802.1Qcc: Topology Discovery

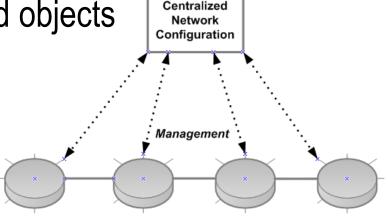
Rodney Cummings

National Instruments

Agenda

- Introduction
 - Assumptions for what are we trying to do
- Research
 - Overview of what is out there now
- Recommendations

Introduction


Introduction

- Qcc supports centralized configuration/control
 - In addition to distributed

All TSN features have managed objects

• e.g. Qbv, Qbu, AS, CB, ...

- Transitioning MIB to YANG
- Remote management is one clear near-term solution

Bridges/Routers

- Like any Q amendment, Qcc specifies managed objects to meet its goals
 - Gaps: static reservation, bridge delay, TE-MSTID (nail-up)
 - Last gap to resolve: Physical topology discovery

Summary of Goals from TSN Meetings

- 1. Discover systems: end stations, bridges and routers
 - Including router that does not support 802.1 protocols
- 2. No protocol mandates in Qcc
 - Support what is out there
- 3. Keep it simple and complete (always works)
 - Focus on common standards
- 4. Fundamental information needed is:
 - Persistent ID for each TSN-capable system and its ports
 - Persistent (non-volatile) as long as port exists, including reboots
 - Physical connectivity of each port to its neighboring port
 - Address for use with remote management protocol(s)

New Proposed Goals

- Re-use discovered IDs in Qcc UNI
- 6. Support discovery from out-of-box
 - Do not require IT-style management as a precondition
 - Sensor with 2 ports, connect to industrial controller, and go

Research

Three Categories

- Management data models
 - MIB and YANG
- Protocols to control active topology
 - Spanning tree protocols, Interior Gateway Protocols (IGP), ...
- Protocols for topology discovery
 - LLDP, ...

Management: MIB (1 of 2)

- Management address
 - Typically IP (UDP), but MAC is possible
 - E.g. SNMP over 802 (RFC 4789)
 - Presumably not guaranteed to be persistent
- IEEE8021-BRIDGE-MIB
 - ComponentID: Multiple per bridge, each of which has
 - Bridge Address: MAC address of bridge
 - Port has
 - Port Number (1..n)
 - Not required to be consecutive ("holes" can exist)
 - Individual MAC address
 - ifIndex: For use with IETF IF-MIB

Management: MIB (2 of 2)

- IETF RFC 2863 (Interface MIB, aka IF-MIB)
 - ifTable of interfaces
 - ifIndex (index to ifTable) not required to be consecutive
 - Use SNMP GetNext to skip over holes
 - Too dynamic for topology discovery (see RFC 2922 Design Goals)
 - Each ifEntry (interface entry) has
 - ifName: Read-only name assigned by hardware
 - Multiple interfaces can use same ifName
 - ifAlias: Persistent name writable by management; empty out-of-box
 - ifPhysAddress: For 802 this is MAC address
- IETF RFC 6933 (Entity MIB v4)
 - Physical (and logical) info about router and its ports

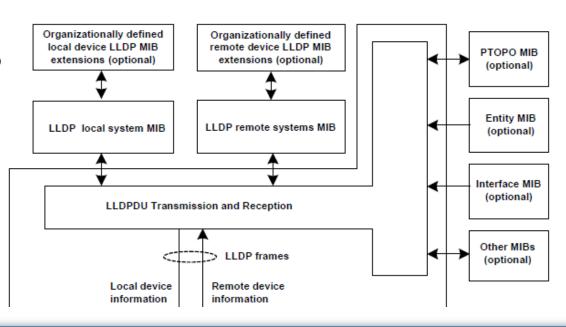
Management: YANG

- IETF RFC 7223 (Interface Mgmt, analogous to IF-MIB)
 - List of interfaces keyed by <u>name</u>, not index
 - YANG is not limited to indexed table; List eliminates holes
 - Name must be unique to the server (bridge/router)
 - System-controlled interface: Bridge/router decides the name
 - User-controlled interface: Name provided to 'create'
 - Presumably persistent in startup datastore
 - Layered: Physical and logical interfaces
 - Relationship to IF-MIB
 - "interface-ref" typedef for name is same as IF-MIB ifName, but only if the system did not support same ifName for different interfaces
 - "if-index" is a read-only variable for ifIndex (for IF-MIB support)
 - Optional "description" is similar to ifAlias

Active Topology: 802.1

- Bridge identified using its MAC address
 - ISIS-SPB System ID
 - RSTP/MSTP Bridge ID
- Port identified using its Port Number
- No management address

Active Topology: IETF IGP


- OSPF-TE (RFC 3630)
 - Router Address TLV
 - "stable IP address of advertising router that is always reachable if there is any connectivity to it"
 - "typically implemented as a "loopback address" "
 - "known in other standards as "router ID" "
 - Unclear if globally unique; unclear if usable as management address
 - Link TLV uses "interface IP address" for physical port
- GMPLS (RFC 4202)
 - Unnumbered link: For interface to point-to-point link,
 32-bit number assigned locally by router
 - Similar concept to Port Number and ifIndex

Active Topology: IETF IGP

- IS-IS TE (RFC 3784)
 - IP address for each interface
 - 4-octet Router ID (same as OSPF TE)
- IS-IS for GMPLS (RFC 4205)
 - Link ID uses "unnumbered link" of GMPLS (same as OSPF)

Topology Discovery: LLDP (1 of 5)

- 802.1AB: Simple protocol with a MIB
- Transmit my local info (bridge and its ports)
 - Local LLDP MIB
- Receive neighbor's local info
 - Store in Remote LLDP MIB
 - No propagation
 - (typical)
- MIB is superset of IETF RFC 2922 (PTOPO MIB)

Topology Discovery: LLDP (2 of 5)

- Mandatory TLVs
 - Chassis ID (bridge/router)
 - Port ID
 - Time To Live, End of LLDPDU
- Optional TLVs
 - Management Address
 - System Capabilities

Topology Discovery: LLDP (3 of 5)

- Management Address
 - Subtype is <u>IANA Address Family Number</u>
 - "returned address should be the most appropriate for management use, typically a layer 3 address such as the IPv4 address"
 - IPv6 and MAC also possible
 - Needed for TSN
 - Optional OID and interface num (ifIndex or Port Num)
 - Not necessarily needed for YANG (TSN)
- System Capabilities
 - 16 bit map, one for (End) Station Only
 - Needed for TSN to identify potential talkers/listeners

Topology Discovery: LLDP (4 of 5)

- Port ID
 - One subtype by "preferred use"

Table 8-3—port ID subtype enumeration

ID subtype	ID basis	References
0	Reserved	_
1	Interface alias	ifAlias (IETF RFC 2863)
2	Port component	entPhysicalAlias when entPhysicalClass has a value 'port(10)' or 'backplane(4)' (IETF RFC 4133)
3	MAC address	MAC address (IEEE Std 802)
4	Network address	networkAddress ^a
5	Interface name	ifName (IETF RFC 2863) ◀
6	Agent circuit ID	agent circuit ID (IETF RFC 3046)
7	Locally assigned	local ^b
8-255	Reserved	_

Alias must be set by mgmt; Bad for goal #6 (out-of-box)

MAC/IP; Must search for it; Bad for goal #3 (simple)

YANG IF name (if unique); **Preferred for TSN?**

Topology Discovery: LLDP (5 of 5)

- Chassis ID
 - One subtype by "preferred use"

Table 8-2—chassis ID subtype enumeration

ID subtype	ID basis	Reference		
0	Reserved	_	<u></u>	
1	Chassis component	EntPhysicalAlias when entPhysClass has a value of 'chassis(3)' (IETF RFC 4133) Alias must be set by m		
2	Interface alias	IfAlias (IETF RFC 2863)	Bad for goal #6 (out-of-box) MAC is persistent and	
3	Port component	EntPhysicalAlias when entPhysicalClass has a value 'port(10)' or 'backplane(4)' (IETF RFC 4133)		
4	MAC address	MAC address (IEEE Std 802)		
5	Network address	networkAddress ^a	_ ' ' '	
6	Interface name	ifName (IETF RFC 2863)	globally unique;	
7	Locally assigned	local ^b	Preferred for TSN?	
8-255	Reserved	_		
YANG IF name is not globally unique		t globally unique	IP address possibly not persistent (unless it is "router ID")	

Topology Discovery: Others

- Routers discover topology using the IGP (IS-IS, OSPF)
 - Router does not run LLDP unless it also supports bridging
- Several proprietary protocols
- When all else fails, use a toolbox
 - Ping, Traceroute, DNS, monitoring, ...
- YANG data model for network topologies
 - draft-clemm-i2rs-yang-network-topo
 - Each "level" has details in augment (e.g. "Service", L2, IS-IS)
 - Assumes a central topology-discovery entity

Summary: End Station

- Typically do not run management server
 - LLDP or similar for nearest bridge/router to explicitly discover
- MAC address is persistent and globally unique
 - Each interface has MAC address
- IP addresses not necessarily persistent
 - Exception: IPv6 unicast using MAC address as interface ID

Summary: Bridge

- We can assume a management server
- MAC address is persistent and globally unique
 - Available in management, active topology, and LLDP
- Port identification can use YANG IF name
 - MIB and active topology use number, but
 YANG management and LLDP can focus on name
- We can assume LLDP
 - Provides management address, chassis ID, and port ID
 - Everything we need
 - For TSN, we may want to specify an LLDP "profile"

Summary: Router

- "Router ID" seems to be consistent in IGP
 - Presumably persistent and unique to area
 - If we use IANA Address Family, this is covered by IPv4
- Port identification can use YANG IF name
 - Same rationale as bridge
 - IGP port identification (number or IP address) can be mapped to this name
- Management address is a challenge
 - IGP doesn't explicitly provide management address
 - We cannot mandate LLDP protocol for routers

Recommendations

Rec #1: LLDP profile for bridging

- Organization can specify a profile of LLDP for TSN
 - LLDP protocol required for end stations and bridges
 - Management required for bridges (not end stations)
 - Require some optional features
 - Tx and Rx
 - Management Address TLV
 - System Capabilities TLV (to detect end station)
 - Chassis ID subtype = MAC address
 - Port ID subtype = ifName (unique)
- Fully interoperable

Rec #2: YANG Net Topology to CNC

- As YANG Data Model for Network Topologies takes shape, help ensure that augments for L2/L3 provide
 - Persistent ID for end station, bridge, and router
 - Management address for bridge/router
- TSN CNC can specify this data model as an input
 - Presumably defer this specification until RFC is ready
- Solves topology discovery for some router use cases
 - Central topology-discovery entity uses proprietary and/or toolbox techniques
 - Not necessarily interoperable

Rec #3: New RFC for PTOPO YANG

- IETF RFC 2922 specified a MIB for physical topology (PTOPO MIB)
 - MIB but not "mechanisms" (protocol or toolbox)
 - Predecessor to LLDP MIB (local and remote)
 - Informative
- New IETF project could refresh this concept for YANG
 - Router can discover its own connectivity (e.g. IGP)
 - Central topology-discovery entity can also populate
 - Ideally, this YANG is the same as 802.1AB's YANG
- Note: This was originally proposed as part of 802.1Qcc, but it is best done in an IETF RFC and/or 802.1AB

Rec #4: IDs for 802.1Qcc UNI

- Purpose is for CNC to identify a port in its topology
- End station interface
 - MAC address as the primary type
 - Optional persistent IDs added on: IP address, number, ...
- Bridge/router
 - Single persistent address as primary type
 - MAC or IP ("router ID")
 - Management address uses IANA Family (like LLDP)
- Port of bridge/router
 - YANG interface name as primary type
 - Optional persistent IDs added on: MAC, IP, number, ...

Thank You