Towards Short-Lived Certificates

Emin Topalovic*, Brennan Saeta*, Lin-Shung HuangT, Collin Jackson' and Dan Boneh*
*Stanford University, {emint, saeta, dabo} @cs.stanford.edu
TCarnegie Mellon University, {linshung.huang, collin.jackson} @sv.cmu.edu

Abstract—The Online Certificate Status Protocol (OCSP) is as
good as dead. It imposes a massive performance penalty on
web traffic and has failed to mitigate the recent high-profile
certificate security breaches of certificate authorities. Citing these
fundamental protocol flaws, Google Chrome, one of the world’s
most popular browsers, is permanently disabling OCSP and
taking direct ownership over certificate revocation. We will soon
be living in a post-OCSP world where Google has become a
single point of failure for certificate validation. We argue that
certificate authorities should reassert control over the certificate
revocation process by issuing certificates with a very short
lifetime. These certificates complement browser-based revocation
by allowing certificate authorities to revoke certificates without
the cooperation of browser vendors, and without imposing a
performance penalty on web traffic.

We have implemented a prototype certificate authority and
certificate update plugin for Apache that demonstrates feasibility
of short-lived certificates. We have also implemented client-side
pinning to short-lived certificates in the Chromium browser. Fi-
nally, we show that short-lived certificates complement browser-
based revocation and address its major limitations; the two
mechanisms can be combined to achieve secure, performant, and
backwards-compatible browsing experience on the web.

I. INTRODUCTION

X.509 certificates are widely used by web browsers to authen-
ticate destination servers [1]. It is current standard practice
for certificate authorities (CAs) to issue certificates with a
relatively long validity period such as a year or longer. Ideally,
certificates are expected to be used for their entire validity
period, but unfortunately, a certificate can go bad prior to its
expiration date for many reasons. Private keys corresponding
to the certificate can be stolen, the certificate could have been
issued fraudulently, or the certificate could have simply been
reissued (e.g. due to a change of name or association). For
these reasons, X.509 defines mechanisms, including certificate
revocation lists (CRLs) [1] and the Online Certificate Status
Protocol (OCSP) [2], for revoking a certificate prior to its
expiration date.

Notably, recent security breaches of certificate authorities (i.e.
Comodo [3] and DigiNotar [4]) have resulted in fraudulently
issued certificates exposed in the wild. However, current
revocation mechanisms have been ineffective, as discussed in
the next section, and browser vendors were forced to issue
software updates to block bad certificates instead of relying
on revocation checks. In fact, Google has announced plans to
disable altogether OCSP in Chrome — one of the world’s most
popular browsers [5] — and instead reuse its existing software
update mechanism to maintain a list of revoked certificates

on its clients. For space considerations, their global CRL is
not exhaustive, and can exclude the revocations that happen
for purely administrative reasons. Network filtering attacks
that block updates are still possible, but would require con-
stant blocking from the time of revocation. Google’s decision
is mainly due to the ineffectiveness of soft-fail revocation
checks, and also the obvious costs in performance and user
privacy [6].

While revocation by software updates may work well for
Chrome, it can be quite difficult on a number of platforms
such as smartphones, where issuing a software update in-
volves multiple entities and can take many months until wide
deployment. Even now several smartphone vendors have not
yet issued software updates to block DigiNotar certificates.
Revocation by software update takes control of revocation out
of the hands of the CAs where it naturally belongs and puts it
in the hands of software and hardware vendors who may have
less of an incentive to issue a software update every time a
certificate is revoked.

An Old Proposal Revisited

In this paper we propose to abandon the existing revocation
mechanisms in favor of an old idea [7], [8] — short-lived
certificates — that puts revocation control back in the hands
of the CAs. Short-lived certificates are far more efficient
than CRLs and OCSP, and require no client-side changes,
although a minor client change can strengthen the proposal
significantly.

A short-lived certificate is identical to a regular certificate,
except that the validity period is a short span of time such
as a few days. Such certificates expire shortly, and most
importantly, fail closed after expiration on clients without the
need for a revocation mechanism. We suggest a certificate
lifetime as short as four days, matching the average length
of time that an OCSP response is cached [9].

In our proposal, when a web site purchases a year-long
certificate, the CA’s response is a URL that can be used
to download on-demand short-lived certs. The URL remains
active for the year, but issues certs that are valid for only
a few days. Every day a server-side element fetches a new
certificate that is active for the next few days. If this fetch
fails, the web site is not harmed since the certificate obtained
the previous day is active for a few more days giving the
administrator and the CA ample time to fix the problem. In
this way the burden of validating certificates is taken off the

critical path of HTTPS connection establishment, and instead
is handled offline by the web site. We emphasize that short-
lived certificates do not change the communication pattern
between clients and web servers. Moreover, since clients
typically fail closed when faced with an expired certificate,
this approach is far more robust that the existing OCSP and
CRL based approaches.

Although it is conceptually simple, many issues need to be
addressed for this approach to work. First, we hope to use
short-lived intermediate certificates, but this requires some
additional steps at the CA. Second, we need to ensure that
installing a new certificate on a web server does not force a
web server restart. Third, for web sites with many servers, we
need an architecture to ensure that only one request from the
site is issued to the CA per day (as opposed to one request
per server). Finally, a small optional change to the client can
provide additional defense-in-depth against attacks on the CA.
We discuss these issues in the following sections.

We analyze the security of this proposal in Section V, but
briefly mention here that when a web site key is compromised
by a server-side breach, the certificate can be used for a few
days, but becomes worthless once it expires. In real-life this
is equivalent or better than the security guarantees offered by
OCSP — OCSP responses are usually valid for a few days [9]
and therefore revocation via OCSP also need a few days to
take affect.

II. BACKGROUND

We begin by surveying the existing standards for removing
trust from a valid certificate before its expiration date, and
discuss the deficiencies that have caused Chrome to abandon
them.

A. Certificate Revocation Lists

One solution to dealing with certificates that go bad is the
certificate revocation list (CRL) [1]. When a certificate goes
bad, its identifying serial number is published to a list, signed
and timestamped by a certificate authority (CA). In order to
trust a certificate, a user must not only verify the signature
and expiration date, but also ensure that the certificate is not
listed in CRLs.

For CRLs to be effective, one assumes that (1) up-to-date
lists are published frequently by the CA, (2) the most recent
list is available to the verifier, and (3) verification failures are
treated as fatal errors. These constraints on CRLs degrade their
effectiveness as a revocation mechanism:

o An earlier study [10] on real-world CRLs indicated that
more than 30% of revocations occur within the first two
days after certificates are issued. For CAs, there is a
tradeoff between their CRL publishing frequency and
operational costs. For CAs that update CRL with longer

intervals, there is a risk of not blocking recently revoked
certificates in time.

o Since CRLs themselves can grow to be megabytes in
size, clients often employ caching strategies, otherwise
large transfers will be incurred every time a CRL is
downloaded. This introduces cache consistency issues
where a client uses an out-of-date CRL to determine
revocation status.

« Browsers have historically been forgiving to revocation
failures (a.k.a “fail open”) so as not to prevent access to
popular web sites in case their CAs are unreachable [11].
In practice, they either ignore CRL by default, or do not
show clear indications when revocation fails [12]. Unfor-
tunately, this lets a network attacker defeat revocation by
simply corrupting revocation requests between the user
and the CA.

o It should also be noted that the location of the CRL (indi-
cated by the CRL distribution point extension) is a non-
critical component of a certificate description, according
to RFC5280. This means that for certificates without this
extension, it is up to to the verifier to determine the
CRL distribution point itself. If it cannot CRLs may be
ignored [13].

B. Online Certificate Status Protocol

The Online Certificate Status Protocol (OCSP), an alternative
to CRLs proposed in RFC 2560 [2], allows client software to
obtain current information about a certificate’s validity on a
certificate-by-certificate basis. When verifying a certificate, a
client sends an OCSP request to an OCSP responder, which
responds whether the certificate is valid or not. Typically,
clients are instructed to cache the OCSP response for a few
days [9]. OCSP responders themselves are updated by CAs as
to the status of certificates they handle.

In theory, it is possible for CAs to issue OCSP responses with
short validity periods (since the response size is smaller than
a CRL), however there are many real-world constrains that
make this approach infeasible:

o OCSP validation increases client side latency because
verifying a certificate is a blocking operation, requiring
a round trip to the OCSP responder to retrieve the
revocation status (if no valid response found in cache). A
previous study [9] indicates that 91.7% of OCSP lookups
are costly, taking more than 100ms to complete, thereby
delaying HTTPS session setup.

e OCSP may provide real-time responses to revocation
queries, however it is unclear whether the responses
actually contains updated revocation information. Some
OCSP responders may rely on cached CRLs on their
backend. It was observed that DigiNotar’s OCSP respon-
der was returning good responses well after they were
attacked [14].

o Similar to CRLs, there are also multiple ways that
an OCSP validation can be defeated, including traffic

filtering or forging a bogus response by a network
attacker [15]. Most importantly, revocation checks in
browsers fail open. When they cannot verify a certificate
through OCSP, most browser do not alert the user or
change their UI, some do not even check the revocation
status at all [12]. We note that failing open is necessary
since there are legitimate situations in which the browser
cannot reach the OCSP responder. For example, at an
airport, a traveler might be asked to pay for Internet
service before connecting to the Internet. In this case,
the browser cannot validate the gateway’s certificate using
OCSP and must implicitly trust the provided certificate
so that the user can enter her payment information and
connect to the Internet.

o OCSP also introduces a privacy risk: OCSP responders
know which certificates are being verified by end users
and thereby responders can, in principle, track which sites
the user is visiting. OCSP stapling is intended to mitigate
this privacy risk, but is not often used. We discuss stapling
in Section VI.

ITI. DESIGN

In what follows we assume a server provides a particular
service such as a web-based email over HTTPS. A client is
a user of the service, which will validate whether the server
provided certificate is signed by a trusted source to determine
the authenticity of the server. Both the client and server trust
an intermediate party, the certificate authority, typically pre-
installed on the client’s web browser or operating system. We
describe the modifications we make on the three components
in this scenario: the certificate authority, the server, and the
client.

a) Certificate Authority: The role of a certificate authority is
to sign the certificates for subscribing servers. The certificate
authority has two modes of operations: on-demand and pre-
signed. What differentiates the two is how the certificates are
generated.

e On-demand mode. When using the on-demand approach,
the CA keeps its private key online, and signs new
certificates when requested. In on-demand mode, the
online CA keeps a template certificate — a certificate
with static information, such as the common name and
public-key already populated — which is loaded when
the web server requests a new short-lived certificate. The
validity period of the certificate is altered such that it
begins at the time of the request and ends the configured
amount of time in the future, typically within a few days.
The certificate is signed using the CA’s private key and
sent back to the web site.

In on-demand mode the hardware boxes used at the CA
to manage the CA’s private key can be configured so
that they will never issue a certificate with a validity
period of more than a few days beyond the present date.

Consequently, a single compromise of the CA will only
expose certificates that will expire shortly.

e Pre-signed mode. With the pre-signed approach, the CA’s
private key is kept offline and certificates are signed in
batches. When a server requests a certificate, the CA
looks through its store of pre-signed certificates to find
the appropriate one, in which the validity period begins
before the request time and ends at least a day after the
request time. The extra overlap allows the requester to not
have to worry about automatically re-issuing the request
were it to be issued closer to its expiration date. Similar to
previous two-level digital signature schemes [16] (using
an offline CA to pre-issue certificates), this reduces the
computation of the online CAs. It also allows that CA’s
private key to remain offline, as is often the case for root
CAs.

In either case, should the server request its certificate be
revoked, the certificates, either the template or pre-signed,
are removed from the CA store. Subsequent requests will
fail.

b) Server Plug-in: The short-lived certificates themselves are
usable by any server which supports standard X.509 certifi-
cates. What is required is a side-loaded program (or plug-
in) that manages the server’s certificates by requesting fresh
certificates from the certificate authority as the expiration time
of the current certificate approaches. Our server-side program
is set-up to automatically to execute after a certain interval of
time. It is recommended that the interval is set to at least two
days before the expiration date to ensure new certificates are
installed in a timely fashion.

When the server certificate-downloading program wakes up, it
checks the expiration date of the current installed certificates
and if any are approaching expiration, the program issues an
HTTP GET request to the CA for a new certificate. The server-
side program checks that the only field that changed in the
new certificate is the validity period (and in particular, the
public-key did not change). If so, it stores the new certificate
in the certificate store and alerts the server to load the new
certificate. In Section IV we explain how to load a new
certificate in popular web server without restarting the server.
If the retrieved certificate is corrupt, it is ignored and the site
admin is alerted.

¢) Client-Side Pinning: In current popular browsers certifi-
cate validation fails for expired certificates. Therefore, no
client-side modifications are needed to implement our short-
lived proposal. Chrome’s CRL approach complements this
mechanism well in case there is a need to quickly revoke
a compromised certificate (including root and intermediate
certificates).

In practice, when encountering expired certificates, the
browser blocks the page, removes the lock icon from the
address bar, and presents a security warning dialog to the user
(see Figure 1). We note that previous studies have shown that

(@) ssLError
€ C' [s/ /www.webperflab.com

The site’s security certificate is not trusted!

You attempted to reach www.webperflab.com, but the server presented a
certificate issued by an entity that is not trusted by your computer's operating
system. This may mean that the server has generated its own security credentials,
which Google Chrome cannot rely an for identity infarmation, or an attacker may be
trying to intercept your communications.

*You should not proceed, especially if you have never seen this waming before for
this site_

Proceed anyway | [Back to safety.

» Help me understand

Fig. 1. Expired certificate warning in Google Chrome When encountering
expired certificates, the browser blocks the page, removes the lock icon from
the address bar, and presents a security warning dialog to the user.

users may still click through the warnings [17] and therefore
a strict hard-fail approach is suggested for better security, as
implemented for HSTS [18] websites.

While no client-side are required, the short-lived proposal can
strengthened with a small client-side extension. In particular,
we propose to add a new X509 certificate extension to indicate
that the certificate is a short-lived certificate. When a client
sees such a short-lived certificate, it records this fact and
blocks future connections to the server if the server presents a
non-short-lived certificate. We call this client-side pinning for
short-lived certificates, similar in a way to existing certificate
authority pinning in browsers [19], [20]. In addition to just
pinning the CA used by a site, we are pinning the status of
whether a site uses short-lived certificates. Client-side pinning
ensures that the number of short-lived enabled certificates (in-
cluding intermediate certificates) in a certificate chain should
never decrease. This optional behavior should still allow short-
lived certificates to be incrementally adopted on intermediate
CAs.

Client-side pinning prevents two attacks. First, suppose an
attacker succeeds in compromising a CA once without being
detected. Without short-lived pinning on the client, the attacker
could simply request long-lived certs from the CA’s hardware
and these certs let the attacker man-in-the-middle all web
sites that use this CA. With short-lived pinning, the attacker
must request short-lived certs from the CA’s hardware, but
by design the hardware will only issue short-lived certs that
expire in a few days. Therefore, a one-time compromise of
the CA will not help the attacker. The attacker must repeatedly
compromise the CA thereby increasing the chance of detection
and revocation.

Second, consider a web site that currently uses long-lived certs.
If the server’s secret key is stolen the site may ask the CA to
revoke the long-lived cert and then switch to using short-lived
certs. But an attacker can block revocation messages sent to
clients and then use the stolen long-lived cert to man-in-the-
middle the web site. Clients would have no knowledge that

revocation took place and will accept the revoked long-lived
cert. With short-lived pinning, if the client connects to the
legitimate site after it switched to short-lived certs, the long-
lived cert will no longer be accepted by the client.

If a website wishes to stop using short-lived certificates, the
X509 extension can provide an option to disable client-side
pinning.

IV. IMPLEMENTATION

We developed a prototype to enable and automatically update
short-lived certificates for Apache web servers. We also imple-
mented client-side pinning in Chromium web browser.

a) Certificate Authority: Our certificate authority was imple-
mented using Java and is served over Apache Tomcat as a web
application. The web server issues an HTTP GET request to
the CA server specifying the common name for the certificate
it wishes to retrieve, as well as a unique certificate identifier.
This identifier allows a web server to have multiple certificates
under the same common name stored by its one CA. These
identifiers are chosen by the owners of the servers when they
register with the CA for short-lived certificates. They allow
a server to have multiple certificates under a common name,
say if they wish to use a different private/public key pair or
want a certificate that is a wild card certificate and one that is
domain specific.

In either the pre-signed or on-demand mode, the CA’s servlet
looks for an appropriate certificate on the filesystem. In on-
demand mode, the validity period of the matching template
certificate is updated and signed with the CA’s private key.
The private key is stored encrypted on the CA’s server,
and is decrypted and brought into memory at start-up. The
signing and general certificate handling is done using the
TAIK cryptography libraries [21]. The pre-signed certificates
are signed offline using a different key and are transferred
to the servers manually. The batch can be set by the CA
but will present a trade-off between security and ease-of-use.
Pre-signing larger batches means less overhead of signing and
transferring the certificates, but leaves more signed certificates
on an online server and thus at the risk of being stolen. Each
pre-signed and and on-demand certificate is made valid for
four days to match the length of time for which an OCSP
response is cached [9].

b) Server Plug-in: We implemented our server-side program
in Java targeting Apache web servers. The program is set as
a cron job executing every day. When the program runs, it
checks to make sure the certificate is close to expiration. If
true, it issues a GET request to our CA for either a pre-signed
or on-demand certificate. Once the certificate is obtained it is
stored to the filesystem in the standard PEM format.

Our Apache SSL configuration files are set such that the file
locations of the certificates are symbolic links. When the new
certificate is stored on the filesystem, all our program has to

Certificate Authority

o

Root Key

(A
(g
=
&

Intermediate Key

@R

\

Short-Lived
Certificates

Certificate @ ::.1"'

Issuance

=

&~

J

CRL Publication

Global CRL

@ Google

oF

Auto-updates

>

x—
x—

Global CRL

xx

Fig. 2. Short-Lived Certificates and Chrome’s CRL 1. Certificate authorities pre-sign batches of short-lived certificates. 2. A plugin on the SSL website
periodically fetches fresh short-lived certificates from the CA and loads it onto the server. 3. Google generates a list of revoked certificates, and automatically
updates the global CRL to browsers. 4. When the user visits the SSL website, the certificate is validated against Chrome’s CRL and also fails on expiration.

do is re-point the symbolic link to the new certificate and
optionally clean up old, expired ones. After this, the server
certificate-downloading program issues a graceful restart com-
mand to Apache. This ensures the web server restarts and
loads the new certificates without disrupting any existing
connections. Although we prototyped on the Apache web
server, our proposal is applicable to other popular web servers
such as Nginx and Jetty, without causing server downtime. We
confirmed that Nginx [22] supports graceful restart, similar to
Apache, and Jetty supports reloading the Java trust store on-
the-fly [23]. !

¢) Client-Side Pinning: We implemented a prototype of
client-side pinning for short-lived certificate in Chromium
(using revision 61348). Since Chromium utilizes the system
cryptography libraries on each platform [24] to handle cer-
tificate verification, we implemented our code as a platform-
independent function in the browser above the cryptography
libraries, instead of modifying a specific library such as
NSS. We reused the existing transport security state code
in Chromium (for HSTS and public key pinning) to store
our short-lived certificate pins persistently. Our patch for
Chromium is available online [25].

!t is reasonable for a large site using Apache to use short-lived certificates.
Apache can restart gracefully with no noticeable impact to end users as our
benchmarking has shown.

V. ANALYSIS

In Section II, we described the ineffectiveness of the existing
soft-fail OCSP and CRL mechanisms, which have paved the
way for recent proposals such as Chrome’s browser-based
CRLs. In this section, we discuss the benefits and shortcom-
ings of various revocation approaches in a post-OCSP world
(summarized in Table I), including (1) Chrome’s CRL, (2)
hard-fail OCSP, (3) short-lived certificates, and (4) short-lived
certificates with Chrome’s CRL.

A. Chrome’s CRL

As mentioned in Section I, Google has announced plans to
disable OCSP checks completely. Instead, Chrome will reuse
its existing software update mechanism to maintain a list of
revoked certificates on its clients.

1) Advantages: In the case of certificate misissuances during
CA incidents, Google could push out new CRLs that will block
the fraudulently issued certificates on the clients in less than a
daily time frame. Due to using software updates, this approach
even has the ability to remove the misbehaving root certifi-
cates. Browser-based CRLs are updated periodically and not
fetched at the time connecting a site, thus there is no additional
latency during page load, nor privacy concerns of tracking
the user’s browsing history. Further, network filtering attacks
become more difficult, an attacker would have to consistently
block software updates from the time of revocation, instead of
only at the time of visit.

TABLE I
COMPARISON OF CERTIFICATE REVOCATION APPROACHES

Chrome’s CRL

Hard-Fail OCSP

Chrome’s CRL +
Short-Lived Certificates

Short-Lived Certificates

Untrust Rogue Root CAs

Revoke Misissued Certificates

Revoke Benign Certificates

Support Captive Portals

Avoid Page Load Delay

Avoid User Tracking

Avoid Single Point of Failure

NN N X NN

Support Legacy Clients

| 3| 3| 3| %] N N[>

NN NN NN >
XINNNNNNS

2) Disadvantages: Due to space considerations of maintaining
a global CRL, Google will not support a vast amount of
revocations that are due to administrative reasons. Should
OCSP be disabled, certificate authorities lose control over
revocation, therefore unable to revoke certificates for billing,
re-issuance, or other benign reasons. Google has become a
single point of failure for certificate revocation.

Another major disadvantage of this approach is that legacy
clients are currently not supported, such as mobile devices
and other browsers. Google may want to provide their global
CRLs as a public service for other browsers and applications,
in a way similar to their Safe Browsing API [26].

B. Hard-Fail OCSP

In attempt to fix the ineffectiveness of OCSP under existing
CA infrastructures, some security researchers as well as CAs
have suggested clients enforce hard-fail OCSP. Some browsers
do allow users to opt-in to hard-fail for revocation checks, but
this must be turned on by default to be effective.

1) Advantages: Unarguably, the security of a hard-fail OCSP
is better than existing soft-fail mechanisms. Unlike new
browser-based CRL proposals, this approach supports the
existing revocation infrastructure managed by CAs.

2) Disadvantages: Unfortunately, there are legitimate reasons
why browsers refuse to simply turn on hard-fail OCSP. For
example, users may need to log in to captive portals of
WiFi hotspots where the login page is protected by SSL.
Often, the HTTP traffic is blocked, including OCSP, and
will cause certificate validation to timeout. If hard-fail OCSP
was implemented, users will not be able to connect to many
WiFi hotspots, even though they are probably not under
attack.

Also, this approach shares many disadvantages of existing
OCSP approach, including the ability for third party to track
the user’s browsing history. Further, clients may suffer sig-
nificant connection latency due to OCSP queries, which even
worse may discourage sites on adopting SSL. Whenever an
OCSP responder goes down, all sites that use their certificates
will go down as well.

In the case where a Root CA has been completely com-
promised, OCSP does not provide any protection since the

attacker could have easily generated a valid OCSP response
with a far expiration date. Clients would need software updates
to untrust the bad root certificate.

C. Short-Lived Certificates

We described the approach of using short-lived certificates in
Section III. In short, to revoke a certificate, the CA simply
stops reissuing new certificates, as any old certificates either
must have expired, or would expire shortly.

1) Advantages: By default, certificate expiration is always
strictly validated on clients. All major browsers check for the
validity period of certificates and present alerts to users when
encountering expired certificates. No modifications on clients
are required, thus will work on all platforms and devices
without updates.

In the event of a key compromise or fraudulent issuance of
site certificates, with short-lived certificates, the CA simply
stops renewing the certificate for revocation. The window of
vulnerability will be bounded by the short validity period,
which should be no more than a few days. We note that short-
lived certificates can potentially help if supposedly a large CA
(e.g. VeriSign) is hacked — the foo big to fail problem. In
that case, there will be a need to revoke the stolen certificates.
Short-lived certificates can make that easier.

Unlike OCSP, user’s browsing habits are not reported to any
third parties when short-lived certificates are used. Further,
this approach does not require additional round-trips to a
SSL connection setup, as browsers do not need to verify the
certificate status with an OCSP responder.

Since short-lived certificates are regular certificates, they can
be chained in exactly the same manner as the existing deploy-
ment of X.509 certificates. This allows websites, and even
intermediate certificate authorities, to incrementally deploy
and take advantage of short-lived certificates, without a large
migration, or infrastructure change.

2) Disadvantages: Although short-lived certificates cannot
solve the problem of a root CA compromise (neither does
hard-fail OCSP), it does improve the security of intermediate
certificates that are short-lived. In on-demand mode, the fact
that the certificate authorities are online increases the risk
of the CA’s key being stolen and fraud certificates being

generated. This is less of an issue with the pre-signed mode
where certificates are signed by an offline CA in batches,
allowing the key to be kept safe and isolated from the online
servers. However, signing in batches implies that a CA break-
in will provide the attacker with a larger pool of pre-signed
certificates and thus a longer time during which they can
masquerade as the certificate owners. Fortunately, this only
hinders security if the attackers have also compromised a
client’s private key.

One possible issue that could be raised is the fact that if a
CA falls under DDoS attacks, servers can not get updated
certificates and are thus forced into service outage as soon
as their certificates expire. This requires that the attacker is
able to take down the CA consistently for at least a few days.
Fortunately, there are many mitigations. One approach for CAs
is to filter traffic based on IP, only allowing well-known cus-
tomer IPs through. If using pre-signed mode, the distribution
of certificates can further be handled by third-party distributors
that specialize in handling DDoS-level traffic.

We note that deploying short-lived certificates might cause
errors on clients whose clocks are badly out of sync (e.g.
off by a week). It is recommended that clients should sync
their clocks periodically, which is critical for preventing replay
attacks.

D. Short-Lived Certificates with Chrome’s CRL

Lastly, we consider a hybrid approach of using short-lived
certificates in cooperation with Chrome’s CRL. First of all, by
issuing short-lived certificates, CAs immediately regain control
of certificate revocation that was disabled by Chrome. Once
CAs start to issue short-lived certificates for sites (as well as
intermediate CAs), these sites will benefit from the improved
security. In the event of keys being stolen or certificates being
misissued, short-lived certificates ensures a shorter window of
vulnerability by warnings on expiration.

In addition, Chrome’s CRL complements nicely with short-
lived certificates. With short-lived certificates alone, we men-
tioned that users may still be vulnerable in the worst case,
when a root certificate is deemed untrustworthy. Now that
browser-based CRLs provide protection against CA incidents,
the combination of these two approaches allows a full spec-
trum of revocation (on supporting browsers). Browser vendors
will be able to revoke fraudulent certificates and rogue CAs,
while CAs may control administrative revocations for benign
certificates.

This hybrid approach does not have the client side perfor-
mance or privacy issues caused by OCSP, and does not
block users behind captive portals. In contrast, we note that
using hard-fail OCSP along with Chrome’s CRL would still
suffer the compatibility issues with captive portals, as well as
page load delay and privacy issues. Given Chrome’s CRL in
place, we suggest that adopting short-lived certificates gives

the maximum security without the obvious shortcomings of
OCSP.

VI. RELATED WORK
A. OCSP Stapling

An update to OCSP is OCSP stapling, where the web server
itself requests OCSP validation which it passes on the response
to inquiring clients. Stapling removes the latency involved
with OCSP validation because the client does not need an
additional round trip to communicate with the OCSP responder
to check the certificate’s validity. This also removes the privacy
concern of OCSP because the responder does not have access
to knowledge about a web site’s visitors. Unfortunately this
is not widely implemented, only 3% of servers support OCSP
stapling [27]. Also, current implementations do not support
stapling multiple OCSP responses for the chained intermediate
certificates [11]. Further, we note that users are still prone to
attacks if clients do not implement hard-fail OCSP stapling
(and pin the status of whether a site uses OCSP stapling).
In contrast, short-lived certificates essentially fail closed on
existing clients without modifications.

B. DANE

A recent proposal called DNS-based Authentication of Named
Entities (DANE) [28] allows the domain operator to sign cer-
tificates for sites on its domain, without trusting external CAs.
By distributing certificates via DNS records [29], certificates
can be cached on DNS servers, reducing the connection round
trip time while protecting the client’s privacy. Most impor-
tantly, this approach avoids the danger of an untrustworthy CA
being able to issue valid certificates for any domain (given that
typically hundreds of CAs are pre-installed on clients). There
are other DNS-related proposals that still involve trust in CA,
such as publishing OCSP responses over DNS, or providing
an exclusion list of certificates in DNS [30], reducing the
dependence on the availability of OCSP responders. However,
these approaches rely on DNSSEC [31] to prevent forgery and
modification, which has not been deployed broadly. Another
concern is that the trusted domain operator (like a CA) may
be compelled by a state actor to issue false certificates.

C. Public Key Pinning

Google Chrome implements public key pinning [19] for a pre-
loaded list of HTTPS sites. Basically, those HTTPS sites must
include a whitelisted, or pinned, public key in their certificate
chain, otherwise it will be treated as fatal error. Public key
pinning address attacks where a trusted CA is compromised
(or compelled by a state actor [32]), whenever the client sees
a valid certificate that was fraudulently issued by a rogue
CA (not within the preloaded whitelist). This approach may
be more suitable for a small number of large, high security
sites, but less practical for the majority HTTPS sites on the
web.

D. Google Certificate Catalog

The Google Certificate Catalog [33] is a database of all the
valid SSL certificates collected by Google’s web crawlers. By
querying Google’s DNS, clients may check whether the hash
of a certificate matches what is seen by Google, and present
a warning to the user upon mismatches. This approach helps
clients to detect CA fraud incidents, for a much larger portion
of the web (in comparison to the public key pinning approach
described in Section VI-C). However, there is possibility that
not all legitimate certificates are indexed in Google’s database,
and may cause false positives. Further, DNSSEC deployment
is required to prevent a network attacker from modifying
DNS queries. Finally, some valid web pages are crawled
less frequently than on a 90 day basis, resulting in a large
vulnerability window.

E. Convergence

Convergence [34] is an alternative to the traditional CA
system, allowing clients to use a configurable set of external
notaries to validate its communications with web sites (based
on the Perspectives Project [35]) instead of trusting the pre-
installed list of root CAs on their systems. This approach
uses multiple trust notaries, avoiding the single point failure
problem when one trusted CA is compromised. Convergence
requires modifications to existing clients, currently imple-
mented as a Firefox add-on. Unfortunately, convergence as
currently implemented has performance costs for requiring
multiple network round trips to verify a certificate [36].
Privacy may become an issue if the a notary is compromised,
although users may proactively reconfigure their client.

VII. CONCLUSION

Short-lived certificates complement Chrome’s CRL by adding
security when software updates are difficult, as in the case
of mobile platforms. They also put revocation back in the
hands of CAs and remove Google as a single point of failure.
In practice, short-lived certificates provide security guarantees
that are equivalent to or better than OCSP. They are fully
backwards compatible and support increment deployment.
Moreover, since OCSP is no longer needed at HTTPS session
setup time, short-lived certs reduce the time needed to setup
an HTTPS session. Overall, short-lived certs add another layer
of protection to web users beyond Chrome’s CRL.

ACKNOWLEDGMENTS

We are grateful to Rick Andrews, Adam Langley and Charlie
Reis for reviewing and providing feedback on this work. This
work was supported by NSF and AFOSR.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]
[22]

REFERENCES

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” RFC 5280 (Proposed
Standard), Internet Engineering Task Force, May 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5280.txt

M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, “X.509
Internet Public Key Infrastructure Online Certificate Status Protocol
- OCSP,” RFC 2560 (Proposed Standard), Internet Engineering Task
Force, Jun. 1999. [Online]. Available: http://www.ietf.org/rfc/rfc2560.txt

Comodo, “Comodo Report of Incident - Comodo detected and
thwarted an intrusion on 26-MAR-2011,” http://www.comodo.com/
Comodo-Fraud-Incident-2011-03-23.html, 2011.

VASCO, “DigiNotar reports security incident,” http://www.vasco.
com/company/press_room/news_archive/2011/news_diginotar_reports_
security_incident.aspx, 2011.

P. Pachal, “Chrome 15 beats Internet Explorer 8 as worlds most popular
browser,” http://mashable.com/2011/12/15/chrome-leapfrogs-ie8/.

A. Langley, “Revocation checking and Chrome’s CRL,” http://www.
imperialviolet.org/2012/02/05/crlsets.html, 2012.

R. Rivest, “Can we eliminate certificate revocation lists?” in Financial
Cryptography, 1998.

A. Herzberg and H. Yochai, “Minipay: charging per click on the web,” in
Selected papers from the sixth international conference on World Wide
Web, 1997.

E. Stark, L.-S. Huang, D. Israni, C. Jackson, and D. Boneh, “The case
for prefetching and prevalidating TLS server certificates,” in Proceedings
of the 19th Network and Distributed System Security Symposium, 2012.

C. Ma, N. Hu, and Y. Li, “On the release of CRLs in public key
infrastructure,” in Proceedings of the 15th USENIX Security Symposium,
2006.

A. Langley, “Revocation doesn’t work,” http://www.imperialviolet.org/
2011/03/18/revocation.html, 2011.

P. Kehrer, “Defective By Design? - Certificate Revocation
Behavior In Modern Browsers,” http://blog.spiderlabs.com/2011/
04/certificate-revocation-behavior-in-modern-browsers.html, 2011.

E. Turkal, “Securing Certificate Revocation List Infrastructures,”
2001, http://www.sans.org/reading_room/whitepapers/vpns/
securing-certificate-revocation-list-infrastructures_748.

K. McArthur, https://twitter.com/#!/KevinSMcArthur/status/
110810801446727681, 2011.

M. Marlinspike, “New Techniques for Defeating SSL/TLS,” Black Hat
DC 2009.

M. Naor and K. Nissim, “Certificate revocation and certificate update,”
in Proceedings of the 7th USENIX Security Symposium, 1998.

J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor,
“Crying Wolf: An Empirical Study of SSL Warning Effectiveness,” in
Proceedings of the 18th USENIX Security Symposium, 2009.

J. Hodges, C. Jackson, and A.
Transport Security (HSTS),” 2012,
draft-hodges-strict-transport- sec.

Barth, “HTTP Strict
http://tools.ietf.org/html/

A. Langley, “Public key pinning,” http://www.imperialviolet.org/2011/
05/04/pinning.html, 2011.

M. Marlinspike, “Your App shouldn’t suffer SSL’s problems,” http:
//blog.thoughtcrime.org/authenticity-is-broken-in-ssl-but-your-app-ha,
2011.

TAIK, “CRYPTO Toolkit,” http://jce.iaik.tugraz.at/.

Nginx, “Starting, Stopping, and Restarting Nginx,” http://wiki.nginx.org/
CommandLine#Stopping_or_Restarting_Nginx.

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]
[35]

[36]

J. Calcote, “Managing a Dynamic Java Trust Store,” http://jcalcote.
wordpress.com/2010/06/22/managing- a-dynamic-java- trust-store/,
2010.

Chromium, “SSL Stack,” http://www.chromium.org/developers/
design-documents/network-stack/ssl-stack, 2010.

“Short-Lived Certificate Patch for Chromium r61348,” http://pastebin.
com/E6viYsUx, 2012.

Google, “Safe Browsing APL” https://developers.google.com/
safe-browsing/.

Y. N. Pettersen, “New CNNIC EV Root, pubsuffix update, and some
blacklisted certificates,” http://my.opera.com/rootstore/blog/2011/03/31/
new-cnnic-ev-root-pubsuffix-update-and-some-blacklisted-certificates,
2011.

P. Hoffman and J. Schlyter, “The DNS-Based Authentication of Named
Entities (DANE) Protocol for Transport Layer Security (TLS),” 2012,
http://tools.ietf.org/html/draft-ietf-dane-protocol-17.

S. Josefsson, “Storing Certificates in the Domain Name System (DNS),”
RFC 4398 (Proposed Standard), Internet Engineering Task Force, Mar.
2006. [Online]. Available: http://www.ietf.org/rfc/rfc4398.txt

A. Langley, “DNSSEC and TLS,” http://www.imperialviolet.org/2010/
08/16/dnssectls.html, 2010.

D. Eastlake 3rd, “Domain Name System Security Extensions,” RFC
2535 (Proposed Standard), Internet Engineering Task Force, Mar. 1999,
obsoleted by RFCs 4033, 4034, 4035, updated by RFCs 2931, 3007,
3008, 3090, 3226, 3445, 3597, 3655, 3658, 3755, 3757, 3845. [Online].
Available: http://www.ietf.org/rfc/rfc2535.txt

C. Soghoian and S. Stamm, “Certified lies: Detecting and defeating
government interception attacks against ssl (short paper),” in Financial
Cryptography, 2011.

B. Laurie, “Improving SSL certificate secu-
rity,” http://googleonlinesecurity.blogspot.com/2011/04/
improving-ssl-certificate-security.html, 2011.

M. Marlinspike, “Convergence,” http://convergence.io/.

D. Wendlandt, D. Andersen, and A. Perrig, “Perspectives: Improving
SSH-style host authentication with multi-path probing,” in Proceedings
of USENIX Annual Technical Conference, Boston, MA, Jun. 2008.

M. Marlinspike, “SSL And The Future Of Authenticity,” Black Hat USA
2011.

