−𝑢𝑜 (𝜔+) otherwise.
(9)

The AR is another indication of competitiveness of the opponent
based on average utility demanded instead of minimum demanded
utility as the CR is.

5.2.4 Default configuration performance. According to Hutter et
al. [15], the performance of any default configuration on a problem

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

𝑥−𝑜

𝜔+

𝑎
𝑏

𝑢𝑜 (𝜔)

𝑢
(𝜔

)

𝑎
𝑏 = 1−𝑢𝑜 (𝑥−

𝑜)
1−𝑢𝑜 (𝜔+)

Opponent offers
Outcome (𝜔)
Pareto frontier
Nash solution

Figure 1: Visualization of Concession Rate (CR)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

𝑥

𝜔+

𝑎
𝑏

𝑢𝑜 (𝜔)

𝑢
(𝜔

)
𝑎
𝑏 = 1−𝑢𝑜 (𝑥)

1−𝑢𝑜 (𝜔+)

Opponent offers
Outcome (𝜔)
Pareto frontier
Average offer
Nash solution

Figure 2: Visualization of Average Rate (AR)

works well as a feature for that specific problem. For negotiation,
this translates to the obtained utility of a hand-picked default strat-
egy on a negotiation instance. The obtained utility is normalized
and can be used as a feature for that negotiation instance.

We implement this concept as an opponent feature by selecting a
default strategy and using it to obtain an agreement𝜔𝑎𝑔𝑟𝑒𝑒 with the
opponent. We then normalize the obtained utility and use it as the
Default Configuration Performance (DCP) feature. We present the
formal definition of this feature in Equation 10 and a visualization
in Figure 3.

𝐷𝐶𝑃 (𝜔𝑎𝑔𝑟𝑒𝑒) =
{

0 if 𝑢 (𝜔𝑎𝑔𝑟𝑒𝑒) ≤ 𝑢 (𝜔−),
𝑢 (𝜔𝑎𝑔𝑟𝑒𝑒)−𝑢 (𝜔−)

1−𝑢 (𝜔−) otherwise.
(10)

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1120

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

𝜔𝑎𝑔𝑟𝑒𝑒

𝜔−

𝑏
𝑎

𝑢𝑜 (𝜔)

𝑢
(𝜔

)

𝑎
𝑏 =

𝑢 (𝜔𝑎𝑔𝑟𝑒𝑒)−𝑢 (𝜔−)
1−𝑢 (𝜔−)

Opponent offers
Outcome (𝜔)
Pareto frontier
Nash solution

Figure 3: Visualization of Default Configuration Perfor-
mance (DCP)

5.3 Opponent utility function
As can be seen in Figure 1, 2, and 3, the actual opponent utility
function 𝑢𝑜 (𝜔) is used to calculate the opponent features. SMAC is
only used to configure the Dynamic Agent on the training set. As
the opponent features are only used by SMAC, we can safely use the
opponent’s utility function to construct those features (Equation 8,
9 and 10) without giving the Dynamic Agent an unfair advantage
during testing. The Dynamic Agent always uses the predicted op-
ponent utility 𝑢 (𝜔) obtained through the model (Section 3.2.2), as
is conventional in the ANAC.

We provide an overview of when the predicted opponent utility
function and when the actual opponent utility function is used in
Table 4.

Training Testing

𝐷𝐴(𝜃) 𝑢𝑜 (𝜔) 𝑢𝑜 (𝜔)
SMAC 𝑢𝑜 (𝜔) N/A

Table 4: Opponent utility function usage

6 EMPIRICAL EVALUATION
We must set baseline configurations to compare to the result of the
optimization. The basis of our Dynamic Agent is derived from a
paper by Lau et al. [19]. Though some functionality is added, it is
possible to set our agent’s strategy to resemble that of the original
agent. We refer to this configuration from the literature as 𝜃𝑙 , its
parameters can be found in Table 5.

Another baseline strategy is added, which is configured manu-
ally, as the literature configuration is outdated. A combination of
intuition, past research, and manual search, is used for this manual
configuration, which we consider default method for current ANAC
competitors. We present the manually configured parameters 𝜃𝑚
in Table 5 and an explanation below:

• Accepting: The acceptance condition parameters of 𝜃𝑙 set a
pure𝐴𝐶𝑛𝑒𝑥𝑡 strategy with parameters 𝛼 = 1, 𝛽 = 0. Baarslag
et al. [7] performed an empirical research on a variety of
acceptance conditions and showed that there are better al-
ternatives. We set the accepting parameters of our configu-
ration to the best performing condition as found by Baarslag
et al. [7].

• Fitness function: Preliminary testing showed that the litera-
ture configuration concedes much faster than the average
ANAC agent, resulting in a poor performing strategy. We set
a more competitive parameter configuration for the fitness
function by manual search, to match the competitiveness of
the ANAC agents.

• Space exploration: The domain used in the paper has a rela-
tively small set of outcomes. We increased the population
size, added an extra evolution to the genetic algorithm and
made some minor adjustments to cope with larger outcome
spaces.

Accepting Fitness function Space exploration
𝜃 𝛼 𝛽 𝑡𝑎𝑐𝑐 𝛾 𝑛 𝛿 𝑒 𝑁𝑝 𝑁𝑡 𝐸 𝑅𝑐 𝑅𝑚 𝑅𝑒

𝜃𝑙 1 0 1 𝑀𝐴𝑋𝑊 1 0.5 0.5 200 3 3 0.6 0.05 0.1
𝜃𝑚 1 0 0.98 𝑀𝐴𝑋𝑊 4 0.95 0.05 300 5 4 0.6 0.05 0.05

Table 5: Baseline configurations parameters

6.1 Method
SMAC is run in embarrassingly parallel mode on a computing clus-
ter by starting a separate SMAC process on chunks of allocated
hardware. SMAC selects a negotiation instance and a configuration
to evaluate on that instance and calls the negotiation environment
GENIUS through a wrapper function.

Input. The training instances were created by selecting a diverse
set of opponents and scenarios from the GENIUS environment. The
scenarios have non-linear utility functions and vary in competitive-
ness and outcome space size (between 9 and 400 000). The scenario
features were calculated in advance as described in Section 5.1, and
the configuration space is defined in Section 3.2.

The opponent features, as defined in Section 5.2, can only be
gathered by performing negotiations against the opponents. We
gather these features in advance by negotiating 10 times in every
instance with the manual strategy 𝜃𝑚 .

Hardware & configuration budget. We perform 300 independent
parallel runs of SMAC for 4 hours of wall-clock time each, on
a computing cluster running Simple Linux Utility for Resource
Management [33] (SLURM). To ensure consistent results, all runs
were performed on Intel® Xeon® CPU, allocating 1 CPU core, with
2 processing threads and 12 GB RAM to each run of SMAC.

Output. Every parallel SMAC process outputs its best config-
uration 𝜃𝑖𝑛𝑐 after the time budget is exhausted. As there are 300
parallel processes, a decision must be made on which of the 300
configurations to use. To do so, the SMAC random forest regression

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1121

model conform Equation 6 is rebuild and used to predict the per-
formance of every 𝜃𝑖𝑛𝑐 . The configuration with the best predicted
performance is selected as best configuration 𝜃𝑜𝑝𝑡 .

6.2 Results
The configuration process as described is run three times without
instance features and three times with instance features, under
identical conditions. There is now a total of 8 strategies: 2 baselines
[𝜃𝑙 , 𝜃𝑚], 3 optimized without features [𝜃1, 𝜃2, 𝜃3], and 3 optimized
with features [𝜃4, 𝜃5, 𝜃6]. An overview of the final configurations
is presented in Table 6.

Accepting Fitness function Space exploration
𝜃 𝛼 𝛽 𝑡𝑎𝑐𝑐 𝛾 𝑛 𝛿 𝑒 𝑁𝑝 𝑁𝑡 𝐸 𝑅𝑐 𝑅𝑚 𝑅𝑒

𝜃𝑙 1 0 1 𝑀𝐴𝑋𝑊 1 0.5 0.5 200 3 3 0.6 0.05 0.1
𝜃𝑚 1 0 0.98 𝑀𝐴𝑋𝑊 4 0.98 0.05 300 5 4 0.4 0.05 0.05
𝜃1 1.001 0.048 0.901 𝐴𝑉𝐺𝑊 3 0.879 0.00183 345 10 4 0.437 0.003 0.176
𝜃2 1.041 0.001 0.904 𝐴𝑉𝐺𝑊 4 0.913 0.00130 384 5 4 0.431 0.126 0.198
𝜃3 1.009 0.026 0.910 𝑀𝐴𝑋𝑊 1 0.977 0.00113 361 2 5 0.279 0.181 0.072
𝜃4 1.032 0.022 0.931 𝐴𝑉𝐺𝑊 3 0.914 0.00429 311 8 3 0.251 0.082 0.132
𝜃5 1.015 0.017 0.925 𝐴𝑉𝐺𝑊 5 0.961 0.00105 337 5 3 0.192 0.090 0.138
𝜃6 1.027 0.022 0.943 𝐴𝑉𝐺𝑊 3 0.985 0.00227 283 7 4 0.294 0.057 0.156

Table 6: Configurations overview

The obtained configurations are now analyzed with an emphasis
on the following three topics:

(1) The influence of the instance features on the convergence
of the configuration process.

(2) The performance of the obtained configurations on a never
before seen set of instances.

(3) The performance of the best configuration in an ANAC-like
bilateral tournament.

6.2.1 Influence of instance features. To study the influence of
the instance features on the configuration process, we compare the
strategies obtained by configuring with features and by configuring
without features. Only the training set of instances is used for
the performance comparison, as we are purely interested in the
convergence towards a higher utility.

Every configuration is run 10 times on the set of training in-
stances Π𝑡𝑟𝑎𝑖𝑛 and the average obtained utility is calculated by
Equation 4. The results are presented in Table 7, including an im-
provement ratio over 𝜃𝑚 .

𝜃 𝑂 (𝜃,Π) 𝑂 (𝜃,Π)−𝑂 (𝜃𝑚,Π)
𝑂 (𝜃𝑚,Π) Description

𝜃𝑙 0.533 -0.307 Literature
𝜃𝑚 0.769 0 Manually configured
𝜃1 0.785 0.020 Configured without features
𝜃2 0.770 0.000 Configured without features
𝜃3 0.792 0.029 Configured without features
𝜃4 0.800 0.040 Configured with features
𝜃5 0.816 0.060 Configured with features
𝜃6 0.803 0.044 Configured with features
Table 7: Performance of configurations on Π = Π𝑡𝑟𝑎𝑖𝑛

SMAC is capable of improving the performance of the Dynamic
Agent above our capabilities of manual configuration. We observe
that configuration without instance features potentially leads to
marginal improvements on the training set. Finally, we observe
that the usage of instance features leads to less variation in final
configuration parameters (Table 6) and to a significant improvement
of obtained utility.

6.2.2 Performance on test set. Testing the configurations on a
never before seen set of opponent agents and scenarios is needed to
rule out potential overfitting. We selected a diverse set of scenarios
and opponents for testing, such that |Π𝑡𝑒𝑠𝑡 | = |𝐴𝑡𝑒𝑠𝑡 | ∗ |𝑆𝑡𝑒𝑠𝑡 | =
16 ∗ 28 = 448.

Every configuration is once again run 10 times on the set of train-
ing instances Π𝑡𝑒𝑠𝑡 and the average obtained utility is calculated
by Equation 4. The results are presented in Table 8, including an
improvement ratio over 𝜃𝑚 .

𝜃 𝑂 (𝜃,Π) 𝑂 (𝜃,Π)−𝑂 (𝜃𝑚,Π)
𝑂 (𝜃𝑚,Π) Description

𝜃𝑙 0.563 -0.261 Literature
𝜃𝑚 0.763 0 Manually configured
𝜃1 0.779 0.021 Configured without features
𝜃2 0.760 -0.004 Configured without features
𝜃3 0.774 0.015 Configured without features
𝜃4 0.792 0.038 Configured with features
𝜃5 0.795 0.042 Configured with features
𝜃6 0.789 0.034 Configured with features

Table 8: Performance of configurations on Π = Π𝑡𝑒𝑠𝑡

It is now clear that strategy configuration without instance fea-
tures is undesirable as it potentially leads to a worse performing
strategy. Configuration with instance feature on the other hand,
still leads to a significant performance increase on a never before
seen set of negotiation instances.

6.2.3 ANAC tournament performance of best configuration. The
strategy configuration method is successful in finding improved
configurations, but the results are only compared against the other
configurations of our Dynamic Agent. No comparison is yet made
with agents build by ANAC competitors. We now compare the
performance of the best configuration that we found to the ANAC
agents in the test set of opponents.

We select 𝜃5 as the best strategy based on performance on the
training set and enter the Dynamic Agent in an ANAC-like bilat-
eral tournament with a 60 second deadline. The Dynamic Agent
is combined with the test set of opponents and scenarios. Every
combination of 2 agents negotiated 10 times on every scenario, for
a total amount of 38080 negotiation sessions. The averaged results
are presented in Table 9. We elaborate on the performance measures
found in the table:

• Utility: The utility of the agreement.
• Opp. utility: The opponent’s utility of the agreement.
• Social welfare: The sum of utilities of the agreement.
• Pareto distance: Euclidean distance of the agreement to the
nearest outcome on the Pareto frontier in terms of utility.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1122

• Nash distance: Euclidean distance of the agreement to the
Nash solution in terms of utility (Equation 1).

• Agreement ratio: The ratio of negotiation sessions that
result in an agreement.

Agent Utility Opp.
utility

Social
welfare

Pareto
distance

Nash
distance

Agreement
ratio

RandomCounterOfferParty 0.440 0.957 1.398 0.045 0.415 1.000
HardlinerParty 0.496 0.240 0.735 0.507 0.754 0.496
AgentH 0.518 0.801 1.319 0.118 0.408 0.904
ConcederParty 0.577 0.848 1.425 0.047 0.358 0.964
LinearConcederParty 0.600 0.831 1.431 0.046 0.350 0.964
PhoenixParty 0.625 0.501 1.125 0.263 0.468 0.748
GeneKing 0.637 0.760 1.396 0.061 0.383 0.993
Mamenchis 0.651 0.725 1.377 0.087 0.360 0.927
BoulwareParty 0.662 0.786 1.448 0.043 0.319 0.968
Caduceus 0.677 0.486 1.163 0.241 0.453 0.784
Mosa 0.699 0.640 1.339 0.113 0.385 0.902
ParsCat2 0.716 0.671 1.386 0.108 0.286 0.904
RandomDance 0.737 0.716 1.453 0.024 0.344 0.998
ShahAgent 0.744 0.512 1.256 0.188 0.389 0.821
AgentF 0.751 0.605 1.356 0.100 0.367 0.918
SimpleAgent 0.756 0.437 1.194 0.212 0.470 0.801
𝐷𝐴(𝜃5) 0.795 0.566 1.361 0.087 0.407 0.922

Table 9: Bilateral ANAC tournament results using 𝐷𝐴(𝜃5)
(bold = best, underline = worst)

Using the Dynamic Agent with 𝜃5 results in a successful ne-
gotiation agent that is capable of winning a ANAC-like bilateral
tournament by outperforming all other agents (two-tailed t-test:
𝑝 < 0.001). It managed to obtain a 0.795−0.756

0.756 ∗ 100% ≈ 5.1% higher
utility than SimpleAgent, the number two in the ranking, while
also outperformed it on every other performance measure.

Since the presence of our agent in the tournament also influences
the performance of other agents, we also ran the full tournament
without our Dynamic Agent as a sanity check. The top 5 performers
of this tournament are presented in Table 10, along with their
margins over the respective next lower-ranking agent in terms of
utility.

Agent Utility Margin

Mosa 0.715 3.01%ShahAgent 0.736 2.43%RandomDance 0.754 0.65%AgentF 0.759 0.01%SimpleAgent 0.759
Table 10: Bilateral ANAC tournament without 𝐷𝐴(𝜃5)

7 CONCLUSION
The two main contributions of this work are (1) the success of
automated configuration of negotiation strategies using a general-
purpose configuration procedure (here: SMAC), and (2) an investi-
gation of the importance of the features of negotiation settings.

7.1 Configuration
Two baseline strategies were selected for our comparison. The first
configuration, 𝜃𝑙 , is based on publications from which we derived

the agent [7, 19]. The second configuration, 𝜃𝑚 , is configured based
on intuition, recent literature and manual search, which we con-
sidered the default approach for current ANAC competitors. In
Section 6, we automatically configured our dynamic Agent using
SMAC.

The configuration based on earlier work𝜃𝑙 [19] performed poorly
compared to themanually configured configuration𝜃𝑚 , and achieved
26.1% lower utility on our test set. The best automatically config-
ured strategy 𝜃5 outperformed both baseline configurations and
achieved a 4.2% increase in utility compared to 𝜃𝑚 . From this, we
conclude that the automated configuration method is successful in
outperforming manual configuration.

Our experiments show that the automated configuration method
can produce a strategy that can win an ANAC-like bilateral tour-
nament by a margin of 5.1% (Table 9). This is particularly striking
when considering that without our agent, the winner of the same
tournament beats the next-based agent only by a margin of 0.01%.

7.2 Features
We consider a set of features that characterizes the negotiation
scenario as well as the opponent. Our empirical results indicate
that when using the negotiation instance features, SMAC is able to
find good configurations faster.

Overall, using SMAC in combination with instance features leads
to less variation in the parameter settings between the final config-
urations obtained in multiple independent runs (Table 6, Table 7),
as well as significant and consistent performance improvement.
Furthermore, our results show that automated configuration with-
out features does not always outperform manual configuration.
Therefore, we conclude that the instance features presented in
this paper are a necessary ingredient for the successful automated
configuration of negotiation strategies.

7.3 Future work
For this initial step towards automated configuration of negotia-
tion agents, the negotiation scenarios were simplified by removing
the reservation utility and the discount factor. Now that we have
demonstrated that our general approach can be successful, addi-
tional validation should be performed inmore complex and different
negotiation environments.

Over the years, it became clear that there is no single best nego-
tiation strategy for all negotiation settings [20]. In this work, we
have presented a method to automatically configure an effective
strategy for a specific set of negotiation settings. However, if this set
becomes too diverse, we inherently end up in a situation where the
automatically configured best strategy may not perform too well.
Future work should exploit the strategy space of the dynamic agent
by extracting multiple complementary strategies for specific set-
tings, along with an on-line selection mechanism that determines
the strategy to be used in a specific instance.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1123

REFERENCES
[1] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. 2009. A Gender-Based

Genetic Algorithm for the Automatic Configuration of Algorithms. In Principles
and Practice of Constraint Programming - CP 2009, Ian P Gent (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 142–157.

[2] Reyhan Aydoğan, David Festen, Koen V. Hindriks, and Catholijn M. Jonker.
2017. Alternating offers protocols for multilateral negotiation. In Studies in
Computational Intelligence. Vol. 674. Springer, 153–167. https://doi.org/10.1007/
978-3-319-51563-2_10

[3] T Baarslag. 2014. What to bid and when to stop. 338 pages. https://doi.org/10.
4233/uuid:3df6e234-a7c1-4dbe-9eb9-baadabc04bca

[4] Tim Baarslag, Reyhan Aydoğan, Koen V. Hindriks, Katsuhide Fujita, Takayuki Ito,
and Catholijn M. Jonker. 2015. The Automated Negotiating Agents Competition,
2010–2015. AI Magazine 36, 4 (2015), 2010–2014. https://doi.org/10.1609/aimag.
v36i4.2609

[5] Tim Baarslag, Mark Hendrikx, Koen Hindriks, and Catholijn Jonker. 2013. Predict-
ing the performance of opponent models in automated negotiation. In Proceedings
- 2013 IEEE/WIC/ACM International Conference on Intelligent Agent Technology,
IAT 2013, Vol. 2. IEEE, 59–66. https://doi.org/10.1109/WI-IAT.2013.91

[6] Tim Baarslag, Koen Hindriks, and Catholijn Jonker. 2011. Towards a quantitative
concession-based classification method of negotiation strategies. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 7047 LNAI (2011), 143–158. https://doi.org/10.
1007/978-3-642-25044-6_13

[7] Tim Baarslag, Koen Hindriks, and Catholijn Jonker. 2014. Effective acceptance
conditions in real-time automated negotiation. Decision Support Systems 60, 1
(2014), 68–77. https://doi.org/10.1016/j.dss.2013.05.021

[8] Tim Baarslag, Koen Hindriks, Catholijn Jonker, Sarit Kraus, and Raz Lin. 2012.
The first automated negotiating agents competition (ANAC 2010). Studies in
Computational Intelligence 383, Anac (2012), 113–135. https://doi.org/10.1007/
978-3-642-24696-8_7

[9] Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle. 2007. Improvement
strategies for the F-Race algorithm: Sampling design and iterative refinement.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 4771 (2007), 108–122. https:
//doi.org/10.1007/978-3-540-75514-2_9

[10] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. 2010. F-
Race and Iterated F-Race: An Overview. In Experimental Methods for the Analysis
of Optimization Algorithms, Thomas Bartz-Beielstein, Marco Chiarandini, Luís
Paquete, and Mike Preuss (Eds.). Springer Berlin Heidelberg, 311–336. https:
//doi.org/10.1007/978-3-642-02538-9_13

[11] Garett Dworman, Steven O. Kimbrough, and James D. Laing. 1996. Bargaining
by artificial agents in two coalition games: A study in genetic programming for
electronic commerce. Proceedings of the First Annual Conference on Genetic Pro-
gramming (1996), 54–62. http://portal.acm.org/citation.cfm?id=1595536.1595544

[12] T Eymann. 2001. Co-evolution of bargaining strategies in a decentralized multi-
agent system. AAAI Fall 2001 Symposium on Negotiation Methods for Autonomous
Cooperative Systems (2001), 126–134. http://www.aaai.org/Papers/Symposia/Fall/
2001/FS-01-03/FS01-03-016.pdf

[13] John Henry Holland. 1992. Adaptation in natural and artificial systems: an in-
troductory analysis with applications to biology, control, and artificial intelligence.
MIT press. 232 pages.

[14] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2010. Automated
configuration of mixed integer programming solvers. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 6140 LNCS (2010), 186–202. https://doi.org/10.1007/
978-3-642-13520-0_23

[15] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 6683 LNCS (2011), 507–523. https://doi.org/10.1007/
978-3-642-25566-3_40

[16] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009.
ParamILS: An automatic algorithm configuration framework. Journal of Artificial
Intelligence Research 36 (2009), 267–306. https://doi.org/10.1613/jair.2861

[17] Litan Ilany and Ya’akov Gal. 2016. Algorithm selection in bilateral negotiation.
Autonomous Agents and Multi-Agent Systems 30, 4 (2016), 697–723. https://doi.
org/10.1007/s10458-015-9302-8

[18] Mark Klein and Stephen C.Y. Lu. 1989. Conflict resolution in cooperative design.
Artificial Intelligence in Engineering 4, 4 (1989), 168–180. https://doi.org/10.1016/
0954-1810(89)90013-7

[19] Raymond Y.K. Lau, Maolin Tang, On Wong, Stephen W. Milliner, and
Yi Ping Phoebe Chen. 2006. An evolutionary learning approach for adaptive
negotiation agents. International Journal of Intelligent Systems 21, 1 (2006), 41–72.
https://doi.org/10.1002/int.20120

[20] Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen Hindriks, and
Catholijn M. Jonker. 2014. Genius: An integrated environment for support-
ing the design of generic automated negotiators. Computational Intelligence 30, 1
(2014), 48–70. https://doi.org/10.1111/j.1467-8640.2012.00463.x

[21] Ivan Marsa-Maestre, Mark Klein, Catholijn M. Jonker, and Reyhan Aydoǧan. 2014.
From problems to protocols: Towards a negotiation handbook. Decision Support
Systems 60, 1 (2014), 39–54. https://doi.org/10.1016/j.dss.2013.05.019

[22] Noyda Matos, Carles Sierra, and Nick R. Jennings. 1998. Determining successful
negotiation strategies: An evolutionary approach. Proceedings - International
Conference on Multi Agent Systems, ICMAS 1998 (1998), 182–189. https://doi.org/
10.1109/ICMAS.1998.699048

[23] John F. Nash. 1950. The Bargaining Problem. Econometrica 18, 2 (1950), 155.
https://doi.org/10.2307/1907266

[24] Martin J. Osborne and Ariel Rubinstein. 1994. A Course in Game Theory. (1 ed.).
Vol. 1. MIT press. https://doi.org/10.2307/2554642

[25] Howard Raiffa. 1982. The art and science of negotiation. Harvard University Press.
[26] W.N. Robinson. 1990. Negotiation behavior during requirement specification.

[1990] Proceedings. 12th International Conference on Software Engineering (1990),
268–276. https://doi.org/10.1109/ICSE.1990.63633

[27] J. S. Rosenschein. 1986. Rational interaction: cooperation among intelligent agents.
Ph.D. Dissertation. Stanford University, Stanford, CA, USA. http://www.osti.gov/
energycitations/product.biblio.jsp?osti_id=5310977

[28] Ariel Rubinstein. 1982. Perfect Equilibrium in a Bargaining Model. Econometrica
50, 1 (1982), 97. https://doi.org/10.2307/1912531

[29] Reid G. Smith. 1980. The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver. IEEE Trans. Comput. C-29, 12 (1980),
1104–1113. https://doi.org/10.1109/TC.1980.1675516

[30] Katia Sycara. 1988. Resolving Goal Conflicts via Negotiation. The Seventh National
Conference on Artificial Intelligence (1988), 245–249. http://www.aaai.org/Papers/
AAAI/1988/AAAI88-044.pdf

[31] K Sycara-Cyranski. 1985. Arguments Of Persuasion In Labour Mediation. Pro-
ceedings of the International Joint Conference on Artificial Intelligence 1 (1985),
294–296.

[32] Niels Van Galen Last. 2012. Agent Smith: Opponent model estimation in bilateral
multi-issue negotiation. Studies in Computational Intelligence 383 (2012), 167–174.
https://doi.org/10.1007/978-3-642-24696-8_12

[33] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux
Utility for Resource Management. Lecture Notes in Computer Science 2862 (2003),
44–60. https://doi.org/10.1007/10968987_3

[34] Mark Zlochin, Mauro Birattari, Nicolas Meuleau, and Marco Dorigo. 2004.
Model-based search for combinatorial optimization: A critical survey. An-
nals of Operations Research 131, 1-4 (2004), 373–395. https://doi.org/10.1023/B:
ANOR.0000039526.52305.af

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1124

https://doi.org/10.1007/978-3-319-51563-2_10
https://doi.org/10.1007/978-3-319-51563-2_10
https://doi.org/10.4233/uuid:3df6e234-a7c1-4dbe-9eb9-baadabc04bca
https://doi.org/10.4233/uuid:3df6e234-a7c1-4dbe-9eb9-baadabc04bca
https://doi.org/10.1609/aimag.v36i4.2609
https://doi.org/10.1609/aimag.v36i4.2609
https://doi.org/10.1109/WI-IAT.2013.91
https://doi.org/10.1007/978-3-642-25044-6_13
https://doi.org/10.1007/978-3-642-25044-6_13
https://doi.org/10.1016/j.dss.2013.05.021
https://doi.org/10.1007/978-3-642-24696-8_7
https://doi.org/10.1007/978-3-642-24696-8_7
https://doi.org/10.1007/978-3-540-75514-2_9
https://doi.org/10.1007/978-3-540-75514-2_9
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/978-3-642-02538-9_13
http://portal.acm.org/citation.cfm?id=1595536.1595544
http://www.aaai.org/Papers/Symposia/Fall/2001/FS-01-03/FS01-03-016.pdf
http://www.aaai.org/Papers/Symposia/Fall/2001/FS-01-03/FS01-03-016.pdf
https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1613/jair.2861
https://doi.org/10.1007/s10458-015-9302-8
https://doi.org/10.1007/s10458-015-9302-8
https://doi.org/10.1016/0954-1810(89)90013-7
https://doi.org/10.1016/0954-1810(89)90013-7
https://doi.org/10.1002/int.20120
https://doi.org/10.1111/j.1467-8640.2012.00463.x
https://doi.org/10.1016/j.dss.2013.05.019
https://doi.org/10.1109/ICMAS.1998.699048
https://doi.org/10.1109/ICMAS.1998.699048
https://doi.org/10.2307/1907266
https://doi.org/10.2307/2554642
https://doi.org/10.1109/ICSE.1990.63633
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5310977
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5310977
https://doi.org/10.2307/1912531
https://doi.org/10.1109/TC.1980.1675516
http://www.aaai.org/Papers/AAAI/1988/AAAI88-044.pdf
http://www.aaai.org/Papers/AAAI/1988/AAAI88-044.pdf
https://doi.org/10.1007/978-3-642-24696-8_12
https://doi.org/10.1007/10968987_3
https://doi.org/10.1023/B:ANOR.0000039526.52305.af
https://doi.org/10.1023/B:ANOR.0000039526.52305.af

	Abstract
	1 Introduction
	2 Related work
	2.1 Automated algorithm configuration
	2.2 Automated configuration in negotiation agents

	3 Preliminaries
	3.1 Scenario
	3.2 Dynamic agent
	3.3 Problem definition

	4 Automated configuration
	4.1 SMAC

	5 Instance Features
	5.1 Scenario features
	5.2 Opponent features
	5.3 Opponent utility function

	6 Empirical evaluation
	6.1 Method
	6.2 Results

	7 Conclusion
	7.1 Configuration
	7.2 Features
	7.3 Future work

	References

