Voice Grade Copper

Characteristics, problems and spectral management

EFM July, 2001

Hugh Barrass (Cisco Systems)

With Thanks to:

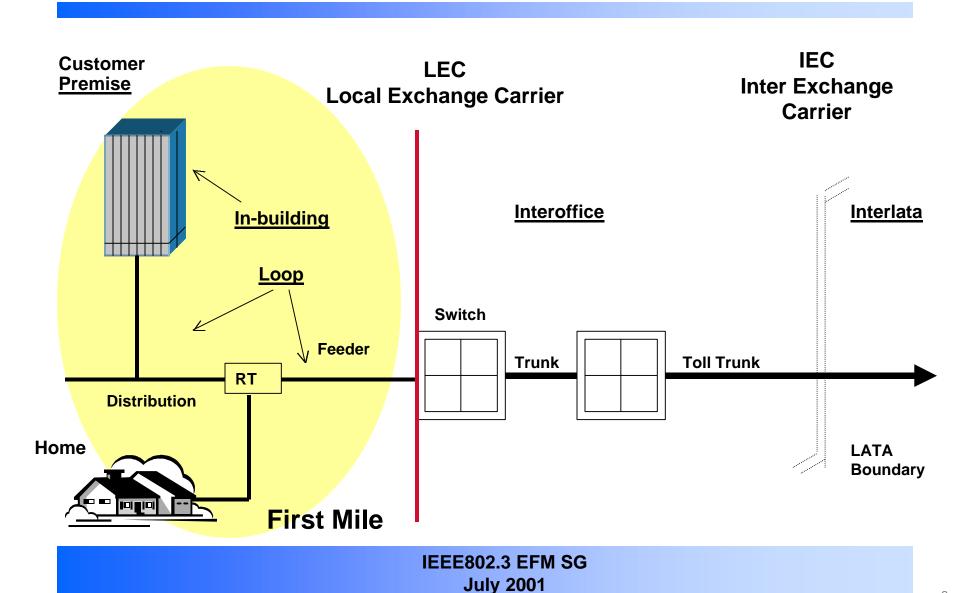
Chris Di Minico (CDT Corp)
Paul Kish (Nordx)
Vladimir Oksman (Broadcom)

Behrooz Rezvnai (Ikanos)

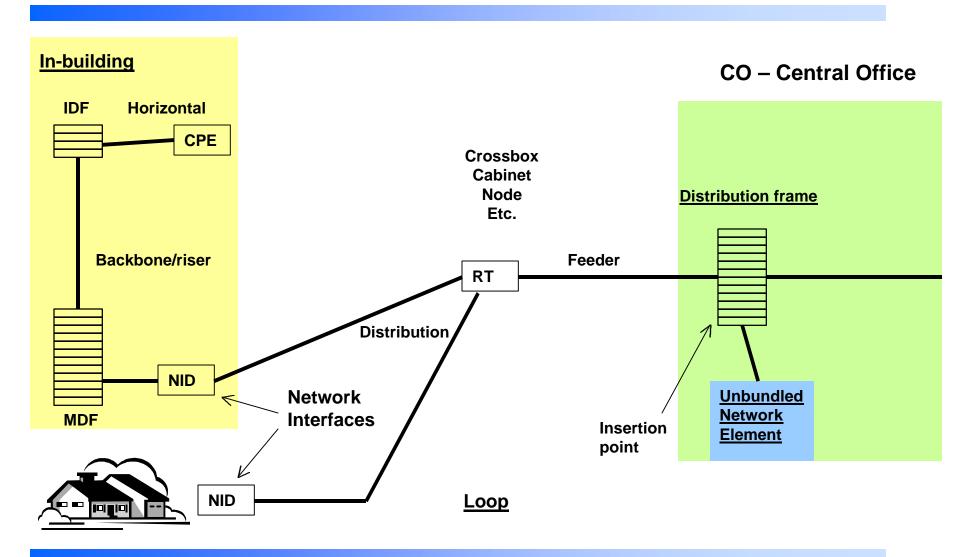
Massimo Sorbara (GlobeSpan)

Michael Beck (Alcatel)

EFM Copper Objective


PHY for single pair non-loaded voice grade copper

Distance >=2500ft and speed >= 10Mbps aggregate


This means:

Single pair, bad wire, long wire

Where is EFM copper?

Some terminology

Definitions

Non-loaded

Load coil improves attenuation 0-3kHz (kills signals >3kHz!)

Voice grade

Suitable for transmitting voice, "voiceband" = 300Hz - 3.3kHz

Local loop

Path between Central Office (DF) and Network Interface

In building

Un-structured cabling - does not meet TIA 568 etc.

Distribution frame

Patch panel, punchdown, BixBlock, etc.

In CO, crossbox – also Master DF in-building, & Intermediate DF between MDF & end user

Network Interface – also Demarcation Point

Physical or logical point at which the exchange carrier's responsibility ends and the user's starts

(Internal Network Interface - insertion point for unbundled elements)

Terminal equipment

Equipment connecting to the customer end of the loop

Network element (and unbundled network element)

Equipment (etc.) in the network provider loop

Characteristics of EFM copper

Cable types

```
Cat-7, Cat-6, Cat-5E, Cat-5 – almost never!

Cat-3, Cat-1 (aka "voicegrade")

Type-1, Type-2, 24AWG – in building (unstructured)

26AWG – in local loop (sometimes 22, 24, 28AWG ...)

Typically 1 twist per foot - 6 twist per foot

Flat pair (non-twisted) – for some drops & in-building

Also Non Staggered Twist (rare)

25 pair – 3600 pair (25, 50 pair binder groups in cable)
```

- Single pair, bad wire, long wire
 Mostly UTP, generally designed using resistance model
- Installed sometime between 1876 and 2001
- Anything that conducts!

Wiring – a few rules of thumb

Older wire is less twisted

Higher crosstalk

 Loops from CO – shorter loops may be 26AWG (esp in Europe)

Longer loops and very old wiring could be 24 AWG - 18 AWG

Larger bundles – generally smaller gauge

 Statistics on local loop composition available from PTTs

T1E1.4 mostly for US, ETSI for Europe, FSAN more general

Standard test models allow for performance comparison

Simulation models for test loops available

In building (unstructured) – all bets are off!

e.g. Cotton-clad, non-twisted, embedded in concrete

(very low attenuation & FEXT = good performance!)

 High percentage of unstructured voice wiring includes bridged taps

Short stubs (<75 ft) cause maximum disruption of high frequency signalling

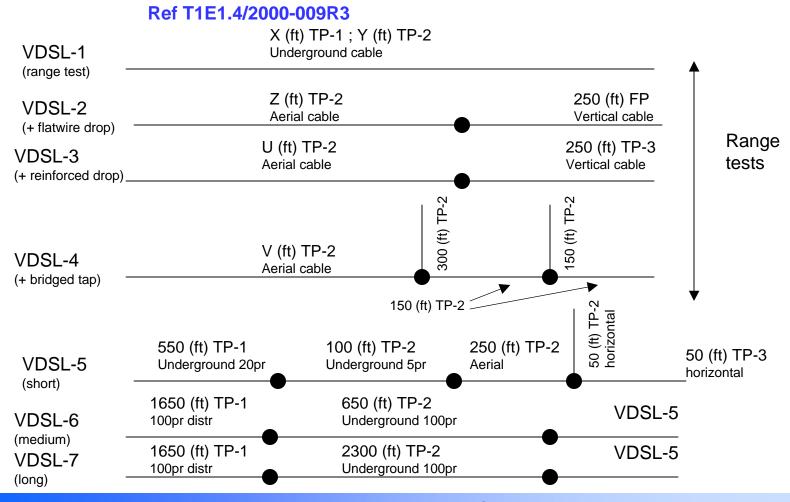
US - assume multiple "bad" stubs

Some flat pairs (no twist)

Distribution Frames – many configurations

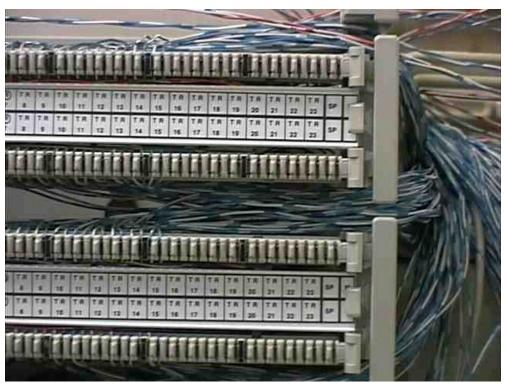
CO – Main Distribution

(relatively uniform & well managed)

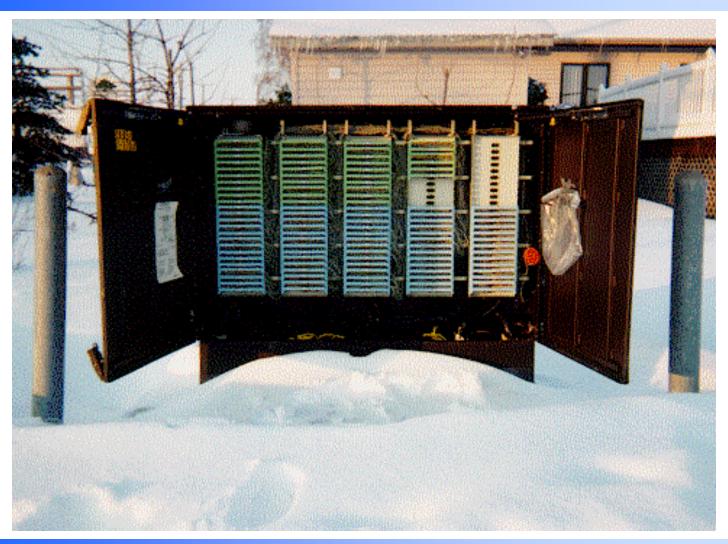

Crossbox/node/cabinet

many names even more configurations

In-building: MDF/IDF – sometimes none


T1 Standard Test Loops

VDSL test loops – designed for data rates in EFM range


Distribution frames

Large building MDF

Cabinet Distribution

Attenuation and balance

Attenuation

Generally controlled for voiceband, higher frequency behavior by default

6-15dB/kft @1MHz

15-25dB/kft @4MHz

Statistical data from T1, ETSI, FSAN for local loop, less data for in-building unstructured (not worst case)

Balance – not guaranteed

Signalling above 12MHz problematic because of emissions

Bridged taps and wet pairs

Bridged taps

Very high proportion of unstructured wiring includes taps (extra phone sockets)

Most stubs in the 10ft – 100ft range – worst possible frequencies for EFM

Short stubs cause much higher propagation loss for high frequencies

Eg 80ft, -25dB, 2MHz : 32ft, -35dB, 5MHz : 16ft, -45dB, 10MHz

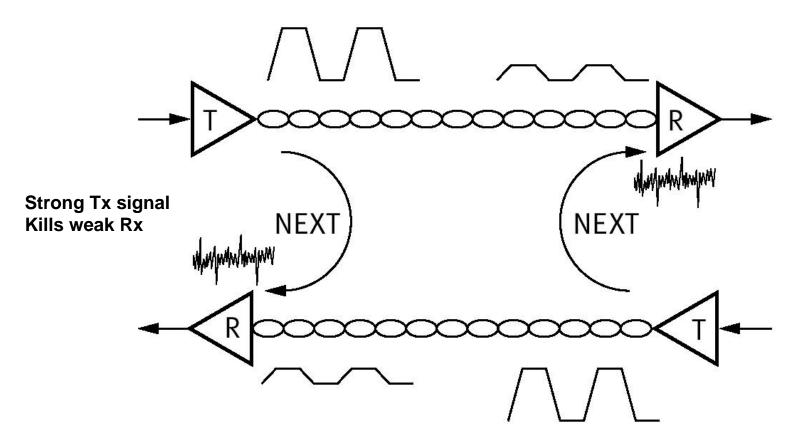
3.5dB broad band loss with termination

Wet/dry pairs

A pair (already) carrying a service is called "wet"

High percentage of homes with no spare line

One of the key market opportunities!


Requirement to share the line with existing service:

POTS & DC power : 0 – 8kHz - definitely

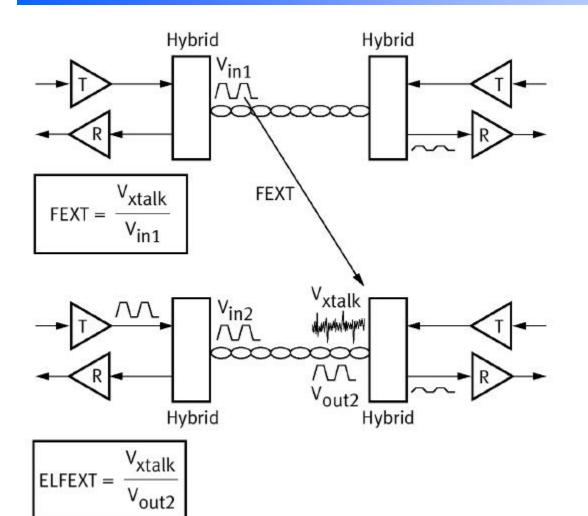
ISDN BRI: 128kHz - definitely

Others: ISDN PRI, T1, xDSL - to be decided

Near-End Crosstalk (NEXT)

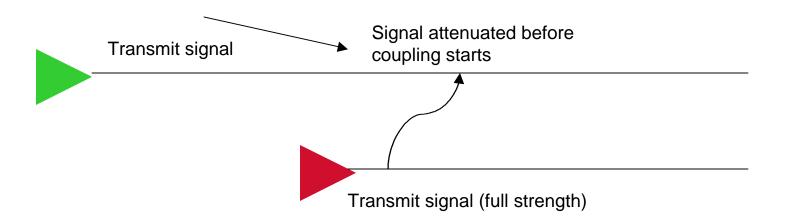
- •Coupling higher with frequency CAT-5, -62dB @1MHz, -52dB @4MHz
- •Varies with cable type riser cable -35dB @1MHz, -25dB @4MHz

Attenuation to Crosstalk ratio


ACR - Effectively a measure of SNR for NEXT limited systems

```
CAT-5 ~ 32dB for 5kft @1MHz, 18dB for 3kft @4MHz
CAT-3 ~ 20dB for 3kft @1MHz, 0 for 2kft @4MHz
Distribution cable ~ 21dB for 3kft @1MHz, 0 for 2kft @4MHz
Riser cable ~ 20dB for 2kft @1MHz, 0 for 1kft @4MHz
"worst cable" 22dB for 1kft @ 1MHz, or 0 for 1kft @ 4MHz
```

 In general – useful range of NEXT limited systems drops rapidly as frequency increases, especially on lower grade cables.


Advantage for duplexed transmission (TDD or FDD)

Far-End Crosstalk (FEXT) and Equal-Level Far-End Crosstalk (ELFEXT)

- •FEXT less limiting than NEXT at EFM frequencies
- •ELFEXT determines rate available for most EFM
- Includes distance component
- •(e.g. $-40.75 + 20.\log(f) + 10.\log(d) 6.\log(m/n) dB$)
- Difficult to measure

Importance of power back off

Systems with pairs of different lengths pose an extra problem

Effective SNR predicted by ELFEXT could be reduced by the attenuation before coupling

Only matters for shorter (high data rate) loops

For longer loops, attenuation and noise floor govern SNR

FEXT vs Attenuation

 Effective SNR with distance is obtained by superimposing 2 graphs: ELFEXT and attenuated receive SNR

The lower of the 2 will be the SNR limit

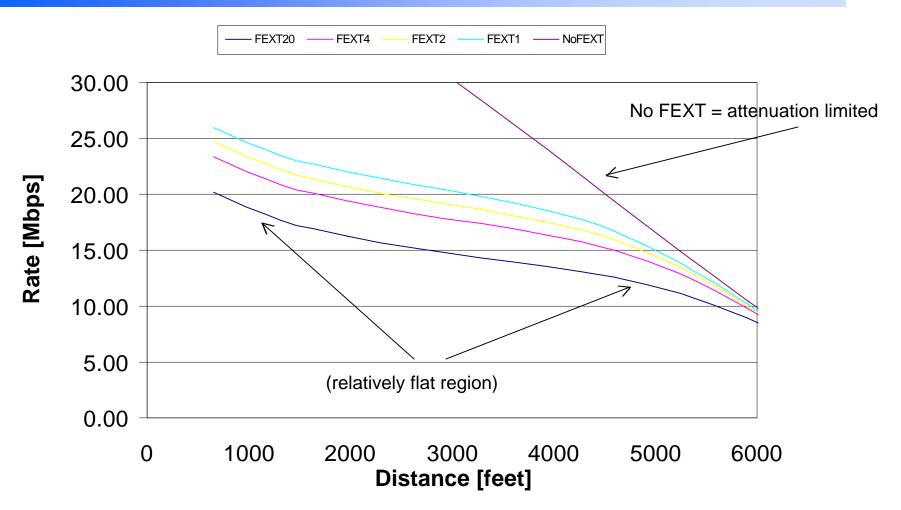
(for a full binder) FEXT will dominate for the shorter lines

(e.g.) up to 4kft @ 2MHz, 2.5kft @ 5MHz (distribution cable)

Attenuation will dominate for longer loops because of noise floor

Remaining problem:

Performance will be limited by FEXT for most systems >20Mbps


FEXT coupling can vary by >6dB within a binder, PS FEXT can vary by >3dB for binders within a cable

Measure of PSELFEXT vital for performance assessment

Measurement of PSELFEXT problematic because of cable plant layout

Invite input from test solution providers!

Example rate vs reach

Results for arbitrary 24AWG distribution cable, 2MHz carrier - for illustration only

Noise - standard

Background noise

ANSI T1E1.4 defines AWGN –140dBm/Hz
Includes 6dB margin because of non-Gaussian behavior in real world

Radio Frequency Interference

Multiple narrow band standards internationally

Both ingress and egress must be considered

3.75MHz – most common

Rarely more than 2 or 3 in one installation site

Noise sources in binder (from other services)

Regulated frequencies – spectral planning (NRIC-V)

Can be predicted and simulated

Other impairments – ringing, T1, badly balanced lines

Often unpredictable and time variant

Noise – in-building

Binder noise much worse

Shorter lines for PBX noise

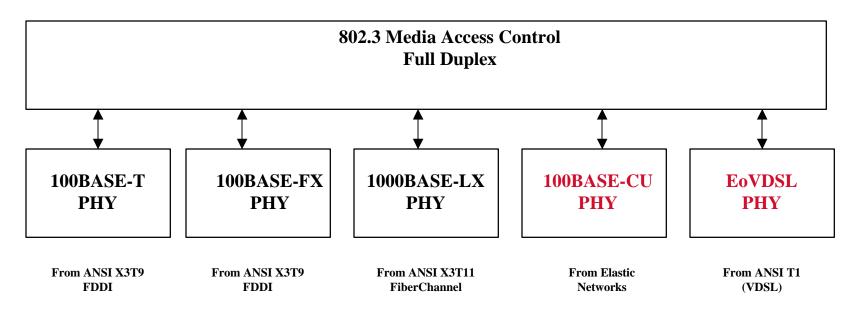
Less attenuation, more reflections

More impedance changes / kft

2 – 5 distribution frames per line

Cable changes between horizontal & vertical

Extra in-building noise...


Cable ducts in lift (elevator) shafts – motor noise, surges, EMI

Observed dynamic range >60dB

Bursts typically 1-300uS

How to solve...

Historical precedent – use existing PHY

- Builds on known working Physical Layer (historical precedent)
- Ethernet "value add" simple & low cost
- Other presentations cover solutions shown

Spectral compatibility for dummies

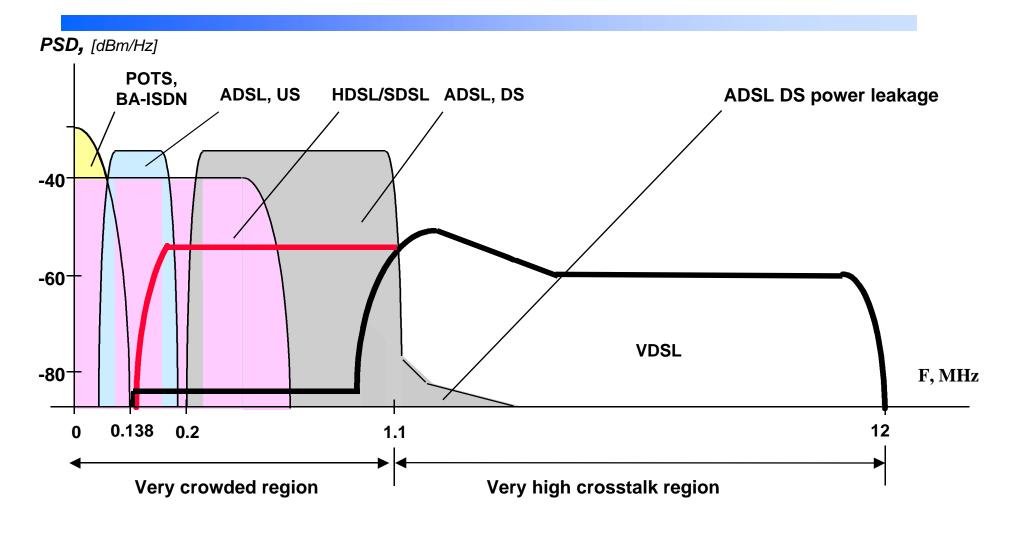
Key definition

ANSI T1E1.4 defines spectral compatibility in T1.417

A "must read" for anyone deploying in the local loop or shared environment

National Reliability and Interoperability Council (V)

Advisory body for FCC – spectral planning with teeth!
In process of adopting T1.417


Why does it matter?

Crucial for unbundling

Is it new?

No

"Borrowed" spectral illustration

What does spectral management achieve?

Cable bundle behaves like a shared medium for the crosstalk domain
 At frequencies required for >10Mbps, significant coupling

SM ensures controlled interference between different technologies

Several classes defined – most retrospectively

Crucial for new technologies to be compatible with existing

SM aims for ELFEXT limited performance

(particularly for new technologies in 1.1MHz – 12MHz range)

Unequal power level FEXT – strong signal kills weak

If ELFEXT is only ~20dB, 15dB difference in signal strengths may prevent communication

ACR is 0 (thus NEXT limited systems inoperable) for much of the spectrum at reasonable distances

T1.417 "in a nutshell"

"In a multi-service installation, services shouldn't kill each other"

Services listed include: voice, ISDN, HDSL, ADSL, RADSL, SDSL etc. Ref. 4.3.1

"Everybody use defined PSD mask"

Includes power, frequency and location/direction
Safest method
Ref. 4.3.3

...or "Prove that you don't interfere"

"Method B"
Risk of 2 "method B" services interfering with each other...
Ref. 4.3.5

NRIC-V added an extra clause

"If you can, you may listen & adapt to be compliant when you need to be" Clause 4 (a)

References / reading list

T1.417

Seminal work on spectral compatibility and loop characteristics (also applicable to unstructured wiring)

T1E1.4/2000-002R6 - ftp://ftp.t1.org/T1E1/E1.4/DIR2000/0e140026.pdf

ANSI TR-60

Unbundled Voicegrade Analog Loops – T1A1.7 working group

Some others

ANSI IEEE 820-1992, loop design methodologies, signal levels, and bridged taps.

Standards Committee T1 – www.t1.org

AT&T/Bellcore Loop Surveys