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Abstract. In this paper we propose generic conversions for transform-
ing a chosen-plaintext (CPA) secure attribute-based encryption (ABE)
to a chosen-ciphertext (CCA) secure ABE. The only known generic con-
version, to the best of our knowledge, was presented by Goyal et al.
in ACM-CCS 2006, which itself subsumes the well-known IBE-to-PKE
conversion by Canetti, Halevi, and Katz proposed in Eurocrypt 2004.
The method by Goyal et al. has some restrictions that it assumes the
delegatability of the original ABE and can deal only with the key-policy
type of ABE with large attribute universe. In contrast, our methodology
is applicable also to those ABE schemes without known delegatability.
Furthermore, it works for both key-policy or ciphertext-policy flavors
of ABE and can deal with both small and large universe scheme. More
precisely, our method assumes only either delegatability or a newly intro-
duced property called verifiability of ABE. We then exhaustively check
the verifiability of existing ABE schemes and found that most of them
satisfy such a property, hence CCA-secure versions of these schemes can
be obtained automatically.

1 Introduction

Background. Attribute-based encryption (ABE) is a generalized cryptographic
primitive from normal public key encryption (PKE) that provides an access con-
trol mechanism over encrypted data using access policies and ascribed attributes
among private keys and ciphertexts. ABE was introduced first by Sahai and Wa-
ters [30]. In an ABE system, a user in the system possesses a key associated with
an access policy, stating what kind of ciphertext that she can decrypt. On the
other hand, a ciphertext is associated with a set of attributes. The decryption can
then be done if the policy associated to the key is satisfied by the attribute set
associated to the ciphertext. This setting of ABE is called key-policy ABE (KP-
ABE) since a key is associated with a policy. Its dual notion in which the role of
policy and attribute set is swapped is called ciphertext-policy ABE (CP-ABE).
In this setting, a policy will be associated to a ciphertext while an attribute set
will be associated to a key.

Most of the proposed ABE schemes [21, 5, 29] in the literature focused on the
aspect of extending the expressiveness of policies so as to achieve fine-grained
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access control (see below). Some other schemes focused on extending to the
multi-authority setting [13, 14, 3, 25], while the most recent achievements in this
research area were the schemes that attain adaptive security [26, 28].

In this paper we focus on another important issue namely the aspect of at-
taining security against chosen-ciphertext attack (CCA) for ABE in the standard
model. The first CCA-secure KP-ABE has already appeared in the seminal paper
for the first expressive KP-ABE scheme by Goyal et al. [21]. Their CCA-secure
scheme extends the methodology of converting any identity-based encryption
(IBE) scheme to CCA-secure PKE scheme Canetti, Halevi, and Katz [12]. Such
a technique relies on delegatability, which is the property that allows using a
key of one policy A to construct a key for another policy A′ that is more re-
stricted than A. Their construction is generic: it is a conversion that transforms
any CPA-secure KP-ABE with delegation to a CCA-secure one. For the case
of CCA-secure CP-ABE, Bethencourt, Sahai, and Waters [5] mentioned that a
similar methodology can be used but they omitted to describe the details. We
note that [5] also uses another method for their CCA-secure CP-ABE namely
the Fujisaki-Okamoto conversion [18] but this can be proven only in the random
oracle model. Some specific CCA-secure construction for CP-ABE with only
AND-gates was proposed in [15].

To the best of our knowledge, the only generic and standard-model construc-
tion for CCA-secure ABE available in the literature is the aforementioned one
by Goyal et al. [21]. The scheme works for the key-policy flavor and can deal only
with the scheme for a large attribute universe. It works roughly as follows. To
encrypt to an attribute set S, Bob first generates a signing and verification key
pair (sk, vk) of a one-time signature scheme. Bob then constructs a ciphertext
for S ∪ {vk} of the original scheme, where vk is treated as a dummy attribute,
and signs this with sk. Upon receiving, Alice checks the validity of signature and
then delegates her key from policy A to policy A and vk. Alice then uses the
latter key to decrypt the ciphertext.

Our Contributions. We propose eight generic conversions that transform
CPA-secure ABE to CCA-secure ABE. The eights conversions comprise all the
combinations by three categorization: (1) whether we consider CP-ABE or KP-
ABE, (2) the original scheme deals with a small or large universe of attributes,
and (3) the conversion uses which methodology out of two that we propose. One
methodology is based on delegatability of ABE, while the other is based on a new
property called verifiability of ABE. The former methodology is a reminiscent
of the method by Goyal et al. [21] as described above. On the other hand, the
latter can be considered as its “dual”. Roughly speaking, while the delegatability-
based method utilizes the and functionality of ABE, the new verifiability-based
method uses the or functionality.

Before moving further, we point out an apparent strength of our thesis: one
methodology has an advantage over the other in the sense that it requires only
either one of the two additional properties. The new verifiability-based one does
not require delegatability of ABE. It thus applies to those ABE without known
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delegation, such as the linear secret sharing based KP-ABE of Goyal et al. [21]
and non-monotonic KP-ABE of Ostrovsky et al. [29] for instances.

Another advantage is that our methodology is generic: it converts the un-
derlying CPA-secure ABE in the black-box manner. Readers who are familiar
with ABE may argue that CCA-secure version of any ABE can be rather easy
to construct since, to the best of our knowledge, all the available schemes so far
were based on bilinear pairing and with this tool there are some well-known,
but specific, techniques such as [12, 9] (in the context of IBE) to attain CCA se-
curity. However, using such specific techniques requires researchers to construct
and prove the security individually each time a new ABE is proposed, which is
not quite convenient. Besides, we believe that some new ABE which is not based
on pairing will be proposed in the future.

Our Approach. The new verifiability-based method works roughly as follows.
We briefly describe here for the case of KP-ABE (with a large universe). The
scheme is indeed similar to the aforementioned method, where Bob encrypts to
S ∪ {vk}, while Alice holds a key for a policy A, with the only difference in
decryption algorithms. Instead of delegating the key, Alice will use the verifia-
bility to check a kind of well-formed-ness of ciphertext before decrypting. Such a
verifiability allows to check whether a ciphertext will decrypt to the same result
when using either a key for policy A or a key for the singleton policy {{vk}}. The
latter key will be used only in the proof. The ability to use either key to decrypt
can be considered intuitively as an (implicit) or functionality. For the case of
CP-ABE, the utilization of or will become more clear: there, we explicitly use
a policy of the form A or vk.

The use of or and some form of verifiability to attain CCA security can
be traced back to the classic Naor-Yung two-key paradigm [27] in the context
of CCA-secure PKE. However, their scheme poses a strong requirement: the
existence of non-interactive zero knowledge proofs, and thus, enhanced trapdoor
permutations. In contrast, our newly defined verifiability for ABE is indeed quite
a weak requirement. Regarding this, we show the gap between our verifiability
and the commonly defined public verifiability. Furthermore, for pairing-based
schemes, the verifiability comes for almost free in many schemes.

Finally, we note that the described methods assume that the original ABE
can deal with large universe (super-polynomial size). This is since we have to
treat vk as dummy attributes. In our methodology, we further propose how to
deal with small universe schemes by introducing a twist similar to the well-known
technique by Dwork, Dolev, and Naor [17] (in the context of PKE).

Related Works on ABE. ABE was first introduced by Sahai and Waters [30]
in the context of a generalization of IBE called Fuzzy IBE, which is an ABE that
allows only single threshold access structures. The first KP-ABE scheme that al-
lows any monotone access structures was proposed by Goyal et al. [21]. The first
such CP-ABE scheme which allows the same expressiveness was proposed by
Bethencourt, Sahai, and Waters [5], albeit the security of their scheme was only
proved in the generic bilinear group model. Ostrovsky, Sahai, and Waters [29]
then subsequently extended both schemes to handle also any non-monotone
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structures. Towards constructing a CP-ABE in the standard model, Cheung
and Newport [15] proposed a CP-ABE scheme that allows only AND gate, while
Goyal et al. [20] proposed a CP-ABE scheme which allows only a-priori bounded
size of gates (bounded CP-ABE). Waters [31] then proposed the first fully ex-
pressive CP-ABE in the standard model. Herranz et al. [23] proposed the first
constant-size ciphertext scheme for CP-ABE allowing threshold gates. Recently,
Attrapadung and Libert [1] proposed the first fully expressive KP-ABE with
constant-size ciphertexts. All of these works were limited to deal with selective
adversaries [11, 6] until only two recent works by Lewko et al. [26] and Takashima
and Okamoto [28], where they obtained adaptively secure ABE schemes. The
aforementioned ABE schemes deal only with single authority, which is the set-
ting that we focus here as well. Some extensions to multi-authority schemes were
considered in [13, 14, 3, 25]. It is also worth mentioning that dual-policy ABE,
which is a combination of the mentioned two flavors of ABE, was proposed in [2].

Organization of the Paper. In the rest of this paper, we first give syntax and
security notion of FE in Sec. 2, give the definition of verifiability and delegata-
bility of FE in Sec. 3, show our general construction in Sec. 4, prove the security
of our constructions for the case of CP-ABE in Sec. 5, 6, show instantiations
of our generic construction in Sec. 7, show that our definition of verifiability is
strictly weaker notion than usual public verifiability in Sec. 8.

2 Definitions

We capture notions of CP-ABE and KP-ABE by providing a unified definition
and security notion for functional encryption3 here and then instantiating to
both primitives in the next subsection.

2.1 Syntax and Security Definition for Functional Encryption

Syntax. Let R : Σk × Σe → {0, 1} be a boolean function where Σk and Σe
denote “key attribute” and “ciphertext attribute” spaces. A functional encryp-
tion (FE) scheme for R consists of the following algorithms: Setup, KeyGen,
Encrypt, Decrypt.

Setup(λ, des)→ (PK,MSK): The setup algorithm takes as input a security
parameter λ and a scheme description des and outputs a public key PK and
a master secret key MSK.

KeyGen(MSK,PK,X)→ SKX : The key generation algorithm takes in the
master secret key MSK, the public key PK, and a key attribute X ∈ Σk.
It outputs a private key SKX .

Encrypt(PK,M, Y )→ CT : The encryption algorithm takes as input a public
key PK, the message M , and a ciphertext attribute Y ∈ Σe. It will output
a ciphertext CT . We assume that Y is implicitly included in CT .

3 Our definition of FE is not the fully generalized one, as recently defined in [10]. It
can be considered as the class of predicate encryption with public index in [10].
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Decrypt(PK,CT, SKX)→Mor ⊥: The decryption algorithm takes in the pub-
lic parameters PK, a ciphertext CT , and a private key SKX . It outputs the
message M or ⊥ which represents that the ciphertext is not in a valid form.

We require the standard correctness of decryption: that is, for all λ, all
(PK,MSK) output by Setup(λ, des), all X ∈ Σk, all SKX output by KeyGen
(MSK,PK,X), and Y ∈ Σe,

− If R(X,Y ) = 1, then Decrypt(PK,Encrypt(PK,M, Y )), SKX) =M .
− If R(X,Y ) = 0, then Decrypt(PK,Encrypt(PK,M, Y )), SKX) = ⊥.

Security Notion. We now give the definition of indistinguishability under
chosen ciphertext attack (CCA-security) for FE scheme Π. This is described by
a game between a challenger and attacker A. The game proceeds as follows:

Setup. The challenger runs the setup algorithm and gives PK to A.
Phase1. A may adaptively make queries of the following types:

− Key-extraction query. A submits X to the challenger. If the challenger
already extracted a private key SKX for X, then returns it. Otherwise the
challenger runs SKX ← KeyGen(MSK,PK,X) and returns it.

− Decryption query. A submits (CT,X) to the challenger and ask for the
decryption result of ciphertext CT under private key for X. If the challenger
has not previously extracted a private key SKX for X, then extract it by
SKX ← KeyGen(MSK,PK,X). Then, the challenger returns the output of
Decrypt(PK,CT, SKX) to A.
Challenge. A declares two equal length messages M0 and M1 and target ci-
phertext attribute Y ∗ ∈ Σe. Y ∗ cannot satisfy R(X,Y ∗) = 1 for any attribute
sets X such that A already queried private key for X. Then the challenger flips a
random coin β ∈ {0, 1}, runs Encrypt(PK,Mβ , Y

∗)→ CT ∗ and gives challenge
ciphertext CT ∗ to A.
Phase2. A may adaptively make queries as the same as in Phase1 with fol-
lowing added restriction. A cannot query to extract a private key SKX for X
such that R(X,Y ∗) = 1. A cannot submit (CT,X) such that R(X,Y ∗) = 1 and
CT = CT ∗.

Guess. A outputs a guess β′ for β.

We say that A succeeds if β′ = β and denote the probability of this event by
PrFEA,Π . The advantage of an attacker A is defined as AdvFEA,Π = PrFEA,Π −1

2 .

Definition 1 We say that an FE scheme Π is (τ, ϵ, qD, qE) CCA-secure if for
all τ -time algorithms A who make a total of qD decryption queries and a total of
qE key-extraction queries, we have that AdvFEA,Π < ϵ. We say that an FE scheme
Π is CCA-secure if for all polynomial τ , qD, qE and for all nonnegligible ϵ, Π
is (τ, ϵ, qD, qE) CCA-secure.

Definition 2 We say that an FE scheme Π is (τ, ϵ, qE) CPA-secure if Π is
(τ, ϵ, 0, qE) CCA-secure. We say that an FE scheme Π is CPA-secure if for all
polynomial τ , qE, for all nonnegligible ϵ, Π is (τ, ϵ, qE) CPA-secure.
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We say that the FE scheme is selectively CCA/CPA-secure if we add an
Initial stage Init before the setup where the adversary submits the ciphertext
attribute Y ∗ ∈ Σe.

2.2 Definitions for Attribute-based Encryption

Definition 3 (Access Structures) Consider a set of parties P = {P1, P2, . . . ,
Pn}. A collection A ⊆ 2P is said monotone if for all B,C we have that if B ∈ A
and B ⊆ C then C ∈ A. An access structure (resp., monotonic access structure)
is a collection (resp., monotone collection) A ⊆ 2P \{∅}. The sets in A are called
the authorized sets, and the sets not in A are called the unauthorized sets.

Definition 4 (KP-ABE) Let U be an attribute space. A key-policy attribute-
based encryption (KP-ABE) for a collection A of access structures over U is a
functional encryption for RKP : A × 2U → {0, 1} defined by RKP(A, ω) 7→ 1 iff
ω ∈ A. Furthermore, the description des consists of the attribute universe U ,
Σk = A, and Σe = 2U .

Definition 5 (CP-ABE) A ciphertext-policy attribute-based encryption (CP-
ABE) is the dual variant of KP-ABE. More precisely, if we let U be the attribute
space, a CP-ABE for a collection A of access structures over U is a functional
encryption for RCP : 2U × A → {0, 1} defined by RCP(ω,A) 7→ 1 iff ω ∈ A.
Furthermore, the description des consists of the attribute universe U , Σk = 2U ,
and Σe = A.

Some Terminologies. We define some terminologies and properties related to
access structures here. Any monotonic (resp., non-monotonic) access structure
A can be represented by a corresponding boolean formula (resp., with negation),
which we denote by ψ(A), over variables in U . This is naturally defined in the
sense that S ∈ A holds iff the evaluation of ψ(A) with the assignment that sets
all variables in S to 1 and other variables outside S to 0 yields the value 1.

Consider the case where A is a monotonic access structure over U . If we
denote a minimal representation of A by min(A) = {S ∈ A | there exists no B ∈
A such that B ⊂ S} . Then, it is straightforward to see that ψ(A) = ∨S′∈min(A)
(∧P∈S′P ).

Next we consider the case where A that is a non-monotonic access structure
over U . We proceed similarly to Ostrovsky et al. [29]. For each P ∈ U we define
another primed attribute P ′. Let Ū = {P ′ | P ∈ U}. As in [29], we define a
monotonic access structure Ã over U ∪ Ū in such a way that S ∈ A⇔ S ∪{P ′ ∈
Ū | P ∈ U \ S} ∈ Ã. Then, it is not hard to see that ψ(A) can be written as
ψ(Ã) with each primed variable P ′ being replaced by the negation of P .

For simplicity, we will use the access structure A and its corresponding
boolean formula ψ(A) interchangeably when specifying a policy.

3 Two Properties: Verifiability and Delegatability

In our constructions, we need FE (CP/KP-ABE) to have either verifiability or
delegatability. In this section we define both properties. While the former is a
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new one defined in this paper, the latter one was already defined in [21, 5, 7]
for the KP-ABE, CP-ABE and general FE cases respectively. We note that the
notion of delegation for FE subsumes that of hierarchical IBE [22, 6]. We also
note that similar notion to the verifiability ”committing” is defined in the IBE
setting in [19].

Verifiability. Intuitively, we say that an FE scheme has verifiability if it is
possible to verify whether a ciphertext will be recovered into the same decryption
result under two different decryption keys with two specific attributes.

Definition 6 An FE scheme Π = (Setup,KeyGen,Encrypt,Decrypt), is
said to have verifiability if there also exists a polynomial time algorithm Verify
that takes as inputs PK,CT,X,X ′ and outputs 0 or 1 or ⊥ according to the
following properties. Let Y be obtained from parsing CT . We require that first if
R(X,Y ) = 0 or R(X ′, Y ) = 0, then Verify outputs ⊥.

Second if R(X,Y ) = R(X ′, Y ) = 1 then if we let Setup(λ, des) → (PK,
MSK) then we have the following.

(Soundness) For all CT in the ciphertext space (which might be invalid),

Pr

Decrypt(PK,CT, SKX) =

Decrypt(PK,CT, SKX′)

∣∣∣∣∣
Verify(PK,CT,X,X ′) = 1,

SKX ← KeyGen(PK,MSK,X),

SKX′ ← KeyGen(PK,MSK,X ′)

 = 1.

(Completeness) For all M in the message space,

Pr [Verify(PK,CT,X,X ′) = 1 | CT ← Encrypt(PK,M, Y )] = 1.

Note that our definition of verifiability is weaker notion than usual public veri-
fiability. Namely, in our definition, validity of the ciphertext is not needed to be
checked. See Sec. 8 for the gap between the (standard) public verifiability and
our verifiability. Moreover, for our conversion, the above definition of verifiability
is sufficient but not necessary. See Appendix B for a weaker (but complicated)
variant of our verifiability.

Delegatability. Intuitively, delegatability is the capability to use a key for
some key attribute X to derive another key for key attribute X ′ which is possible
if X ′ is inferior than X when considering a well-defined partial order relation
≽ over the key attribute domain Σk. More precisely, one can derive SKX′ from
SKX if X ≽ X ′. In the both of CP-ABE and KP-ABE cases, we define the
partial order relation as X ≽ X ′ iff X ⊇ X ′. The formal definition is as follows.

Definition 7 An FE scheme Π = (Setup,KeyGen,Encrypt,Decrypt), is
said to have delegatability if there also exists a polynomial time algorithm Delegate
such that the output of Delegate(PK,SKX , X,X

′) and of KeyGen(MSK,PK,
X ′) have the same probability distribution for all X,X ′ ∈ Σk such that X ′ ≼ X
and for all SKX output by KeyGen(MSK,PK,X).
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Indeed, this definition is stronger than needed to apply our conversion for
the KP-ABE case. In such a case, it suffices to require only that the output
of Delegate(PK,SKA, ψ(A), ψ(A)∧P ) and of KeyGen(MSK,PK,ψ(A)∧P )
have the same probability distribution for all access structure A, an attribute P ,
and all SKψ(A) output by KeyGen(MSK,PK,ψ(A)).

4 General Constructions of CCA-secure ABE

In this section, we show eight conversions to convert a CPA-secure FE scheme
Π to a CCA-secure FE scheme Π ′. The eight conversions consist of the combi-
nations of whether the original FE scheme Π is CP-ABE or KP-ABE, Π has
verifiability or delegatability, and Π deals with a small or large universe. To
describe all conversions in a concise way, we write them all in one construction
template below. Each conversion then differs in only the definitions of specific
variables in Π ′ namely X ′ for key attribute, Y ′ for ciphertext attribute, W for
dummy attribute universe, and a procedure called Subroutine used in decryp-
tion algorithms. We define W below, while the rest are given in Table 1.

Attribute Universes. ABE can be categorized by the size of the attribute
universe that such a scheme can deal with: whether it is of polynomial or super-
polynomial size. These are called small and large universe scheme respectively.
In our conversions, the converted scheme Π ′ will be able to deal with the same
type as that of its original scheme Π. Suppose that we construct a scheme Π ′

to work with a universe U , we will utilize a set W of dummy attributes, which is
disjointed from U . The original scheme Π is then required to deal with universe
U ∪W . A set of dummy attributes will then be associated to a verification key
vk of a one-time signature scheme used in the conversion (see Appendix C.2).
We assume that for all vk, vk ∈ {0, 1}ℓ. The set W is defined as follows.

– If Π is a small universe scheme, we set W = {P1,0, P1,1, P2,0, P2,1, . . . , Pℓ,0,
Pℓ,1}. We set a dummy attribute set Svk ⊂W by setting Svk = {P1,vk1 , P2,vk2 ,
. . . , Pℓ,vkℓ}, where we denote by vkj the j-th bit of vk.

– If Π is a large universe scheme, we set W = {0, 1}ℓ. We set a dummy
attribute set Svk ⊂W by simply letting Svk = {vk}.

Construction Template. Given a CPA-secure FE scheme Π = (Setup,
KeyGen,Encrypt,Decrypt) with verifiability or delegatability, we construct
another FE scheme Π ′ = (Setup′,KeyGen′,Encrypt′,Decrypt′) which is
CCA-secure as follows. Let Σ = (G,S,V) be a one-time signature scheme.

Setup′(λ,U). It outputs Setup(λ,U ∪W )→ (PK,MSK).
KeyGen′(MSK,PK,X). It outputsKeyGen(MSK,PK,X ′)→ SKX′ . Hence

SK ′
X = SKX′ .

Encrypt′(PK,M, Y ) It first creates a one-time signature key pair by running
G(λ)→ (vk, sk). It then runs Encrypt(PK,M, Y ′)→ CT and S(sk, CT )→
σ. It outputs CT ′ = (vk, CT, σ).
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Table 1. How to setup X ′, Y ′ and Subroutine in each case.

Conversion CP-ABE1 Conversion KP-ABE1
CPA CP-ABE w/ verifiability

⇒ CCA CP-ABE

CPA KP-ABE w/ verifiability

⇒ CCA KP-ABE
Attribute set X ′ = X
Policy Y ′ = Y ∨ (∧P∈SvkP )

Policy X ′ = X
Attribute set Y ′ = Y ∪ Svk

Subroutine
If Verify(PK,CT,X, Svk) = 0 or ⊥

Return ⊥.
Else

Return Decrypt(PK,CT, SKX′).

Subroutine
If Verify(PK,CT,X,∧P∈SvkP ) = 0 or ⊥

Return ⊥.
Else

Return Decrypt(PK,CT, SKX′).

Conversion CP-ABE2 Conversion KP-ABE2
CPA CP-ABE w/ delegation

⇒ CCA CP-ABE

CPA KP-ABE w/ delegation

⇒ CCA KP-ABE
Attribute set X ′ = X ∪W
Policy Y ′ = Y ∧ (∧P∈SvkP )

Policy X ′ = X
Attribute set Y ′ = Y ∪ Svk

Subroutine
Run
Delegate(PK,SK′

X , X ∪W,X ∪ Svk)
→ SKX∪Svk .

Return
Decrypt(PK,CT, SKX∪Svk ).

Subroutine
Run
Delegate(PK,SK′

X , X,X ∧ (∧P∈SvkP ))
→ SKX∧(∧P∈Svk

P ).

Return
Decrypt(PK,CT, SKX∧(∧P∈Svk

P )).

Decrypt′(PK,CT ′, SK ′
X) It parses the ciphertext CT ′ as (vk, CT, σ). If V(vk,

CT, σ) = 0, then it outputs ⊥. Otherwise, it runs a subroutine Subroutine
and outputs its returned value.

Theorem 1 Let Π be (τ, ϵABE , q) CPA-secure CP/KP-ABE scheme with veri-
fiability/delegatability, and Σ be a (τ, ϵOTS) secure one-time signature scheme,
then Π ′ constructed as above is (τ − o(τ), ϵABE + ϵOTS , qD, qE) CCA-secure
CP/KP-ABE scheme where q ≥ qD + qE.

The theorem can be proven from Lemma 1, 2.

Correctness. We prove the correctness of all the conversions as follows.
− In the case of CP-ABE1 and CP-ABE2, assume that the attribute set X

satisfies the policy Y (that is RCP(X,Y ) = 1). In CP-ABE1, Verify out-
puts 1 since Svk trivially satisfies ∧P∈Svk

P therefore both X and Svk satisfy
Y ∨ (∧P∈Svk

P ). The correctness then follows from that of the original ABE.
In CP-ABE2, since X∪W ⊇ X∪Svk, Delegate outputs secret key for X∪Svk
correctly and it can be easily seen that X ∪Svk satisfies Y ∧ (∧P∈Svk

P ). The
correctness follows similarly.

− In the case of KP-ABE1 and KP-ABE2, assume that the attribute set Y sat-
isfies the policy X (that is RKP(X,Y ) = 1). In KP-ABE1, Verify outputs 1
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since ∧P∈Svk
P is trivially satisfied by Svk therefore both X and ∧P∈Svk

P is
satisfied by Y ∪ Svk. The correctness then follows from that of the original
ABE. In KP-ABE2, since X ≽ X ∧ (∧P∈Svk

P ), Delegate outputs secret key
for X ∧ (∧P∈Svk

P ) correctly and it can be easily seen that X ∧ (∧P∈Svk
P ) is

satisfied by Y ∪ Svk. The correctness follows similarly.

Remark. We propose another two variants which are conversions for CP-ABE
and KP-ABE based on verifiability in Appendix A. We also note that the con-
version KP-ABE2 for the large universe case is exactly the one in [21]. We include
it here to cover the big picture of the whole framework.

Efficiency Consideration. We first consider the expansion of attribute sets.
This only occurs in CP-ABE2, where we define a key for set X ′ = X ∪W . A
problem may occur for the large universe case, since W is of super-polynomial
size the key size may also expand enormously depending on the underlying ABE.
If such a problem occurs, we use W as defined in the small universe case.

Next we consider the expansion of policies. In all of available constructions of
ABE in the literature, an access structure is represented by either of two methods
namely an access tree ([21, 5]) or a linear-secret sharing scheme (LSSS) matrix
([21, 29, 31, 26, 28]). The efficiency, in particular, key sizes and ciphertext sizes, of
these respective ABE schemes tend to depend on the size of access trees or LSSS
matrices used in such schemes. (See the definition of LSSS in Appendix C.1).
Our conversions particularly use policies of the form ψ(A) ∨ (∧P∈Svk

P ) and
ψ(A)∧ (∧P∈Svk

P ). Therefore, we have to check whether ψ(A) when augmented
to each of both forms still can be represented efficiently or not. To this end, the
efficiency is guaranteed from the following two observations.

Proposition 1 Let access structures A and B be expressed by access trees using
the method in [21] with ha, hb nodes and ℓa, ℓb leaves respectively. Then access
structure corresponding to ψ(A) ∧ ψ(B) and ψ(A) ∨ ψ(B) can be expressed by
access trees both with ha + hb + 1 nodes and ℓa + ℓb leaves.

Proposition 2 Let access structures A and B be expressed by an ℓa ×ma and
an ℓb ×mb LSSS matrix by using the LSSS of [4] respectively. Then the LSSS
matrix corresponding to ψ(A) ∧ ψ(B) and ψ(A) ∨ ψ(B) can be expressed by an
(ℓa+ ℓb)× (ma+mb) and an (ℓa+ ℓb−1)× (ma+mb) LSSS matrix respectively.

To conclude, since |Svk| = ℓ = poly(λ) in the large-universe construction and
|Svk| = 1 in the small-universe construction, our conversions can be efficiently
implementable.

Selective security. We remark that our conversion can be also applied to
selectively (CPA-)secure ABE schemes, and in such cases, resulting CCA-secure
schemes are only selectively (CCA-)secure as well.

5 Security of Our Constructions from Verifiability

Security of our constructions from verifiability, i.e. CP-ABE1 and KP-ABE1 is
addressed as follows:
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Lemma 1 Let Π be (τ, ϵABE , q) CPA-secure CP/KP-ABE scheme with verifia-
bility and Σ be a (τ, ϵOTS) secure one-time signature scheme, then Π ′ constructed
as in Sec. 4 (CP/KP-ABE1) is (τ − o(τ), ϵABE + ϵOTS , qD, qE) CCA-secure
CP/KP-ABE scheme where q ≥ qD + qE.

In the rest of this section, we prove Lemma 1 for the case of CP-ABE. The
lemma can also be proven similar way in the case of KP-ABE.

Proof of Lemma 1 for the case of CP-ABE Assume we are given an adversary
A which breaks CCA-security of the scheme Π ′ (CP-ABE1) with running time
τ , advantage ϵ, q extraction queries, and, qD decryption queries. We use A to
construct another adversary B which breaks CPA-security of the scheme Π.
Define adversary B as follows:

Setup. The challenger runs Setup(λ,U ∪W )→ (PK,MSK). Then B is given
PK and gives it to A. B also runs G(λ)→ (vk∗, sk∗).

Phase1. A may adaptively make queries of the following types:

− Key-extraction query. When A submits S, then B submits same S to
challenger. B is given private key SKS for S and gives it to A.
− Decryption query. When A submits (CT ′, S) such that CT ′ = (vk, CT, σ),
B respond to A as follows. First, B checks whether V(vk, CT, σ) = 1 holds. If
it does not hold, then B returns ⊥. If it holds and vk∗ = vk, then B aborts.
Otherwise, B checks whether Verify(PK,CT, Svk, S) = 1. If it does not hold,
then B returns ⊥. Otherwise B submits Svk to the challenger and is given SKSvk

.
Then B returns output of Decrypt(PK,CT, SKSvk

) to A.
Challenge. A declares two equal length messages M0 and M1 and an access
structure A∗. Then B declares the same messages M0, M1 and A∗′ for the chal-
lenger, where A∗′ is an access structure such that ψ(A∗′) = ψ(A∗)∨(∧P∈Svk∗P ).
The challenger flips a random coin β ∈ {0, 1}, runsEncrypt(PK,Mβ , ψ(A∗′))→
CT ∗ and gives CT ∗ to B. Then B runs S(sk∗, CT ∗) → σ∗, and gives CT ∗′ =
(vk∗, CT ∗, σ∗) to A as challenge ciphertext.

Phase2. B responds to A’s query as the same as in Phase1.

Guess. Finally, A outputs a guess β′ for β. Then B outputs β′ as its guess.

Let Win denote the event that A correctly guess β, Abort denote the
event that B aborts. If Abort does not occur, from the verifiability of the
scheme, B’s simulation is perfect. So, B’s advantage for guessing β is esti-
mated as Pr[B correctly guesses β] − 1

2 = Pr[Win|Abort]Pr[Abort] − 1
2 ≥

Pr[Win] − Pr[Abort] − 1
2 ≥ ϵ − Pr[Abort]. Since Pr[Abort] ≤ ϵOTS holds

due to unforgeability of the one-time-signature, the proof is completed. �

6 Security of Our Construction from Delegatability

Security of our constructions from delegatability, i.e. CP-ABE2 and KP-ABE2 is
addressed as follows. In this section, we prove Lemma 2 for the case of CP-ABE.
The lemma can also be proven by similar way in the case of KP-ABE.
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Lemma 2 Let Π be a (τ, ϵABE , q) CPA-secure CP/KP-ABE scheme with del-
egatability and Σ be (τ, ϵOTS) secure one-time signature, then Π ′ constructed
as in section4 (CP/KP-ABE2) is (τ − o(τ), ϵABE + ϵOTS , qD, qE) CCA-secure
CP/KP-ABE scheme where q ≥ qD + qE.

Proof of Lemma 2 for the case of CP-ABE Assume we are given an adversary
A which breaks CCA-security of the scheme Π ′ (CP-ABE2) with running time
τ , advantage ϵ, qE key-extraction queries, and, qD decryption queries. We use A
to construct another adversary B which breaks CPA-security of the scheme Π.
Define adversary B as follows:

Setup. The challenger runs Setup(λ,U ∪W )→ (PK,MSK). Then B is given
PK and gives it to A. B also runs G(λ)→ (vk∗, sk∗).

Phase1. A may adaptively make queries of the following types:

− Key-extraction query. When A submits S, then B submits S ∪W to the
challenger. B is given private key SKS∪W for S ∪W and gives it to A.
− Decryption query. When A submits (CT ′, S) such that CT ′ = (vk, CT, σ),
B respond to A as follows. First, B checks whether V(vk, CT, σ) = 1 holds. If
it does not hold, then B returns ⊥. If it holds and vk∗ = vk, then B aborts.
Otherwise B submits S ∪ Svk to the challenger and is given SKS∪Svk

. Then B
rerandomize it by SKS∪Svk

← Delegate(PK,SKS∪Svk
, S ∪ Svk, S ∪ Svk) and

returns output of Decrypt(PK,CT, SKS∪Svk
) to A.

Challenge. A declares two equal length messages M0, M1 and A∗. Then B
declares the same messages M0, M1, and A∗′ for the challenger, where A∗′ is an
access structure such that ψ(A∗′) = ψ(A∗) ∧ (∧P∈Svk∗P ). The challenger flips a
random coin β ∈ {0, 1}, runs Encrypt(PK,Mβ , ψ(A∗′))→ CT ∗ and gives CT ∗

to B. Then B runs S(sk∗, CT ∗)→ σ∗ and gives CT ∗′ = (vk∗, CT ∗, σ∗) to A as
challenge ciphertext.

Phase2. B responds to A’s query as the same as in Phase1.

Guess. Finally, A outputs a guess β′ for β. Then B outputs β′ as its guess.

Similar analysis to the previous section shows that Pr[B correctly guess β]−
1
2 ≥ ϵ− ϵOTS . �

7 Applications to Existing Schemes

7.1 The Case of ABE by Lewko et al.

In this section, we show some applications of our conversions to the recent CPA-
secure CP-ABE by Lewko et al. [26] to achieve CCA-secure schemes. We observe
first that neither delegation was presented nor verifiability is available in their
ABE. However, we show here that only a slight modification will allow both
properties. For self-containment, we briefly describe their scheme here.

Description for CP-ABE of [26]. The scheme works in a bilinear group of
composite order N = p1p2p3. Denote Gpj the subgroup of order pj of G. The
master key is MSK = (α ∈ ZN , X3 ∈ Gp3), while the public key is of the form
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PK = N, g, ga, e(g, g)α, {Ti = gsi}i∈U where g ∈ Gp1 , a, si ∈ ZN . Note that the
scheme works with a small universe U . A secret key for set S ⊂ U is of the form
SKS = (S, K = gαgatR0, L = gtR′

0, {Ki = T tiRi}i∈S) for random R0, R
′
0, Ri ∈

Gp3 , t ∈ ZN . Denote B(A) = ∪S∈AS. A ciphertext for policy A is of the form
CT = (C = Me(g, g)sα, C ′ = gs, {Cx = gaAx·vT−rx

ρ(x) , Dx = grx}x∈B(A)) for

some random s, rx ∈ ZN and where Ax · v is the random share for x of the
secret s in the LSSS scheme representing the policy A. Decryption can be done
if S ∈ A by recovering e(C ′,K)/

∏
ρ(x)∈S(e(Cx, L)e(Dx,Kρ(x)))

ωx = e(g, g)αs

where {ωx} is the reconstruction coefficient of the LSSS scheme.

Slight Modification. The above scheme seems not to have neither delegata-
bility nor verifiability. This is mainly due to the fact that one cannot check
whether a ciphertext consists of only elements in Gp1p2 or not. Thus, for achiev-
ing delegatability and verifiability, we modify the above ABE scheme by simply
including also the generator X3 ∈ Gp3 in PK. We argue that this modified
scheme is still CPA-secure. This can be easily seen since all the three underly-
ing hard problems in [26] that the scheme is based on contains a generator of
Gp3 as an input. In the following, we show verifiability and delegatability of the
resulting scheme.

Delegatability. We define Delegate of the modified scheme as follows.

Delegate(PK,SKS , S
′(⊆ S)) It chooses random u ∈ ZN and random elements

R0, R
′
0, Ri ∈ Gp3 . It computes the key for S′ as SKS′ = (S′, K ′ = KgauR0,

L′ = LguR′
0, {K ′

i = KiT
u
i Ri}i∈S′).

It is straightforward to see that the output of Delegate(PK,SKS , S
′(⊆ S)) and

that of KeyGen(MSK,PK, S′) have the same probability distribution.

Verifiability. We define Verify of the modified scheme as follows.

Verify(PK,CT, S, S′) It parses PK = (N, g, ga, e(g, g)α, {Ti}i∈U , X3) and CT =
(A, C, C ′, {Cx, Dx}x∈B(A)) then outputs V as

V =



⊥ if S ̸∈ A or S′ ̸∈ A.

1 if
∏

ρ(x)∈S

(e(Cx, g)e(Dx, Tρ(x)))
wx,S

=
∏

ρ(x)∈S′

(e(Cx, g)e(Dx, Tρ(x)))
wx,S′ = e(ga, C ′),

and e(C ′, X3) = 1, e(Cx, X3) = e(Dx, X3) = 1 for all x ∈ B(A).
0 otherwise.

(1)

(2)

Here ωx,S and ωx,S′ are reconstruction coefficients in the LSSS. Hence we have∑
ρ(x)∈S ωx,SAx =

∑
ρ(x)∈S′ ωx,S′Ax = (1, 0, . . . , 0). We now prove that Verify

algorithm defined as above satisfies soundness and completeness properties.

Proving Soundness. Consider S, S′ ∈ A. Assume thatVerify(PK,CT, S, S′) =
1 and that SKS , SKS′ are correctly generated. We will prove thatDecrypt(PK,
CT, SKS) = Decrypt(PK,CT, SKS′) holds. To this end, we parse SK =
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(S,K,L, {Ki}i∈S), and see that Decrypt(PK,CT, SKS) outputs the following.(
C ·

∏
ρ(x)∈S

(e(Cx, L)e(Dx,Kρx))
ωx

)
/e(C ′,K) by def

=

(
C ·

∏
ρ(x)∈S(e(Cx, g

t ·R′
0)e(Dx, T

t
ρ(x)Rρ(x)))

ωx

)
e(C ′, gα · gat ·R0)

by def of SKS

=
(
C ·

∏
ρ(x)∈S

(e(Cx, g)e(Dx, Tρ(x)))
tωx

)
/e(C ′, gα · gat) by (2)

= C · e(g, C ′)at/(e(C ′, g)αe(g, C ′)at) = C/e(g, C ′)α. by (1)

Now since S is arbitrary, the same result holds for S′, which concludes the proof.

Proving Completeness. Assume that a ciphertext CT is correctly generated.
We will prove that Verify(PK,CT, S, S′) = 1. A correctly generated ciphertext
is the form of CT = (C = Me(g, g)sα, C ′ = gs, {Cx = gaAx·vT−rx

ρ(x) , Dx =

grx}x∈B(A)). Since all elements are in Gp1p2 , (2) holds. Equation (1) also holds
by straightforward calculation.

Resulting CCA-secure Schemes. We now compare the two CCA-secure CP-
ABE constructions converted from the above (slightly modified) CP-ABE of [26]
by using the CP-ABE1 (required verifiability) and CP-ABE2 (required delegata-
bility). As for the public key length, ciphertext length, and encryption cost, it
seems that former is as efficient as latter. (Ciphertext length and encryption cost
depend on the underlying LSSS matrix.) Secret key length of former is shorter
than that of latter. As for the decryption cost, latter is more efficient than former
since the Verify algorithm contains many pairing computation as opposed to
the Delegate algorithm.

We remark that KP-ABE scheme in [26] also could be modified to have
verifiability by similar technique to the case of CP-ABE.

7.2 Summary for Applications to Existing Schemes

In Table 2, we give an overview of existing ABE schemes and their properties,
and from this table, one can see that many of these schemes satisfy verifia-
bility and/or delegatability. We remark that similarly to [26], Okamoto and
Takashima’s scheme [28] can be also modified to have both delegatability and
verifiability. See the full version of our paper for details. In the table, X denotes
there is verify or delegate algorithm that satisfies our definition, “U” denotes
there is unknown such algorithm.

8 Remark on Verifiability

Our definition of verifiability is considered weaker than that of the standard
public verifiability where roughly speaking, we say that an encryption scheme
satisfies public verifiability if any third party (who does not have any secret)
can always verify whether a given ciphertext is one of possible outputs of the



15

Table 2. ABE with delegatability or verifiability. In the table, “Deleg.” and “Verif.”
denote delegatability and verifiability respectively.

Schemes KP/CP Universe Deleg. Verif. Security Assumption

Goyal et al. [21, Sect.4] KP small U X selective DBDH
Goyal et al. [21, Sect.5] KP large X X selective DBDH
Goyal et al. [21, Sect.A] KP small U X selective DBDH
Ostrovsky et al. [29, Sect.3] KP large U X selective DBDH
Bethencourt et al. [5] CP large X X selective Generic group
Goyal et al. [20] CP small U X selective DBDH
Waters [31, Sect.3] CP small X X selective DPBDHE
Lewko et al. [24, Sect.6] KP large U X selective q-MEBDH
Attrapadung et al.[1] KP large U X selective DBDHE
Lewko et al. [26, Sect.2] CP small U U full 3 assumptions
Section 7.1 (modified from [26]) CP small X X full 3 assumptions
Lewko et al. [26, Sect.A] KP small U U full 3 assumptions
Okamoto et al. [28] KP large U U full DLIN
Slightly modified [28] KP large X X full DLIN

encryption algorithm or not. To see this, we show an FE scheme which has ver-
ifiability, but does not have public verifiability. We construct such FE scheme
Π ′ = (Setup′,KeyGen′,Encrypt′,Decrypt′,Verify′) from FE scheme Π =
(Setup,KeyGen,Encrypt,Decrypt,Verify) with verifiability, an one-way func-
tion f : {0, 1}n → {0, 1}n′

, and a hardcore function h : {0, 1}n → {0, 1} for f .
Here, n and n′ are polynomials of λ. Setup′ and KeyGen′ are the same as
Setup and KeyGen respectively. Encrypt′ is slightly different from Encrypt.
Encrypt′(PK,M, Y ) first runs Encrypt(PK,M, Y ) → CT and picks a ran-
dom x ← {0, 1}n independently. Then it compute (f(x), h(x)) ∈ {0, 1}n′+1

and returns final ciphertext CT ′ = (CT, f(x), h(x)). Decrypt′(PK,CT ′, SKX)
first parses CT ′ as (CT, y, b) and returns Decrypt(PK,CT, SKX) where y ∈
{0, 1}n′

, b ∈ {0, 1}. Verify′(PK,CT ′, X,X ′) first parses CT ′ as (CT, y, b) as
the same as above, then returns Verify(PK,CT,X,X ′).

It is clear that Π ′ has verifiability since Verify algorithm defined as above
works correctly. However, Π ′ does not have public verifiability since for verifying
validity of a ciphertext in the sense of public verifiability, one has to correctly
guess the hardcore bit h(x) from only f(x).
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A Variants of CP-ABE2 and KP-ABE2

In Table 3, we show CP-ABE3 and KP-ABE3 which are variants of CP-ABE2
and KP-ABE2, respectively. These schemes are very similar, differences are that
CP-ABE3 and KP-ABE3 are constructed from verifiability whereas CP-ABE2 and
KP-ABE2 are constructed from delegatability.

Table 3. How to setup X ′, Y ′ and Subroutine in CP/KP-ABE3.

Conversion CP-ABE3 Conversion KP-ABE3
CPA CP-ABE w/ verifiability

⇒ CCA CP-ABE

CPA KP-ABE w/ verifiability

⇒ CCA KP-ABE
Attribute set X ′ = X ∪W
Policy Y ′ = Y ∧ (∧P∈SvkP )

Policy X ′ = X
Attribute set Y ′ = Y ∪ Svk

Subroutine
If Verify(PK,CT,X ∪W,X ∪ Svk) = 0
or ⊥

Return ⊥.
Else

Return Decrypt(PK,CT, SKX′).

Subroutine
If Verify(PK,CT,X,X ∧P∈Svk P ) = 0
or ⊥

Return ⊥.
Else

Return Decrypt(PK,CT, SKX′).

B Weaker verifiability

Our conversion still works even if the underlying FE scheme does not satisfy our
verifiability but a weaker notion than it. This weaker variant of our verifiability
is defined as follows.

Definition 8 A FE scheme Π is said to have weaker verifiability if there exists
a polynomial time algorithm Verify that takes as We require that if R(X,Y ) = 0
or R(X ′, Y ) = 0, then Verify outputs ⊥. Here, Y is obtained from parsing CT .

1. If SK ′
X is output of KeyGen(PK,MSK,X), then Pr[Decrypt(PK,CT, SKX) =

Decrypt(PK,CT, SKX′)|
SKX ← KeyGen(PK,MSK,X), SKX′KeyGen(PK,MSK,X ′),
Verify(PK,CT,X,X ′, SK ′

X) = 1] = 1 always holds.
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2. If R(X,Y ) = R(X ′, Y ) = 1, then it holds that for all correctly generated PK
and for all CT (which might be invalid),
Pr[Verify(PK,CT,X,X ′, SKX) = Verify(PK,CT,X ′, X, SKX′)|
SKX ← KeyGen(PK,MSK,X), SKX′ ← KeyGen(PK,MSK,X ′)] =
1.

3. If SKX is output of KeyGen(PK,MSK,X) and R(X,Y ) = R(X ′, Y ) = 1,
then It holds that Pr[Verify(PK,CT,X,X ′, SKX) = 1|
SKX ← KeyGen(PK,MSK,X), CT ← Encrypt(PK,M, Y )] = 1

C Some Omitted Definitions and Descriptions

C.1 Linear Secret Sharing Schemes

Definition 9 (Linear Secret Sharing Scheme) Let P be a set of parties.
Let M be a ℓ × k matrix. Let π : {1, . . . , ℓ} → P be a function that maps a
row to a party for labeling. A secret sharing scheme Π for access structure A
over a set of parties P is a linear secret-sharing scheme (LSSS) in Zp and is
represented by (M,π) if it consists of two efficient algorithms:

Share(M,π): The algorithm takes as input s ∈ Zp which is to be shared. It

chooses a2, . . . , ak ∈ Zp and let a = (s, a2, . . . , ak)
⊤. It outputs M · a as

the vector of ℓ shares. The share λi := ⟨Mi,a⟩ belongs to party π(i), where
Mi

⊤ denotes the ith row of M .
Recon(M,π): The algorithm takes as input an access set S ∈ A. Let I = {i| π(i) ∈

S}. It outputs a set of constants {(i, µi)}i∈I which has a linear reconstruction
property:

∑
i∈I µi · λi = s.

C.2 One-Time-Signature

A one-time-signature scheme consists of the following three algorithms, G, S,
and V. The key generation algorithm G(λ) takes as input the security parameter
λ, and outputs a verification key vk and a signing key sk. The sign algorithm
S(sk,m) takes as input sk and a message m, and outputs a signature σ. The
verify algorithm V(vk,m, σ) takes as input vk, m, and σ, and outputs a bit
b ∈ {0, 1}. We require that for all honestly generated sk, all m in the message
space, and all σ, output by S(sk,m), we have V(vk,m, σ) = 1. Next, we define
strong unforgery of a (one-time) signature scheme Σ against chosen message
attacks. Security is defined using the following game between an attacker A and
a challenger. Both the challenger and attacker are given λ as input. First, the
challenger runs G(λ) to obtain vk and sk. It gives A vk. Next, A may issue
at most one signing query m∗. The challenger responds with σ∗ = S(sk,m∗).
Finally, A outputs (m,σ). We say that A succeeds to forge if A outputs (m,σ)
such that (m,σ) ̸= (m∗, σ∗) and V(vk,m, σ) = 1, and denote the probability of
this event by AdvOTSA,Σ .

Definition 10 We say that a one-time-signature scheme Σ is (τ, ϵ)-secure if
for all τ -time algorithms A we have that AdvOTSA,Σ < ϵ.


